Université Paris 7 Licence Math-Info (L3) TD de Logique (Brice Minaud)

TD 9 Récursivité

Remarque utile : dans tout le TD, on suppose connu le fait que l'addition, la soustraction (limitée, c'est-à-dire a - b = 0 si b > a), et la multiplication sont primitives récursives.

Par ailleurs un ensemble est primitif récursif ssi sa fonction caractéristique est primitive récursive. Une relation est primitive récursive ssi son graphe est primitif récursif.

Exercice 1 : Montrer que l'addition ne peut être obtenue à partir des fonctions de base et en n'utilisant que la composition.

Exercice 2 : Montrer que tout sous-ensemble fini de \mathbb{N} est primitif récursif.

Exercice 3 : Soit f une fonction primitive récursive de \mathfrak{F}_3 , g primitive récursive de \mathfrak{F}_4 et a un entier fixé. Montrer que :

- a- $(y,z) \mapsto f(y,z,y)$ est primitive récursive.
- b- $(x, y, z) \mapsto g(zy, a, y, x + a)$ est primitive récursive.

Exercice 4 : Montrer que la propriété « être pair » est primitive récursive.

Exercice 5 : Montrer que les fonctions suivantes sont primitives récursives.

- a- $x \mapsto$ partie entière de x/2.
- b- $x \mapsto$ partie entière de \sqrt{x} .
- c- la fonction caractéristique de « x est une somme de deux carrés ».

Exercice 6: Montrer que les fonctions $(x,y,z)\mapsto \sup(x,y,z)$ et $(x,y,z)\mapsto \inf(x,y,z)$ sont primitives récursives.

Exercice 7: Soit A le plus petit ensemble d'entier contenant 0 et tel que $\forall n \in A, 2^n \in A$. Montrer que A est primitif récursif.

Exercice 8:

a- Montrer que si une fonction de \mathfrak{F}_p est primitive récursive, alors son graphe est primitif récursif.

(La réciproque est fausse : La fonction d'Ackermann en est un contre-exemple)

b- Soit f une fonction de \mathfrak{F}_p . Montrer que si le graphe de f est primitif récursif, et si f est bornée par une fonction g primitive récursive de \mathfrak{F}_p , alors f est primitive récursive.

(Remarque : par contre on peut facilement trouver une fonction non primitive récursive mais qui soit bornée par une fonction primitive récursive)

Exercice 9:

a- Montrer que la fonction q définie par

$$q(x,y) = \begin{cases} 0 & \text{si } y = 0 \\ \text{partie entière de } \frac{x}{y} & \text{sinon} \end{cases}$$

est primitive récursive.

- b- En déduire que la relation « x divise y », notée x|y, est primitive récursive.
- c- En conclure que la propriété « être premier » est primitive récursive.

Exercice 10 : [Bonus sur les prédicats] Soit un langage $L=\{\simeq, R\}$ où R est un symbole de relation binaire. On considère, pour chaque entier $n \geq 2$, la formule G_n suivante :

$$G_n = \exists x_1 \exists x_2 \dots \exists x_n \ (R x_1 x_2 \land R x_2 x_3 \land R x_3 x_4 \land \dots \land R x_n x_1)$$

On pose $T = {\neg G_n ; n \ge 2}.$

- 1. Donner une L-structure \mathfrak{M} qui satisfait G_4 , puis une L-structure \mathfrak{N} qui satisfait $\neg G_2 \wedge \neg G_3 \wedge \neg G_4$.
- 2. Donner, pour chaque $n \geq 2$, une L-structure \mathfrak{N}_n qui satisfait $\neg G_2 \wedge \neg G_3 \wedge \ldots \wedge \neg G_n \wedge G_{n+1}$.
- $3\star$. Montrer que, pour toute formule close F qui est conséquence de T, il existe une L-structure $< M, R^M >$ modèle de F, telle que la relation binaire R^M possède un cycle (c'est-à-dire satisfait l'une des formules G_n). (On pourra appliquer le théorème de compacité)
- $4\star$. Montrer que T n'est logiquement équivalente à aucun ensemble fini de formules de L.

Exercice 11: [Bonus sur les clauses] On dit qu'une clause est une *clause de Horn* ssi elle a au plus une variable positive (au plus une variable à droite de \Longrightarrow).

- a- Montrer que si un ensemble de clauses de Horn ne contient pas de clause du type $\implies v$, alors cet ensemble est satisfaisable.
- b*- En déduire un algorithme polynomial pour déterminer si un ensemble de clauses de Horn est satisfaisable