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OUTLINE

Today:

“Germ-grain” coverage models in stochastic geometry,

SINR (or shot-noise) coverage model,

Palm and stationary coverage characteristics.

Tomorrow:

Poisson-Dirichlet processes,

Relations to SINR coverage.
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“Germ-grain” coverage models
in stochastic geometry
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General “germ-grain” coverage model

Consider a general germ-grain (GG) coverage model
{(Xi, Ci)}, where {Xi} are “germs” forming a point process
Φ on Rd, and Ci = Ci(Xi,Φ) are, possibly dependent,
random closed subsets of Rd, called “grains”.
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General “germ-grain” coverage model

Consider a general germ-grain (GG) coverage model
{(Xi, Ci)}, where {Xi} are “germs” forming a point process
Φ on Rd, and Ci = Ci(Xi,Φ) are, possibly dependent,
random closed subsets of Rd, called “grains”.

Voronoi tessellation and Boolean Model are special cases of
GG coverage model. – p. 4



Voronoi tessellation (VT)

Ci = {y ∈ R
d : |y − x| ≤ |y − Xi| ∀Xi ∈ Φ}
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Boolean model (BM)

Ci = Xi ⊕ Gi = {Xi + y : y ∈ Gi} ,

where, given Φ = {Xi}, Gi are i.i.d. random closed
(compact) sets in Rd.
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Coverage probabilities

Let {(Xi, Ci)} be a general stationary GG model. In
particular, Φ = {Xi} is a stationary point process. One
considers two types of coverage characteristics:
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Coverage probabilities

Let {(Xi, Ci)} be a general stationary GG model. In
particular, Φ = {Xi} is a stationary point process. One
considers two types of coverage characteristics:

Coverage by the typical grain
p(x) := P0{x ∈ C0} where x ∈ Rd and C0 = C(0,Φ) the
grain attached to the typical point X0 = 0 of Φ considered
under its Palm distribution P0.
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Coverage probabilities

Let {(Xi, Ci)} be a general stationary GG model. In
particular, Φ = {Xi} is a stationary point process. One
considers two types of coverage characteristics:

Coverage by the typical grain
p(x) := P0{x ∈ C0} where x ∈ Rd and C0 = C(0,Φ) the
grain attached to the typical point X0 = 0 of Φ considered
under its Palm distribution P0.
Stationary coverage

p := P
{
0 ∈

⋃
i Ci

}
arbitrary location 0 covered by the union.
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Stationary coverage number

More generally, denote by N , the number of grains covering
the origin 0

N :=
∑

i

1(0 ∈ Ci)

and its (stationary) distribution by

pk := P{N ≥ k} .

pk is called stationary k-coverage probability
Obviously, p = p1 = P{0 ∈

⋃
i Ci} stationary coverage

probability.
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Exercise: coverage in Poisson-VT

Typical cell coverage

p(x) := P0
{
|x − 0| ≤ |x − Xi| ∀0 6= Xi ∈ Φ

}

Slivnyak = P{Φ(Bx(|x|)) = 0}

Poisson definition = e−λκd|x|d ,

where Ba(r) = {y : |y − a| ≤ r} and κd = |B0(1)| and λ is
the intensity of Poisson Φ.
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Exercise: coverage in Poisson-VT

Typical cell coverage

p(x) := P0
{
|x − 0| ≤ |x − Xi| ∀0 6= Xi ∈ Φ

}

Slivnyak = P{Φ(Bx(|x|)) = 0}

Poisson definition = e−λκd|x|d ,

where Ba(r) = {y : |y − a| ≤ r} and κd = |B0(1)| and λ is
the intensity of Poisson Φ.

Stationary coverage: (Almost) trivially

pk := P
{
#{i : 0 ∈ Vi} ≥ k

}
= 1 for k = 1 and 0 for k ≥ 2.

Indeed, VT is a partition of Rd modulo boundaries of the
cells, on which 0 lies with probability P = 0.
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Exercise: coverage in (Poisson-) BM

Typical grain coverage
By the Slivnyk’s theorem and the independence of grains Gi

p(x) := P0{x ∈ 0 ⊕ G0} = P{x ∈ G0} is given directly by
the generic grain G distribution.
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Exercise: coverage in (Poisson-) BM

Stationary coverage: N is Poisson(λE[|G|]).
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Exercise: coverage in (Poisson-) BM

Stationary coverage: N is Poisson(λE[|G|]). Indeed:

pk : = P
{
#{i : 0 ∈ Xi ⊕ Gi} ≥ k

}

= P{Φ′(Rd) ≥ k} ,

where Φ′ =
∑

Xi∈Φ 1(0 ∈ Xi ⊕ Gi)δXi is an independent
thinning of points of Φ.
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Exercise: coverage in (Poisson-) BM

Stationary coverage: N is Poisson(λE[|G|]). Indeed:

pk : = P
{
#{i : 0 ∈ Xi ⊕ Gi} ≥ k

}

= P{Φ′(Rd) ≥ k} ,

where Φ′ =
∑

Xi∈Φ 1(0 ∈ Xi ⊕ Gi)δXi is an independent
thinning of points of Φ. Φ′ is a non-homogeneous Poisson
process w intensity measure
Λ′(dx) := E[Φ′(dx)] = P{0 ∈ x ⊕ G}λdx = P{x ∈ Ǧ}λdx,
where Ǧ = {−y : y ∈ G}.
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Exercise: coverage in (Poisson-) BM

Stationary coverage: N is Poisson(λE[|G|]). Indeed:

pk : = P
{
#{i : 0 ∈ Xi ⊕ Gi} ≥ k

}

= P{Φ′(Rd) ≥ k} ,

where Φ′ =
∑

Xi∈Φ 1(0 ∈ Xi ⊕ Gi)δXi is an independent
thinning of points of Φ. Φ′ is a non-homogeneous Poisson
process w intensity measure
Λ′(dx) := E[Φ′(dx)] = P{0 ∈ x ⊕ G}λdx = P{x ∈ Ǧ}λdx,
where Ǧ = {−y : y ∈ G}. Consequently
pk =

∑∞
n=k e

−Λ′

Λ′n/n! where Λ′ := Λ′(Rd) = λE[|G|].
In particular

p0 = e−λE[|Ǧ|] .
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Factorial moments ofN

For n ≥ 1, the k-th factorial moment of (an integer valued rv)
N is defined as

E[N (k)] := E
[
N (N − 1)+ . . . (N − k + 1)+

]
.
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Factorial moments ofN

For n ≥ 1, the k-th factorial moment of (an integer valued rv)
N is defined as

E[N (k)] := E
[
N (N − 1)+ . . . (N − k + 1)+

]
.

FACT Factorial moments characterize the distribution of the
random variable. In particular, for k ≥ 1

pk =

∞∑

n=k

(−1)n−k

(
n − 1

k − 1

)
n!E[N (n)] ,

P{N = k } =

∞∑

n=k

(−1)n−k

(
n

k

)
n!E[N (n)] ,

E[zN ] =

∞∑

n=0

(z − 1)nn!E[N (n)] , z ∈ [0, 1] .
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Little’s law (or a mass transport principle)

E[N (1)] = E[N ]

= E
[ ∑

Xi∈Φ

1(0 ∈ Ci)
]

Campbell =

∫

Rd

Px{0 ∈ Cx}λdx

symmetry =

∫

Rd

P0{x ∈ C0}λdx

=

∫

Rd

p(x) dx = λE0
[|C0|] ,

where p(x) is the typical grain coverage probability.
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Higher-order extensions

For n ≥ 1, quite similarly

E[N (n)] = E
[ ∑

Xi1
,Xi2

,...,Xin
∈Φ

distinct

1
(
0 ∈

n⋂

j=1

Cij

)]

higher-order Campbell =

∫

Rd

Px1,...,xn

(
0 ∈

n⋂

j=1

Cx

)
λ(n)(d(x1 . . . xn))

where Px1,...,xn is n-fold Palm distribution of Φ and λ(n)(·) is
n-fold factorial moment measure of Φ.
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Higher-order extensions

For n ≥ 1, quite similarly

E[N (n)] = E
[ ∑

Xi1
,Xi2

,...,Xin
∈Φ

distinct

1
(
0 ∈

n⋂

j=1

Cij

)]

higher-order Campbell =

∫

Rd

Px1,...,xn

(
0 ∈

n⋂

j=1

Cx

)
λ(n)(d(x1 . . . xn))

where Px1,...,xn is n-fold Palm distribution of Φ and λ(n)(·) is
n-fold factorial moment measure of Φ.
In case of Poisson Φ of intensityλ(·),

Px1,...,xn

Φ = PΦ+
∑n

j=1 δxj
(Slivnyak’s Thm)

and λ(n)(d(x1 . . . xn)) = λ(dx1) . . . λ(dxn).
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Stationary coverage via moment expansion

COR

pk =

∞∑

n=k

(−1)n−k

(
n − 1

k − 1

)
n!

∫

Rd

Px1,...,xn

(
0 ∈

n⋂

j=1

Cx

)

× λ(n)(d(x1 . . . xn))

and similarly for P{N = k }, E[zN ].
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Stationary coverage via moment expansion

COR

pk =

∞∑

n=k

(−1)n−k

(
n − 1

k − 1

)
n!

∫

Rd

Px1,...,xn

(
0 ∈

n⋂

j=1

Cx

)

× λ(n)(d(x1 . . . xn))

and similarly for P{N = k }, E[zN ].

Factorial moment expansions exist for more general
characteristics of the point process. BB (1995).
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Coverage model for communications

– p. 16



SINR

SINR=Signal-to-Interference-and-Noise Ratio

SINR =
USEFUL SIGNAL RECEIVED POWER

ALL OTHER SIGNALS RECEIVED POWER (and/or) NOISE

SINR characterizes the throughput of the communication
channel; i.e., the number of bits/second that can be reliably
sent in this channel.
Formalization on the ground of information theory.

noise

usful signal
received power
(interference)

all other
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SINR coverage model

In what follows, we will consider a GG coverage model,
where

germs represent locations of wireless transmitters

grains are regions where the SINR with respect to
respective transmitter is large enough.
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SINR cell

SINR grain, or cell:

Ci =

{
y ∈ R

2 :
Si/ℓ(|y − Xi|)

W + γ
∑

j 6=i Sj/ℓ(|y − Xj|)
≥ τ

}

Φ = {Xi} hom. Poisson p.p. on R2 of int. λ; locations of
wireless transmitters (extension to Rd straightforward)

Φ̃ = {(Xi, Si)} independently marked Φ, Si ∼ S ≥ 0,
E[S2/β] < ∞; random signal propagation effects,
“shadowing”, “fading”

W ≥ 0, r.v. independent of Φ̃; “noise” power

ℓ(r) = (Kr)β, (K ≥ 0, β > 2) “path-loss” function,

τ, γ ≥ 0 parameters.
– p. 19



SINR coverage model

{(Xi, Ci)}

clearly is an example of a GG model with dependent grains.

Introduced (in a bit more general setting) in Baccelli,
BB (2001).

Studied since then in many many variants and aspects.

Recently called shot-noise coverage model in Chiu,
Stoyan, Kendall, Mecke (2013); (interference modeled by a
shot-noise field).
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“In-between” MB and VT

When γ = 0 (no interference) SINR grains (cells) are
independent; Boolean Model approximations,

When W = 0 (no noise) and β → ∞ (“strong path-loss”)
SINR cells converge to Voronoi cells,

Playing with W → 0 and β → ∞ SINR becomes
Johnson-Mehl.
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SINR coverage model; examples
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SINR coverage model; examples
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Qualitatively different from BM and VT

Locally:

Maximal overlapping phenomenon: N has a finite
support (unlike in BM, where N ∼Poisson); to be
explained...
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Qualitatively different from BM and VT

Locally:

Maximal overlapping phenomenon: N has a finite
support (unlike in BM, where N ∼Poisson); to be
explained...

Globally:

Bounded super-critical percolation regime: Increasing
node density may destroy infinite components.
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Percolation in SINR coverage model

Dousse, F. Baccelli, and P Thiran (2003),

Dousse, Franceschetti, Macris, Meester, Thiran (2006)

in
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node density

Percolation domain

percolation

no percolation

no 
perco-
lation

Increasing node density may destroy infinite component(s)!
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Coverage characteristics
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Coverage by the typical cell

Without loss of generality γ = 1.

Under Palm P0, cell C0 of X0 = 0, x ∈ R2, |x| = r,

P0{x ∈ C0} = P0

{
S0 ≥ τWℓ(r) + τℓ(r)

∑

i 6=0

Si

ℓ(|y − Xi|)

}

– p. 32



Coverage by the typical cell

Without loss of generality γ = 1.

Under Palm P0, cell C0 of X0 = 0, x ∈ R2, |x| = r,

P0{x ∈ C0} = P0

{
S0 ≥ τWℓ(r) + τℓ(r)

∑

i 6=0

Si

ℓ(|y − Xi|)

}

By the Slivnyak’s theorem

P0

{
S0 ≥ τWℓ(r) + τℓ(r)

∑

i 6=0

Si

ℓ(|y − Xi|)

}

=P

{
S ≥ τWℓ(r) + τℓ(r)

∑

i

Si

ℓ(|y − Xi|)

}

with S, W and
∑

i(...) independent under P.
– p. 32



Shot-noise functional

The linear functional

I =
∑

i

f(Xi) =

∫
f(x)Φ(dx)

of a point process Φ = {Xi} is called in SG shot-noise (SN)
of Φ with the response function f .

– p. 33



Shot-noise functional

The linear functional

I =
∑

i

f(Xi) =

∫
f(x)Φ(dx)

of a point process Φ = {Xi} is called in SG shot-noise (SN)
of Φ with the response function f .

The Laplace transform LI of the SN I can be directly
expressed by the Laplace transform of the point process Φ

LI(ξ) = E
[
e−ξ

∫
f(x)Φ(dx)

]
= LΦ(ξf) .
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Shot-noise functional

The linear functional

I =
∑

i

f(Xi) =

∫
f(x)Φ(dx)

of a point process Φ = {Xi} is called in SG shot-noise (SN)
of Φ with the response function f .

The Laplace transform LI of the SN I can be directly
expressed by the Laplace transform of the point process Φ

LI(ξ) = E
[
e−ξ

∫
f(x)Φ(dx)

]
= LΦ(ξf) .

Consequently, for Poisson point process Φ of intensity Λ(dx)

LI(ξ) = e−
∫
(1−e−ξf(x)) Λ(dx) .

– p. 33



Back to the typical cell coverage

The Laplace transform of I =
∑

i
Si

ℓ(|y−Xi|)
with

ℓ(r) = (Kr)β is equal to

LI(ξ) = e−λK−2ξ2/βπΓ(1−2/β)E[S
2
β ]

where Γ(a) =
∫∞
0

ta−1e−t dt (gamma function).
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Back to the typical cell coverage

The Laplace transform of I =
∑

i
Si

ℓ(|y−Xi|)
with

ℓ(r) = (Kr)β is equal to

LI(ξ) = e−λK−2ξ2/βπΓ(1−2/β)E[S
2
β ]

where Γ(a) =
∫∞
0

ta−1e−t dt (gamma function).

Calculation of P0{x ∈ C0} is reduced to the problem of
calculating the probabilities

P
{
τWℓ(r) + τℓ(r)I − S ≥ 0

}
,

where S and W and I are independent with known Laplace
transforms LW ,LI and LS, respectively.

– p. 34



A Riemann boundary problem (RBP)

For a given Ψ(z) defined for z on the imaginary axis I, find
Ψ+(z) and Ψ−(z) defined and analytic on Re(z) ≥ 0 and
Re(z) ≤ 0, respectively, satisfying

Ψ(z) = Ψ+(z) + Ψ−(z) for z ∈ I .

– p. 35



A Riemann boundary problem (RBP)

For a given Ψ(z) defined for z on the imaginary axis I, find
Ψ+(z) and Ψ−(z) defined and analytic on Re(z) ≥ 0 and
Re(z) ≤ 0, respectively, satisfying

Ψ(z) = Ψ+(z) + Ψ−(z) for z ∈ I .

Sokhotski’s solution: unique

Ψ±(z) =
Ψ(z)

2
1(z ∈ I) ∓

1

2πi

∫ ∞

−∞

Ψ(ξ)

ξ − z
dξ,

where, for z ∈ I, the singular at z integral is understood in
the principal value sense (limit of the integral over

(−∞, z − ǫ] ∪ [z + ǫ,∞) with ǫ → 0), provided Ψ(z) is Hölder and
integrable on the imaginary axis with |Ψ(z)| ≤ A/|z| for
some A and large |z|.
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Probabilities via the RBP

FACT: Consider random variable Y having a density and
denote by LY its Laplace transform. Then

P(Y ≥ 0) =
1

2
−

1

2πi

∫ ∞

−∞

LY (iξ)

ξ
dξ,

where i is the imaginary unit and the singular at 0 integral is
understood in the principal value sense.

– p. 36



Probabilities via the RBP

FACT: Consider random variable Y having a density and
denote by LY its Laplace transform. Then

P(Y ≥ 0) =
1

2
−

1

2πi

∫ ∞

−∞

LY (iξ)

ξ
dξ,

where i is the imaginary unit and the singular at 0 integral is
understood in the principal value sense.

proof: Denote by f(x) the density of Y and define
f+(x) = f(x)1(x ≥ 0), f−(x) = f(x)1(x ≤ 0). Consider
Ψ(z) =

∫∞
−∞ e−zxf(x) dx and Ψ±(z) =

∫∞
−∞ e−zxf±(x) dx.

Ψ and Ψ± satisfy the Rieman boundary problem having the
unique solution. Thus P{Y ≥ 0} must be equal to Ψ+(0)

where Ψ±(z) is the Sokhotski’s solution of the problem.
– p. 36



Typical cell coverage via the RBP

COR.: I has density provided P{S > 0} > 0 and

P0{x ∈ C0}

=
1

2
−

1

2iπ

∫ ∞

−∞

LW (−iξτℓ(r))LI(−iξτℓ(r))LS(iξ)

ξ
dξ .

with the singular at 0 integral understood in the principal
value sense.
Baccelli, BB (2001)
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Plancherel-Parseval theorem

FACT: For all square integrable functions f and g,
∫ ∞

−∞
f(t)g(t)dt =

∫ ∞

−∞
f̂(s)ĝ(s)ds,

where f̂(s) =
∫
R
e−2iπtsf(t)dt, denotes Fourier transform

and ĝ(s) is the complex conjugate of ĝ(s).

– p. 38



Plancherel-Parseval theorem

FACT: For all square integrable functions f and g,
∫ ∞

−∞
f(t)g(t)dt =

∫ ∞

−∞
f̂(s)ĝ(s)ds,

where f̂(s) =
∫
R
e−2iπtsf(t)dt, denotes Fourier transform

and ĝ(s) is the complex conjugate of ĝ(s). Consequently,

∫ b

a

f(t)dt =
∫ ∞

−∞
f̂(s)

e2iπbs − e2iπas

2iπs
ds.
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Plancherel-Parseval theorem

FACT: For all square integrable functions f and g,
∫ ∞

−∞
f(t)g(t)dt =

∫ ∞

−∞
f̂(s)ĝ(s)ds,

where f̂(s) =
∫
R
e−2iπtsf(t)dt, denotes Fourier transform

and ĝ(s) is the complex conjugate of ĝ(s). Consequently,

∫ b

a

f(t)dt =
∫ ∞

−∞
f̂(s)

e2iπbs − e2iπas

2iπs
ds.

COR.:Assume P{S > 0} > 0. Then P0{x ∈ C0} =∫ ∞

−∞
LI (2iπℓ(r)Ts)LW (2iπℓ(r)Ts)

LS(−2iπs) − 1

2iπs
ds .
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Case exponentialS

Assume S exponential (mean 1 without loss of generality).
With |x| = r

P0{x ∈ C0} = P
{
S ≥ τWℓ(r) + τℓ(r)I

}

= E
[
e−τWℓ(r)−τℓ(r)I

]

= LW

(
τℓ(r)

)
× LI

(
τℓ(r)

)

= LW

(
τ (Kr)β

)
× exp

{
−λr2τ 2/βπΓ(1 − 2/β)Γ(1 + 2β)/β

}

Explicit expression!
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Case exponentialS

Assume S exponential (mean 1 without loss of generality).
With |x| = r

P0{x ∈ C0} = P
{
S ≥ τWℓ(r) + τℓ(r)I

}

= E
[
e−τWℓ(r)−τℓ(r)I

]

= LW

(
τℓ(r)

)
× LI

(
τℓ(r)

)

= LW

(
τ (Kr)β

)
× exp

{
−λr2τ 2/βπΓ(1 − 2/β)Γ(1 + 2β)/β

}

Explicit expression!
Exponential distribution of S corresponds to wireless
channels with the so called Rayleigh fading.
So it is not merely for mathematical convenience!
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Case exponentialS

Assume S exponential (mean 1 without loss of generality).
With |x| = r

P0{x ∈ C0} = P
{
S ≥ τWℓ(r) + τℓ(r)I

}

= E
[
e−τWℓ(r)−τℓ(r)I

]

= LW

(
τℓ(r)

)
× LI

(
τℓ(r)

)

= LW

(
τ (Kr)β

)
× exp

{
−λr2τ 2/βπΓ(1 − 2/β)Γ(1 + 2β)/β

}

Baccelli, BB (2003), cf also Zorzi, Pupolin (1994) for an
early idea (with “doubly-stochastic” exponential S)
This very simple observation inspired amazing amount of
subsequent works in the engineering literature...

– p. 40



Stationary coverage

Denote the number of cells covering the origin 0 by

N =
∑

i

1(0 ∈ Ci) .

We are interested in the distribution of N

pk := P{N ≥ k} .

pk is called stationary k-coverage probability and
p := p1 = P{0 ∈

⋃
i Ci} stationary coverage probability.
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Bounded support ofN

FACT:
N ≤ ⌈1/τ⌉ P-a.s. ,

where ⌈x⌉ is the ceiling of x (the smallest integer not less
than x). In other words

pk = 0 for k ≥ 1 +
1

τ
.
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Bounded support ofN

FACT:
N ≤ ⌈1/τ⌉ P-a.s. ,

where ⌈x⌉ is the ceiling of x (the smallest integer not less
than x). In other words

pk = 0 for k ≥ 1 +
1

τ
.

Recall,
for VT p1 = 1 and pk = 0 for k ≥ 2,
and for BM N is a Poisson variable, thus pk > 0 for all k ≥ 0.
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Bounded support ofN

Proof: y ∈ Cij for j = 1, . . . , n means

SINRij :=
Sij/ℓ(|y − Xij |)

W +
∑

k 6=ij
Sk/ℓ(|y − Xk|)

≥ τ j = 1, . . . , n.
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Bounded support ofN

Proof: y ∈ Cij for j = 1, . . . , n means

SINRij :=
Sij/ℓ(|y − Xij |)

W +
∑

k 6=ij
Sk/ℓ(|y − Xk|)

≥ τ j = 1, . . . , n.

Equivalently, for STINR (TI=Total Interference):

STINRij :
Sij/ℓ(|y − Xij |)

W +
∑

k Sk/ℓ(|y − Xk|)
≥

τ

1 + τ
j = 1, . . . , n.

– p. 43



Bounded support ofN

Proof: y ∈ Cij for j = 1, . . . , n means

SINRij :=
Sij/ℓ(|y − Xij |)

W +
∑

k 6=ij
Sk/ℓ(|y − Xk|)

≥ τ j = 1, . . . , n.

Equivalently, for STINR (TI=Total Interference):

STINRij :
Sij/ℓ(|y − Xij |)

W +
∑

k Sk/ℓ(|y − Xk|)
≥

τ

1 + τ
j = 1, . . . , n.

Consequently

1 >

n∑

j=1

Sij/ℓ(|y − Xij |)

W +
∑

k Sk/ℓ(|y − Xk|)
≥

nτ

1 + τ

and thus n < 1 + 1/τ .
– p. 43



Finite factorial expansions

COR E[N (k)] := E
[
N (N − 1)+ . . . (N − k + 1)+

]
= 0 for

k ≥ 1 + 1
τ and thus the usual expansions are in fact finite

sums: for k ≥ 1

pk =

⌈1/τ⌉∑

n=k

(−1)n−k

(
n − 1

k − 1

)
n!E[N (n)] ,

P{N = k } =

⌈1/τ⌉∑

n=k

(−1)n−k

(
n

k

)
n!E[N (n)] ,

E[zN ] =

⌈1/τ⌉∑

n=0

(z − 1)nn!E[N (n)] , z ∈ [0, 1] .
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Finite factorial expansions

COR E[N (k)] := E
[
N (N − 1)+ . . . (N − k + 1)+

]
= 0 for

k ≥ 1 + 1
τ and thus the usual expansions are in fact finite

sums: for k ≥ 1

pk =

⌈1/τ⌉∑

n=k

(−1)n−k

(
n − 1

k − 1

)
n!E[N (n)] ,

P{N = k } =

⌈1/τ⌉∑

n=k

(−1)n−k

(
n

k

)
n!E[N (n)] ,

E[zN ] =

⌈1/τ⌉∑

n=0

(z − 1)nn!E[N (n)] , z ∈ [0, 1] .

As for U -statistics, i.e. functionals of the form
∑

(Xij
:j)∈Φ(n)

ξ(Xij : j);
cf. Reitzner, Schulte (2013).
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Invariance of the distribution of N

Denote Θ :=
{
Yi :=

Si

ℓ(|Xi|)
, Xi ∈ Φ

}
(user path-gain process)
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Invariance of the distribution of N

Denote Θ :=
{
Yi :=

Si

ℓ(|Xi|)
, Xi ∈ Φ

}
(user path-gain process)

LEM.: Θ is inhomogeneous Poisson pp on (0,∞) with

intensity measure 2a/β t−1−2/β dt, where a :=
λπE[S

2
β ]

K2 .

COR.: The k-coverage probabilities (and all functionals of Θ
and W ) depend only on β and a W , but are invariant w.r.t.
the distribution of S.

Helpful in proofs, where for mathematical convenience S

can be assumed exponential with the results generalized to
arbitrary S by appropriate modification of a.

Credits: shot-noise equiv. Gilbert, Pollak (1960), Lowen, Teich (1990),
in physics (spin glasses) Bolthausen, Sznitman (1998),
in the SINR context BB, Karray, Klepper (2010)
in secrecy graphs, Pinto, Barros, Win (2012). – p. 45



Invariance, cont’d

Proof: By the displacement theorem, Θ is Poisson point
process on (0,∞).
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Invariance, cont’d

Proof: By the displacement theorem, Θ is Poisson point
process on (0,∞). We calculate its intensity measure:

Λ([s,∞)) :=E[Θ([s,∞))]

=λ

∫

R2

P{S/ℓ(|z|) ≥ s } dz

=2πλ

∫ ∞

0

rP{S/ℓ(r) ≥ s } dr

=2πλ

∫ ∞

0

rE
[
1
(
r ≤ (sS)1/β/K

)]
dr

=2πλE

[∫ (sS)1/β/K

0

r dr

]
=

λs2/βπ

K2
E
[
S

2
β

]
.
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Some special functions forE[N (n)]

For n ≥ 1, define some functions of x ≥ 0

In,β(x) =

2n
∞∫
0

u2n−1e−u2−uβxΓ(1−2/β)−β/2

du

βn−1(Γ(1 − 2/β)Γ(1 + 2/β))n(n − 1)!
.

In particular

In,β(0) =
2n−1

βn−1(C′(β))n
,

where C′(β) = Γ(1 − 2/β)Γ(1 + 2/β).
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Another special functions forE[N (n)]

For n ≥ 1, define also functions of (x1, . . . , xi) ≥ 0

Jn,β(x1, . . . , xn)

=
(1 +

∑n
j=1 xj)

n

∫

[0,1]n−1

∏n−1
i=1 v

i(2/β+1)−1
i (1 − vi)

2/β

∏n
i=1(xi + ηi)

dv1 . . . dvn−1,

where 



η1 = v1v2 . . . vn−1

η2 = (1 − v1)v2 . . . vn−1

η3 = (1 − v2)v3 . . . vn−1

· · ·

ηn = 1 − vn−1.
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Factorial moments ofN

PROP.: Assume E(S2/β) < ∞ and (for simplicity)
deterministic W . Then for n ≥ 1

E[N (n)] =

{
τ
−2n/β
n In,β(Wa−β/2)Jn,β(τn) for 0 < τ < 1

n−1

0 otherwise,

where
τn =

τ

1 − (n − 1)τ
.

Keeler, BB, Karray (2013).
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Factorial moments ofN

PROP.: Assume E(S2/β) < ∞ and (for simplicity)
deterministic W . Then for n ≥ 1

E[N (n)] =

{
τ
−2n/β
n In,β(Wa−β/2)Jn,β(τn) for 0 < τ < 1

n−1

0 otherwise,

where
τn =

τ

1 − (n − 1)τ
.

Keeler, BB, Karray (2013).
Remark, the smaller τ the larger maximal non-null moments.
Also, E[N (n)] depends on W only via In,β(Wa−β/2);
(factorization of E[N (n)] with respect to W , similar to the
factorization of p(x) for exponential S).
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Stationary coverage distribution

COR.: For arbitrary distribution of S with E(S2/β) < ∞ and
deterministic W

pk =

⌈1/τ⌉∑

n=k

(−1)n−k(n−1
k−1)τ

−2n/β
n In,β(Wa−β/2)Jn,β(τn) .

Keeler, BB, Karray (2013).
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Stationary coverage distribution

COR.: For arbitrary distribution of S with E(S2/β) < ∞ and
deterministic W

pk =

⌈1/τ⌉∑

n=k

(−1)n−k(n−1
k−1)τ

−2n/β
n In,β(Wa−β/2)Jn,β(τn) .

Keeler, BB, Karray (2013).

In particular for τ ≥ 1 we have ⌈1/τ⌉ = 1 and thus pk = 0

for all k ≥ 2 (like VT, one-coverage only!) and

p = p1 =
2τ−2/β

Γ(1 + 2
β)

∫ ∞

0

ue−u2Γ(1−2/β)LW

(
a−β/2uβ

)
du .

Dhillon, Ganti, Baccelli, Andrews (2012).
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Proof idea

For n = 1: by the Little’s law

E[N (1)] = E[N ] =

∫

R2

p(x)λdx ,

where p(x) is the typical cell coverage probability.
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Proof idea

For n = 1: by the Little’s law

E[N (1)] = E[N ] =

∫

R2

p(x)λdx ,

where p(x) is the typical cell coverage probability.

p(x) admits explicit expression assuming S exponential.

This can be done without loss of generality by the invariance
property of N .

The proof (n = 1) follows by direct calculations with
exponential S.
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Proof idea, cont’d

For n ≥ 1, quite similarly

E[N (n)] = E
[ ∑

Xi1
,Xi2

,...,Xin
∈Φ

distinct

1
(
0 ∈

n⋂

j=1

Cij

)]

higher-order Campbell =

∫

R2

Px1,...,xn

(
0 ∈

n⋂

j=1

Cx

)
λndx1 . . . dxn .
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0 ∈
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0 ∈
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j=1 Cx
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Proof idea, cont’d

For n ≥ 1, quite similarly

E[N (n)] = E
[ ∑

Xi1
,Xi2

,...,Xin
∈Φ

distinct

1
(
0 ∈

n⋂

j=1

Cij

)]

higher-order Campbell =

∫

R2

Px1,...,xn

(
0 ∈

n⋂

j=1

Cx

)
λndx1 . . . dxn .

The probabilities Px1,...,xn

(
0 ∈

⋂n
j=1 Cx

)
can be evaluated

explicitly assuming (without loss of generality!) exponential
S and using (higher-order) Slivnyak’s theorem

Px1,...,xn

Φ = PΦ+
∑n

j=1 δxj
.

The proof follows by direct calculations with exponential S.
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Thank you for today.
Tomorrow: Relations to Poisson-Dirichlet

processes

– p. 53
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