Feuille de TD n° 2

Nombres Complexes

Exercice 1.

On note: $z_1 = -2 + 2i\sqrt{3}$, $z_2 = 5 - 12i$ et $z_3 = \frac{1+i}{1-i}$.

Ecrire sous forme algébrique les racines carrées des nombres complexes $z_1,\,z_2,\,z_1z_2$ et z_3

Exercice 2.

a. Donner les racines cinquièmes de $\frac{1+i}{1-i}$.

b. Sachant que $(2+4i)^6 = 7488 + 2816i$, donner les racines sixièmes de 7488 + 2816i.

Exercice 3.

Résoudre les équations suivantes dans $\mathbb C$:

(E1)
$$z^2 = (1+i)z - 4 + 7i$$
, (E2) $z^6 + (8-i)z^3 - 8i = 0$, (E3) $z^2 = 2iz + 1$,

(E4)
$$\left(\frac{z-1}{z}\right)^n = 1$$
 où $n \in \mathbb{N}^*$.

Exercice 4.

Soit $n \geq 1$ un entier et $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ l'ensemble des racines n-ièmes de l'unité dans \mathbb{C} .

Calculer les quantités suivantes : $\sum_{z \in U_n} z$ $\prod_{z \in U_n} z$

Exercice 5.

Soit a un nombre réel. Calculer $\cos(5a)$ et $\sin(5a)$ en fonction respectivement de $\cos a$ et de $\sin a$.

Montrer que $\cos \frac{\pi}{10} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$.

Exercice 6.

Soit a un nombre réel. Linéariser $\cos^4 a$ puis $\cos^2 a \sin^3 a$.

Exercice 7.

Pour n entier naturel et θ réel, on pose

$$C_n(\theta) := \sum_{k=0}^n \cos(k\theta)$$
 et $S_n(\theta) := \sum_{k=0}^n \sin(k\theta)$.

a. Calculer $C_n(\theta) + iS_n(\theta)$. En déduire $C_n(\theta)$ et $S_n(\theta)$ en fonction de n et θ .

b. Calculer de même les sommes $\sum_{k=0}^{n} a^k \cos(k\theta)$ et $\sum_{k=0}^{n} a^k \sin(k\theta)$, où $a \in \mathbb{R}$.

Exercice 8.

Représenter dans le plan complexe les ensembles $E,\,F,\,G,\,H$ des points dont l'affixe z vérifie respectivement :

(E)
$$|z - 1| = 1$$
 (F) $|z + i - 3| \le 2$ (G) $|z - i| = |z + 1|$ (H) $z + \overline{z} = z\overline{z}$.

Exercice 9.

Soit $z \in \mathbb{C}$. On note A, B et C les points du plan complexe d'affixes i, z et iz. Quelles sont les valeurs de z pour lesquelles :

- a. les points A, B et C sont alignés.
- b. le triangle ABC est équilatéral.

Exercice 10.

- a. Qu'obtient-on en reliant dans l'ordre les points d'affixes $(1+i)^n$ pour n=0, 1, 2...? Faire une figure.
- b. En utilisant la représentation polaire de 1+i, proposer une courbe continue, paramétrée par $t \ge 0$, passant par tous les points d'affixes $(1+i)^n$, $n \ge 0$.

Exercices de recherche

Exercice 11.

Pour n entier naturel et θ réel, on pose

$$A_n(\theta) := \sum_{k=0}^n C_n^k \cos(k\theta)$$
 et $B_n(\theta) := \sum_{k=0}^n C_n^k \sin(k\theta)$.

Calculer $A_n(\theta)$ et $B_n(\theta)$ en fonction de n et de θ .

Indication : il faut savoir écrire $1 + e^{i\theta}$ sous la forme ae^{ib} avec a et b réels.

En déduire les formules

$$\sum_{k=0}^{n} C_n^k = 2^n \quad (n \ge 0) \qquad \text{et} \qquad \sum_{k=0}^{n} (-1)^k C_n^k = 0 \quad (n \ge 1).$$

Exercice 12.

Soit $n \geq 2$ un entier. On cherche à déterminer les nombres complexes $z \in \mathbb{C}$ tels que les points du plan complexe d'affixes 1, z et z^n soient alignés.

- a. Soient A, B, C trois points distincts du plan complexe, d'affixes respectifs a, b, c. À quelle condition portant sur a, b, c les points A, B, C sont-ils alignés?
- b. Résoudre le problème dans le cas n=2.
- c. On se place dans le cas n=3. Montrer que les points d'affixes 1, z et z^3 sont alignés si et seulement si $1+z+z^2\in\mathbb{R}$.
- d. En posant z = x + iy avec x et y réels, résoudre le problème dans le cas n = 3.