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Today:
» “Germ-grain” coverage models in stochastic geometry,
» SINR (or shot-noise) coverage model,
» Palm and stationary coverage characteristics.
Tomorrow:
» Poisson-Dirichlet processes,
» Relations to SINR coverage.




“Germ-grain” coverage models
IN stochastic geometry




Consider a general germ-grain (GG) coverage model

f(Xi;G)g, where f Xjg are “germs” forming a point process
onRY, and G = G(X;;) are, possibly dependent,

random closed subsets of RY, called “grains”.




Consider a general germ-grain (GG) coverage model
f(Xi;G)g, where f Xjg are “germs” forming a point process

onRY, and G = G(X;;) are, possibly dependent,
random closed subsets of RY, called “grains”.

Voronoil tessellation and Boolean Model are special cases of

GG coverage model.
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G=Xi G =f1Xi+y:y2Gjg,;

where, given = fX;g, G; are I.I.d. random closed
(compact) sets in RY.
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Let f (X i; G)g be a general stationary GG model. In
particular, = f X g Is a stationary point process. One
considers two types of coverage characteristics:

Coverage by the typical grain

p(x):= P%% x 2 Cogwhere x 2 R4 and Cy = C(0; ) the
grain attached to the typical point X =0 of considered
under its Palm distribution P°.

Statlor}ffwy c%verage | | |
p:=P 02 G arbitrary location 0 covered by the union.




More generally, denote by N , the number of grains covering
the origin O v

N = 1(0 2 C))

and its (stationary) distribution by
Pk = PIN kg:

Pk Is called stationary k-cogerage probability
Obviously, p= p1 = P02 , Gg stationary coverage
probability.
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Typical cell coverage
n 0
p(x):= P® jx 0j j x Xij806 X;?2
siviyak = Pf ( Bx(jxj))=0 ¢

. .d
xjd .
Poisson de nition = € aixl

whereBa(r)= fy:jy aj rgand 4= jBg(l)jand is
the intensity of Poisson

Stationgry coverage: (Almogt) trivially

pk .= P #fi:02Vig k =1 fork=1 andOfork 2.

Indeed, VT is a partition of R modulo boundaries of the
cells, on which 0 lies with probability P =0 .




Typical grain coverage
By the Slivhyk's theorem and the independence of grains G;

p(x):= P’%fx 2 0 Gog= Pfx 2 Gogis given directly by
the generic grain G distribution.
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Stationary coverage: N Is Poisson( EJ[jGj]). Indeed:

n 0]
ka:P#fiIOZXi Gig K

= Pt ARY kg

P . .
where °= ", 1(02 X; Gj) x, isanindependent
thinning of points of . Yis a non-homogeneous Poisson
process w intensity measure

Ydx):= E[ Ydx)]= Pf02 x Gg dx = Pfx 2 Gg dx,
wherePG = f y:y 2 Gg. Conseqguently
k= -_.e  ®=ntwhere %:= YRY= E[G]j].
In particular

0o = e ELGIHI



Forn 1, the k-th factorial moment of (an integer valued rv)
N is de ned as .
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Forn 1, the k-th factorial moment of (an integer valued rv)
N is de ned as .

EINK]1=ENN D*":::(N k+21)*

FACT Factorial moments characterize the distribution of the
random variable. In particular, fork 1

h

1
pe = (" Kk nEN M
. k 1
X n
PfIN = kg = ( )" K ) n!E[N (M7

n=k

E[zN] = (z 1)"n!E[NM71; z2]0;1]:
n=0




E[N D= ELN] |
X |
= E 1(0 2 Cj)
7 X2
Campbell = P*f02 Cxg dx
Zr
symmetry = P% x 2 Cog dx
Zr

= p(x)dx = E°[jCoj];
Rd

where p(x) Is the typical grain coverage probabillity.
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Forn 1, quite similarly

EIN (M= E 102 C,

2

higher-order Campbell = prXn 02 Cx (n)(d(xl 111Xn))

where P*t+ is n-fold Palm distribution of and (M) ()is
n -fold factorial moment measure of
In case of Poisson of intensity (),

protn = Py Pa (Slivnyak's Thm)

j=1 ]

and (M(d(x1:::xn)) = (dxq1)::: (dxp).




n 1
Dk = ( )" K 1 nt  pPXtXn g2 C,
Rd :

and similarly for PfN = kg, E[zN ].




(M (d(x1:::%xn))
and similarly for PfN = kg, E[zN ].

Factorial moment expansions exist for more general
characteristics of the point process. BB (1995).




Coverage model for communications




SINR= Signal-to-Interference-and-Noise Ratio

USEFUL SIGNAL RECEIVED POWER
ALL OTHER SIGNALS RECEIVED POWER (and/or) NOISE

SINR =

SINR characterizes the throughput of the communication
channel; i.e., the number of bits/second that can be reliably
sent in this channel.

Formalization on the ground of information theory.
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In what follows, we will consider a GG coverage model,
where

s germs represent locations of wireless transmitters

» grains are regions where the SINR with respect to
respective transmitter is large enough.




SINR grain, or cell:

( )
o yzRe BT XD

W + jgiSj:\(jy Xil)

s = fX;ghom. Poisson p.p. on R? of int. ; locations of
wireless transmitters (extension to RY straightforward)

s = f(Xi;Si)gindependently marked ,S; S O,
E[S?® ] < 1 ;random signal propagation effects,
“shadowing”, “fading”

s W 0, rv. independent of ~; “noise” power
s (N=(Kr) ,(K 0, > 2)"“path-loss” function,

s 0 parameters.
! U




f(Xi;Ci)g
clearly is an example of a GG model with dependent grains.

» Introduced (in a bit more general setting) in Baccelli,
BB (2001).
» Studied since then in many many variants and aspects.

» Recently called shot-noise coverage model in Chiu,
Stoyan, Kendall, Mecke (2013); (interference modeled by a

shot-noise eld).



















When =0 (no interference) SINR grains (cells) are
Independent; Boolean Model approximations,

WhenW =0 (nonoise)and !1 (“strong path-loss™)
SINR cells converge to Voronoi cells,

Playingwithw ! Oand !'1 SINR becomes
Johnson-Mehl.










Locally:

Maximal overlapping phenomenon: N has a nite
support (unlike in BM, where N Poisson); to be
explained...




Locally:

Maximal overlapping phenomenon: N has a nite

Su
ex

Globa

oport (unlike in BM, where N Poisson); to be
nlained...

ly:

Bounded super-critical percolation regime: Increasing
node density may destroy in nite components.




Dousse, F. Baccelli, and P Thiran (2003),
Dousse, Franceschetti, Macris, Meester, Thiran (2006)

Percolation domain

L no
perco-

| lation no percolation

percolation

interference cancellation factor

node density

Increasing node density may destroy in nite component(s)!




Coverage characteristics
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(y  Xil)
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Without loss of generality =1.
Under Paim P®, cellCoof X =0,x 2 R?,jxj=r,
X S,

Pofx 2 Cog=P° Sg W' (r)+ “(r) — .
(y  Xil)

| 60
By the Slivnyak's theorem
X S
o Gy Xi)
X S,
Uy Xi))

PP So W (r)+ " (r)

=P S W (r)y+ (r)

F)
with S, W and (:::) independent under P.
R X




The linear functional
X Z
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The linear functional

X Z
I = fF(Xi)= f(x)( dx)
i
of a point process = fX;gis called in SG shot-noise (SN)
of with the response function f .

The Laplace transform L of the SN | can be directly
expressed by the Laplace transform of the point process

h R |
L,()= Ee TOOCd) = (f):

Consequently, for Poisson point process of intensity ( dx)
R
L|():e (1ef(X))(dX):



P
The Laplace transform of I = = ; <—=¢— with
“(r)=( Kr) Isequalto

L()=e K *% @ 2=)ES)

' ta lg tdt (gamma function).

where (a)= |




P
The Laplace transform of I = = ; <—=¢— with
“(r)=( Kr) Isequalto

L()=e K *% @ 2=)ES)

01 t2 le 'dt (gamma function).

where ( a) =
Calculation of P°f x 2 Cgg is reduced to the problem of
calculating the probabilities

n 0
P w (r)+ "~ (r)l S 0 ;

where S and W and | are independent with known Laplace
transforms L ; L, and L s, respectively.
e
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For a given ( z) de ned for z on the imaginary axis| , nd

*(z) and (z) de ned and analyticon Re(z) 0 and
Re(z) O, respectively, satisfying

(2)= T(2)+ (z) forz 2|
Sokhotski's solution: unique

(z) = %1(2 21 )

Z
()

1
pa— d;
21 4 Z

where, for z 2 | , the singular at z integral is understood In
the principal value sense (limit of the integral over

(1 ;z ][ [z+ ;1 )with ! 0), provided ( z) is HOlder and
Integrable on the imaginary axiswithj ( z)j A=jzj for

some A and Iarge '|z'|.



FACT: Consider random variable Y having a density and
denote by L y its Laplace transform. Then

z,
p(Y  0)= 1 % Ly ()

2

d;

1

where i is the imaginary unit and the singular at O integral is
understood in the principal value sense.




FACT: Consider random variable Y having a density and
denote by L y its Laplace transform. Then
1 4t v(i)

1

where i is the imaginary unit and the singular at O integral is
understood in the principal value sense.

proof: Denote by f (x) the density of Y and de ne

f(x)= Rf (x)(x 0),f (x)= f(x)l(I\g2 0). Consider

(z)= | e #Zf(x)dx and (z)= | e #f (x)dx.
and satisfy the Rieman boundary problem having the

unique solution. Thus PfY  0g must be equalto 7 (0)

where  (z) is the Sokhotski's solution of the problem.
e



COR.: | has density provided PfS > 0g > 0 and

POf x 2 Cogz
11 oLw( i ()L i () LsC ) .
2 2 '

with the singular at O integral understood in the principal
value sense.
Baccelli, BB (2001)




FACT: For all square integrable functions f and g,
Z 1 Z 1
f(ho(t)dt = Ms)b(s)ds;
1 1
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where fXs) = e 2 f (t)dt, denotes Fourier transform

and b(s) is the complex conjugate of §(s).
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FACT: For all square integrable functions f and g,
Z 1 Z 1
f(ho(t)dt = Ms)b(s)ds;
1 1
R | .
where fXs) = e 2 f (t)dt, denotes Fourier transform
and b(s) Is the complex conjugate of §(s). Consequently,
Z b yA 1 eZi bs e2i as
f(t)dt = fi(s) _ ds:

a 1 21S

C%R :Assume PfS > 0g > 0. Then P’ x 2 Cog =
Ls( 2is ) 1
L, (2i° (r)Ts)Lw (2i° (r)Ts) e ds:
1




Assume S exponential (mean 1 without loss of generality).
With jxj = r

N O
PPfx2 Cog=P S W (r)+ " (r)l
h |
= E e W= (r) ()l
=Lw (r) L (r)
N O

= Lw (Kr) exp r?% (@1 2=)1+2 )=

Explicit expression!




Assume S exponential (mean 1 without loss of generality).
With jxj = r

N O
PPfx2 Cog=P S W (r)+ " (r)l
h i
- E e W™ (r) ~(r)l
=Lw (r) L (r)
N O

= Lw (Kr) exp r% @1 2=)Q+2 )=

Explicit expression!
Exponential distribution of S corresponds to wireless
channels with the so called Rayleigh fading.

So it is not merely for mathematical convenience!
R+ N




Assume S exponential (mean 1 without loss of generality).
With jxj = r

N O
PPfx2 Cog=P S W (r)+ " (r)l
h i
- E e W™ (r) ~(r)l
=Lw (r) L (r)
N O

Lw  (Kr) exp r?% (@1 2=)1+2 )=

Baccelli, BB (2003), cf also Zorzi, Pupolin (1994) for an
early idea (with “doubly-stochastic” exponential S)
This very simple observation inspired amazing amount of

subsequent works in the engineering literature...
¥ I



Denote the number of cells covering the origin 0 by

X
N = 102C:

[
We are interested in the distribution of N

Pk = PIN kg:

Pk IS called statiogary k-coverage probability and
p:=p1= P02 ;C;g stationary coverage probability.




FACT:
N d 1= e P-a.s.;

where dx e is the ceiling of x (the smallest integer not less
than x). In other words
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FACT:
N d 1= e P-a.s.;

where dx e is the ceiling of x (the smallest integer not less
than x). In other words

1
pk =0 fork 1+ —:

Recall,
forVT pi =1 andpx =0 fork 2,
and for BM N Is a Poisson variable, thuspx > Oforallk 0.




I§i,-:‘(iy Xi])
W+ e Sk= (Y Xki)

SINR;, =




Si;= Uy Xil)
W+ e Sk= (Y Xki)

SINR;, =

Equivalently, for STINR (TI=Total Interference):

Sp="(y X))
W+ (Si=(y Xij) 1+

STINR;, :




Si;= Uy Xil)
W+ e Sk= (Y Xki)

SINR;, =

Equivalently, for STINR (TI=Total Interference):

Sp="(y_ Xi,i)

STINR;; : — : ] =1;:::;n
W+ Sk=(0y Xg)) 1+
Consequently
X‘] o~y r
1> Sp= Uy  Xij)) n

LW SEGy X)) 1w

andthusn< 1+1=.
T Ve




h |
COREN®]:== EN(N D*:::(N k+1)* =0 for

k 1+ 1 and thus the usual expansions are in fact nite
sums: fork 1

% e n 1
= n Kk (n)y.

Pk n:k( 1) 1 n!E[N *T;

d%e n
PfN = kg = ( 1" K ) n!E[N (M7
n=Kk
dk:e
E[zN] = (z 1)"n!E[N™M71; 2z 2][0;1]:

n=0




h |
COREN®]:== EN(N D*:::(N k+1)* =0 for

k 1+ 1 and thus the usual expansions are in fact nite
sums: fork 1

= (o™ N,
L k 1
o e n
PIN = kg = ( " Kk n!E[N (M]:
n=Kk 5
dk: e
E[zN] = (z 1)"n!E[N™M71; 2z 2][0;1]:

n=0

As for U -statistics, i.e. functionals of the form i (X, 11);

cf. Reitzner, Schulte ‘2013:. (Xi;:)2 (M)
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X2 (user path-gain process)

intensity measure 2a=t ! 27 dt, where a :=
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the distribution of S.

Helpful in proofs, where for mathematical convenience S
can be assumed exponential with the results generalized to
arbitrary S by appropriate modi cation of a.




n S, o

Denote := Yy = ———: X 2 (user path-gain process)
(X))

LEM.: is inhomogeneous Poisson pp on (0;1 ) Witp

intensity measure 2a=t 1 2= dt, wherea = — 51

COR.: The k-coverage probabilities (and all functionals of
and W ) depend only on and a W, but are invariant w.r.t.
the distribution of S.

Helpful in proofs, where for mathematical convenience S
can be assumed exponential with the results generalized to
arbitrary S by appropriate modi cation of a.

Credits: shot-noise equiv. Gilbert, Pollak (1960), Lowen, Teich (1990),
in physics (spin glasses) Bolthausen, Sznitman (1998),
in the SINR context BB, Karray, Klepper (2010)



Proof: By the displacement theorem, Is Poisson point
process on (0;1 ).




Proof. By the displacement theorem, is Poisson point
process on (0;1 ). We calculate its intensity measure:

[ si1)):= EE([ s; 1))
= Pf S="(jzj) sgdz

R%, )
=2 rPf S="(r) sgdr
Z,  n i
=2 rE 1 r (sS)¥ =K dr
. # .
Z (ss)t= =k g 2= h N
=2 E rdr = 5 E S
0 K




For n 1, de ne some functions of x 0

R

on u2" le u? u x (1 2=) :2du
_ 0 .
' )= S = @2 = e
In particular
2n 1
O ey

where CY )= (1 2= )(1+2 =).




Forn 1, denealso functions of (xq1;:::;xi) O
Jn; (X1;:7:0,Xn)
Z Q . _
1+ M. x no1,@=A) 1 e
. =1 %) o ( ) dvyiiidvp 1
n =1 (X|+ |)
[0;1]n 1
where 8
% 1 = ViVa...Vnp 1
2 =(1 vi)vaiiivp 1
% 3 =(1 wv2)vziiivp 1
n =1 Vin 1




PROP.: Assume E(S%= ) < 1 and (for simplicity)
deterministic W. Thenforn 1

(

EN (M= "
0 otherwise,

My (Wa T2)Jpn (a) foro< < L

where

Keeler, BB, Karray (2013).




PROP.: Assume E(S%= ) < 1 and (for simplicity)
deterministic W. Thenforn 1

(

EN (M= "
0 otherwise,

2Nn=

Il (Wa =23, (n) foro< < L

where

1 (n 1)

Keeler, BB, Karray (2013).
Remark, the smaller the larger maximal non-null moments.




PROP.: Assume E(S%= ) < 1 and (for simplicity)
deterministic W. Thenforn 1

(
E[N (M] =

2Nn= —
n " | . (Wa _Z)Jn; (n) foro< < nll

0 otherwise,

where

"1 (n 1)
Keeler, BB, Karray (2013).
Remark, the smaller the larger maximal non-null moments.
Also, E[N (M] depends on W onlyvial .. (Wa =?2);
(factorization of E[N ("] with respect to W , similar to the
factorization of p(x) for exponential S).




COR.: For arbitrary distribution of S with E(S%~ ) < 1 and
deterministic W

dk:e
Pk = (" *(% 1) n2n: lne (Wa =23, (n):

n=Kk

Keeler, BB, Karray (2013).




COR.: For arbitrary distribution of S with E(S%~ ) < 1 and
deterministic W

dk:e
Pk = (D" “(¢ 1) n2n: e (Wa "2)Jn (n):
n=Kk

Keeler, BB, Karray (2013).

In particular for 1 we have d1= e=1 and thus px =0
forallk 2 (like VT, one-coverage only!) and
2 = ‘1 (1 2=) 2
= = ue “ “JLw a “cu du:
P P1 (1 4 g) . W

Dhillon, Ganti, Baccelli, Andrews (2012).




For n =1 : by the Little's law
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property of N .




For n =1 : by the Little's law
Z

EIN D= E[N]= p(x) dx;
R2

where p(x) Is the typical cell coverage probability.
p(x) admits explicit expression assuming S exponential.

This can be done without loss of generality by the invariance
property of N .

The proof (n = 1) follows by direct calculations with
exponential S.




Forn 1, quite similarly
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The probabilities P***" 0 2

explicitly assuming (without loss of generality!) exponential
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Forn 1, quite similarly

h X \n |
EIN (M]=E 102 G
Xil;XiZ;:::;X in2 j:]_
Z distinct
..... \"
higher-order Campbell = Pt 02 Cx "dxp:::dxp:
R? i1
..... T,

The probabilities P***" 02 /_; Cx can be evaluated

explicitly assuming (without loss of generality!) exponential
S and using (higher-order) Slivnyak's theorem

le ---- X n — P+ Pn

=L X
The proof follows by direct calculations with exponential S.
s




Thank you for today.

Tomorrow: Relations to Poisson-Dirichlet
processes
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