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Today:
» “Germ-grain” coverage models in stochastic geometry,
» SINR (or shot-noise) coverage model,
» Palm and stationary coverage characteristics.
Tomorrow:
» Poisson-Dirichlet processes,
» Relations to SINR coverage.




“Germ-grain” coverage models
IN stochastic geometry




Consider a general germ-grain (GG) coverage model
{(X;,C;)}, where {X;} are “germs” forming a point process
® on R4, and ¢; = C;(X;, ®) are, possibly dependent,
random closed subsets of R<, called “grains”.




Consider a general germ-grain (GG) coverage model
{(X;,C;)}, where {X;} are “germs” forming a point process
® on R4, and ¢; = C;(X;, ®) are, possibly dependent,
random closed subsets of R<, called “grains”.

Voronoil tessellation and Boolean Model are special cases of

GG coverage model.
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where, given ® = {X;}, G; are 1.i.d. random closed
(compact) sets in R<.




Let {(X;,C;)} be a general stationary GG model. In
particular, ® = {X;} Is a stationary point process. One
considers two types of coverage characteristics:
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grain attached to the typical point Xy = 0 of ® considered
under its Palm distribution P°.




Let {(X;,C;)} be a general stationary GG model. In
particular, ® = {X;} Is a stationary point process. One
considers two types of coverage characteristics:

Coverage by the typical grain
p(z) := P°{x € Co} where z € R? and Cy = C(0, ®) the
grain attached to the typical point Xy = 0 of ® considered

under its Palm distribution P°.
Stationary coverage

p = P{O c U, Ci} arbitrary location 0 covered by the union.




More generally, denote by A, the number of grains covering
the origin 0

N =Y 1(0 € Cy)
and its (stationary) distribution by

pi IS called stationary k-coverage probability
Obviously, p = p1 = P{0 € |, C;} stationary coverage
probability.




Typical cell coverage

p(x) = PO{|m _0| < |o— X;| VO£ X; € <1>}

slivnyak = P{®(Bz(|z|)) = 0}

. L _—AK4|x|®
Poisson definition =— € i ]

where Bo(r) ={y : |y — a| < r}and kg = |Bo(1)| and X is
the intensity of Poisson .




Typical cell coverage

p(x) = PO{|m _0| < |o— X;| VO£ X; € <1>}
slivnyak = P{®(Bz(|x|)) = 0}

. S Vo P
Poisson definition = € ]

where Bo(r) ={y : |y — a| < r}and kg = |Bo(1)| and X is
the intensity of Poisson .

Stationary coverage: (Almost) trivially

Di 1= P{#{z’:OEVi} Zk} —1fork =1andofor k > 2.

Indeed, VT is a partition of R modulo boundaries of the
cells, on which 0 lies with probability P = 0.



Typical grain coverage

By the Slivnyk’s theorem and the independence of grains G;
p(z) := P’ {z € 0 ® Go} = P{x € Gy} is given directly by
the generic grain G distribution.




Stationary coverage: N is Poisson(AE[|G]]).
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where @ =} ¢ 5 1(0 € X; @ G;)dx, Is an independent
thinning of points of &.




Stationary coverage: N is Poisson(AE[|G]]). Indeed:

pkzzp{#{i:OEXi@Gi} Zk}
= P{®'(R?) > k},

where @ =} ¢ 5 1(0 € X; @ G;)dx, Is an independent
thinning of points of ®. &’ is a hon-homogeneous Poisson
process w intensity measure

A/ (dz) := E[®'(dx)] = P{0 € £ @ G} Mdx = P{x € G} \dz,
where G = {—y :y € G}.




Stationary coverage: N is Poisson(AE[|G]]). Indeed:

pk::P{#{i:OEXi@GZ’} Zk}
= P{®'(RY) > k},

where @ =} ¢ 5 1(0 € X; @ G;)dx, Is an independent
thinning of points of ®. &’ is a non-homogeneous Poisson
process w intensity measure

A/ (dz) := E[®'(dx)] = P{0 € £ @ G} Adx = P{x € G} \dx,
where G = {—y : y € G}. Consequently

pr = oo, e MAM™/nl where A’ := A’(R%) = AE[|G]].

In particular



For n > 1, the k-th factorial moment of (an integer valued rv)
N is defined as

EIN®)] = E[N(N— Dt N —k+ 1)+} .




For n > 1, the k-th factorial moment of (an integer valued rv)
N is defined as

EIN®)] = E[N(N— Dt N —k+ 1)+} .

FACT Factorial moments characterize the distribution of the
random variable. In particular, for k£ > 1

pr = 2(-1)%’* (Z:Danw(n)],

P{N =k} = i(—1)n—k<’;>nz|§p\/<n>],
n=k
ElzY] = ) (z—1)"EN™], z€]0,1].
n=0




EINY] = E[NV]

= E[Z 1(0 € Ci)}

X, e

Campbell = / P*{0 € C,} \dx
Rd

symmetry = / PO{ZB € Co} A\dx
Rd

- / p(e) dz = AE°[|Col]
Rd

where p(x) Is the typical grain coverage probability.



For n > 1, quite similarly

ewml e[ Y 1oe)a)]

X X yeeny X: €® j=1
distinct

higher-order Campbell — / ptn (O S ﬂ Ca:) A(n) (d(ml .« o wn))
j=1

Rd

where P¥~*" js n-fold Palm distribution of ® and X("™)(.) is
n-fold factorial moment measure of .




For n > 1, quite similarly

vl =e[ Y 1foec)]

distinct

higher-order Campbell — / ptn (O S ﬂ Ca:) A(n) (d(wl .« o wn))
j=1

Rd

where P¥~*" js n-fold Palm distribution of & and A(™)(.) is
n-fold factorial moment measure of ®.
In case of Poisson & of intensity\(-),

Pe """ =Paysn 5, (Slivnyak's Thm)

and A (d(xq...2,)) = X(dz1) ... A(dzy,).
P



COR

n

P = i(—l)"_k (Z : i) n! [deml""’w” (O e ﬂ C’w)

n==k 71=1
x AW (d(z1...2p))

and similarly for P{N = k }, E[zV].




COR

n

pr = i(—nn—k (Z’ } i) n! [R P (0 30 cm)

n==k 71=1
x AW (d(z1...2p))

and similarly for P{N = k }, E[zV].

Factorial moment expansions exist for more general
characteristics of the point process. BB (1995).




Coverage model for communications




SINR=SiIgnal-to-Interference-and-Noise Ratio

USEFUL SIGNAL RECEIVED POWER
ALL OTHER SIGNALS RECEIVED POWER (and/or) NOISE

SINR =

SINR characterizes the throughput of the communication
channel; i.e., the number of bits/second that can be reliably
sent in this channel.

Formalization on the ground of information theory.
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In what follows, we will consider a GG coverage model,
where

s germs represent locations of wireless transmitters

» grains are regions where the SINR with respect to
respective transmitter is large enough.




SINR grain, or cell:

( )

S /0(ly — X;
C;={ycR?: /€y ) > 7\

W+ 5.5i/4(ly — X;51) —

\ /

» & = {X;} hom. Poisson p.p. on R? of int. A; locations of
wireless transmitters (extension to R¢ straightforward)

» ® = {(X;,S;)} independently marked ®, S; ~ S > 0,
E[S2/8] < oo; random signal propagation effects,
“shadowing”, “fading”

» W >0, r.v. independent of &; “noise” power
s L(r) = (Kr)?, (K >0, 3> 2) “path-loss” function,

s T,~ > 0 parameters.
T e



{(X:,Ci)}
clearly is an example of a GG model with dependent grains.

» Introduced (in a bit more general setting) in Baccelli,
BB (2001).
» Studied since then in many many variants and aspects.

» Recently called shot-noise coverage model in Chiu,
Stoyan, Kendall, Mecke (2013); (interference modeled by a

shot-noise field).



















s When ~ = 0 (no interference) SINR grains (cells) are
Independent; Boolean Model approximations,

s When W = 0 (no noise) and 8 — oo (“strong path-loss”)
SINR cells converge to Voronoi cells,

s Playing with W — 0 and 3 — oo SINR becomes
Johnson-Mehl.










Locally:

» Maximal overlapping phenomenon: A has a finite
support (unlike in BM, where A/ ~Poisson); to be
explained...
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» Maximal overlapping phenomenon: A has a finite
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ly:

s Bounded super-critical percolation regime: Increasing
node density may destroy infinite components.




Dousse, F. Baccelli, and P Thiran (2003),
Dousse, Franceschetti, Macris, Meester, Thiran (2006)

Percolation domain

L no
perco-

| lation no percolation

percolation

interference cancellation factor

node density

Increasing node density may destroy infinite component(s)!




Coverage characteristics




Without loss of generality v~ = 1.
Under Palm pPY, cell Cp of X9 = 0, z € R?, |z| = r,

P {x € Co} = PO{SO W) + ) Z “ £(ly — X D}




Without loss of generality v~ = 1.
Under Palm pPY, cell Cp of X9 = 0, z € R?, |z| = r,

P {x € Co} = PO{SO W) + i) Z “ £(ly — X D}

By the Slivnyak’s theorem

PO{SO > TWL(r) + T4(r) ) |y — : X; I)}
170

_p{s > TWE(r) + 74(r) Z e f < I)}

with S, W and > _.(...) independent under P.




The linear functional
1= (X = [ (@) (de)

of a point process ® = {X;} is called in SG shot-noise (SN)
of & with the response function f.




The linear functional
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of a point process ® = {X;} is called in SG shot-noise (SN)
of & with the response function f.

The Laplace transform £y of the SN I can be directly
expressed by the Laplace transform of the point process &

L1(€) = E|e ¢/ T@E0] — £q(¢).




The linear functional
1= (X = [ (@) (de)

of a point process ® = {X;} is called in SG shot-noise (SN)
of & with the response function f.

The Laplace transform £y of the SN I can be directly
expressed by the Laplace transform of the point process &

L1(€) = E|e ¢/ T@E0] — £q(¢).

Consequently, for Poisson point process & of intensity A(dx)
EI(S) — e f(l—e_sf(“’))A(dzc) .



The Laplace transform of I = 37, g% with
¢(r) = (Kr)P is equal to

Lr(§) = o~ MK €¥/PrT(1-2/B)E[SP)

where T'(a) = [~ t* te~*dt (gamma function).




The Laplace transform of I = 37, g% with
¢(r) = (Kr)P is equal to

£1(6) = e N E/PRr(1-2/@ElsH]

where T'(a) = [~ t* te~*dt (gamma function).

Calculation of P°{x € Cy} is reduced to the problem of
calculating the probabilities

P{TWE(T) tre(r) — S > o} ,
where S and W and I are independent with known Laplace

transforms Lw, Ly and Lg, respectively.
e



For a given ¥(z) defined for z on the imaginary axis Z, find
¥t(z) and ¥~ (z) defined and analytic on Re(z) > 0 and
Re(z) < 0, respectively, satisfying

U(z) =¥t (2)+ P (2) forzeT.




For a given ¥(z) defined for z on the imaginary axis Z, find

¥t(z) and ¥~ (z) defined and analytic on Re(z) > 0 and
Re(z) < 0, respectively, satisfying

U(z) =0T (2)+ ¥ (2) forzeZ.

Sokhotski’s solution: unique

ot () — \If;z)l(z cT) T 1 [ w(E) de,

- 2mi PO

where, for z € Z, the singular at z integral is understood in
the principal value sense (limit of the integral over

(—o0, z — €] U [z + €, 00) with e — 0), provided W(z) Is Holder and
Integrable on the iImaginary axis with |¥(z)| < A/|z| for

some A and Iarge ‘z|



FACT: Consider random variable Y having a density and
denote by Ly its Laplace transform. Then

(v o= o L [T Lrt

2 2w J_
where 1 Is the imaginary unit and the singular at O integral is
understood in the principal value sense.

d¢,




FACT: Consider random variable Y having a density and
denote by Ly its Laplace transform. Then

(v 20)= g - [ 2

2 2w J_
where 1 Is the imaginary unit and the singular at O integral is
understood in the principal value sense.

d¢,

proof: Denote by f(x) the density of Y and define

ft(z) = f(z)1(xz > 0), f(x) = f(x)1(x < 0). Consider
U(z) = ffooo e *% f(x) dx and ¥*(z) = ffooo e *% £+ () de.
¥ and ¥+ satisfy the Rieman boundary problem having the

unique solution. Thus P{Y > 0} must be equal to ¥T(0)

where ¥*(2) is the Sokhotski’s solution of the problem.
H————————————————m—m—m————.



COR.: I has density provided P{S > 0} > 0 and

PO{ZB & C()}
11 [ Lw(—i€mL(r)) L1(—i€1L(r)) L5(2€) de
2 2w ) ¢ '

with the singular at O integral understood in the principal
value sense.
Baccelli, BB (2001)




FACT: For all square integrable functions f and g,

/ Z Fogvde = [ o; F(s)3()ds.

where f(s) = [, e~27ts f(t)dt, denotes Fourier transform
and g(s) is the complex conjugate of g(s).
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FACT: For all square integrable functions f and g,

/ Z Fogvde = [ o; F(s)3()ds.

where f(s) = [, e~27ts f(t)dt, denotes Fourier transform
and g(s) is the complex conjugate of g(s). Consequently,

b o0 2itbs __ _2imwas
/f(t)dtz/ F(s)S C s

217TS

COR.:Assume P{S > 0} > 0. Then P°{z € Cy} =

/ B L1 (2inl(r)Ts) Lw (2iml(r)Ts) £s (_22;:) — L.

— OO



Assume S exponential (mean 1 without loss of generality).
With || = »

Pz € Cy} = P{S > TWE(r) + Tﬁ(r)I}

_ E[e—TWE('r)—TE(T)I]

= Lw (Tﬁ(r)) X Ly (Tﬁ('r))

= Lw (T(K’I‘)’B) X exp{—)\'rzrz/ﬂﬂ{‘(l —2/8)I'(1 + 2,3)/,8}

Explicit expression!




Assume S exponential (mean 1 without loss of generality).
With || = »

Pz € Cy} = P{S > TWE(r) + TE(T)I}

— E [e—TWE(r) —TE(T)I]

= Lw (Tﬁ('r)) X L7 (Tﬁ('r))
= Lw (7(Kr)?) x exp{ —Arr2/9xT (1 — 2/8)T(1 + 28) /5

Explicit expression!

Exponential distribution of S corresponds to wireless

channels with the so called Rayleigh fading.

So it is not merely for mathematical convenience!
e



Assume S exponential (mean 1 without loss of generality).
With || = »

Pz € Cy} = P{S > TWE(r) + TE(T)I}
— E |:€—TW£(T)—T£(T)I]

= Lw (Tﬁ('r)) X L7 (Tﬁ(r))
= Lw (7(Kr)?) x exp{ —Arr2/9xT (1 — 2/8)T(1 + 28) /5

Baccelli, BB (2003), cf also Zorzi, Pupolin (1994) for an
early idea (with “doubly-stochastic” exponential .S)
This very simple observation inspired amazing amount of

subsequent works in the engineering literature...
N



Denote the number of cells covering the origin 0 by

NzZl(OECz’).

We are interested in the distribution of N/

pr := P{N > k}.

py IS called stationary k-coverage probability and
p := p1 = P{0 € |, C;} stationary coverage probability.




FACT:
N < [1/7] P-as.,

where [x] Is the celling of x (the smallest integer not less
than x). In other words

1
pp,=0 fork>1+4+ —.
T




FACT:
N <T[1/r] P-as.,

where [x] Is the celling of x (the smallest integer not less
than x). In other words

1
pp,=0 fork>1+4+ —.
T

Recall,
for VT p1 =1 and p,, = 0 for k > 2,
and for BM W is a Poisson variable, thus p;, > 0 for all & > 0.




Proof: y € C;, for j =1,...,n means

S%g/£(|y - ngl)

S'NRz = > T
’ W_I_Zk;éij Sk/e(ly_XkD o

17=1,...,mn.




Proof: y € C;, for j =1,...,n means

S: /6(ly — X;. |
SINR,;, := /0y — Xi,1) >+ j=1,...,n.

w + Zk;éz'j Sk/e(ly — Xk') o
Equivalently, for STINR (TI=Total Interference):

Wt >y Su/by — Xn) 147

STINR;, : ji=1,...,n.




Proof: y € C;, for j =1,...,n means

S; /e(ly — X;.
SINR,;, := /0y — Xi,1) >+ j=1,...,n.

w + Zk;éz'j Sk/e(ly — Xk:') o
Equivalently, for STINR (TI=Total Interference):

W+ 5, Se/e(ly — Xil) = 1+ 7
Consequently

STINR;, : ji=1,...,n.

1>Z Sig/£(|y ngl) > nT
WS Se/y — Xk) 147

andthusn <1+ 1/7.




COR EN®)] := E[N N —1)F . (N — K+ 1)+} — 0 for

kE>1+ % and thus the usual expansions are in fact finite
sums: fork > 1

P = rif](—m—’“ ("’ a 1>an[N<">]
— k—1 ’
P{N =k} = rlz/?(—m—k ("’) n!E[N ()
n==k ke |
[1/7]
E[zV] =

Y (z=1)"ENM], 2 € o,1].
n=0




COR EN®)] := E[N N —1)F . (N — K+ 1)+} — 0 for

kE>1+ % and thus the usual expansions are in fact finite
sums: fork > 1

P = ri?(—m—’“ ("’ a 1>an[N<">]
— k—1 ’
P{N =k} = rlz/?(—m—k ("’) n!E[N ()
n==k ke |
[1/7]
E[zV] =

Y (z=1)"ENM], 2 € o,1].
n=0

As for U-statistics, i.e. functionals of the form > (X5, 2 9);

cf. Reitzner, Schulte ‘2013‘. (Xi;:5) €2



e(1X;1)°

Denote © := {Yz : X; € <I>} (user path-gain process)
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Denote © := {Yz 1= X; € <I>} (user path-gain process)

(1 X))’
LEM.: © Is inhomogeneous Poisson pp on (0, co) with
intensity measure 2a/8t~1~2/8 dt, where a := 272271
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(1 X))’
LEM.: © Is inhomogeneous Poisson pp on (0, co) with
intensity measure 2a/8t~1~2/8 dt, where a := 272271

COR.: The k-coverage probabilities (and all functionals of ®
and W) depend only on 3 and a W, but are invariant w.r.t.
the distribution of S.
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Denote © := {Yz : X; € CIJ} (user path-gain process)

Xy’
LEM.: © Is Inhomogeneous Poisson pp on (0, co) with
intensity measure 2a/8t~1~2/8 dt, where a := 272271

COR.: The k-coverage probabilities (and all functionals of ®
and W) depend only on 3 and a W, but are invariant w.r.t.
the distribution of S.

Helpful in proofs, where for mathematical convenience S
can be assumed exponential with the results generalized to
arbitrary S by appropriate modification of a.




)

Denote © := {Yz : X; € CIJ} (user path-gain process)

— Xl
LEM.: © Is Inhomogeneous Poisson pp on (0, co) with
intensity measure 2a/8t~1~2/8 dt, where a := 272271

COR.: The k-coverage probabilities (and all functionals of ®
and W) depend only on 3 and a W, but are invariant w.r.t.
the distribution of S.

Helpful in proofs, where for mathematical convenience S
can be assumed exponential with the results generalized to
arbitrary S by appropriate modification of a.

Credits: shot-noise equiv. Gilbert, Pollak (1960), Lowen, Teich (1990),
in physics (spin glasses) Bolthausen, Sznitman (1998),
in the SINR context BB, Karray, Klepper (2010)



Proof. By the displacement theorem, © is Poisson point
process on (0, co).




Proof. By the displacement theorem, © is Poisson point
process on (0, co). We calculate its intensity measure:

A([s,00)) :=E[O([s, 00))]

=)\/ P{S/¢(|z|) > s}dz

R2

=27\ /00 rP{S/l(r) > s}dr
0

=27 /00 rE [1 (r < (sS)l/B/K)] dr
0

- (sS)VP/K ] \s2/Br .
=27 \E / rdr| = E[S’E] .
K2
0




For n > 1, define some functions of x > 0

on c]9qun—le—uz—'u,ﬁa:I‘(l—2/,8)_ﬁ/2 du

Inp(x) =

0
Br—1(T(1 —2/B)r(1+2/8)"(n — 1!

In particular

n—1

Bn—l(C/(IB))n ?
where C’(3) = T'(1 — 2/8)T(1 + 2/3).

Z,3(0) =




For n > 1, define also functions of (x1,...,x;) >0

Tns(T1y...,Tn)
(1 + Z] _1 ;) /H ?(2/5"‘1) 1(1 v;)2/P

d’Ul o oo d’Un_l,

[Ty (i + m:)
[0 l]n 1
where
§
N1 = UV1V2...Unp-1
72 = (1 — ’01)’02 ee e Un—1
{Mm3 = (1—v2)v3...Up—1
\nn =1—wvp-1.




PROP.: Assume E(S8%/8) < oo and (for simplicity)
deterministic W. Thenforn > 1

1 BT, s(Wa™P/2) T, () fOro <= < Lo
0 otherwise,

\

EN(™)] = ¢

where
-

:1—(77,—1)7'.

Tn

Keeler, BB, Karray (2013).




PROP.: Assume E(S8%/8) < oo and (for simplicity)
deterministic W. Thenforn > 1

EN(™)] = ¢

70 P L, 5(Wa™B/2) F,, 5(m) foro < r <

where

0 otherwise,

\

:1—(n—1)7'.

Tn

Keeler, BB, Karray (2013).
Remark, the smaller + the larger maximal non-null moments.




PROP.: Assume E(S8%/8) < oo and (for simplicity)
deterministic W. Thenforn > 1

( —2n B
EN™] =™ /ﬁI”"’ﬁ(W“ B/ Tn () foro<r< -
0 otherwise,
where
L T
Tn = (D7

Keeler, BB, Karray (2013).
Remark, the smaller + the larger maximal non-null moments.

Also, E[N(™)] depends on W only via Z,, (W a~=5/2);
(factorization of E[A(™)] with respect to W, similar to the
factorization of p(x) for exponential S).



COR.: For arbitrary distribution of § with E(S2?/8) < oo and
deterministic W
[1/7]
pr= ) (U GI)T, P s(Wa ™) T () -

n=k

Keeler, BB, Karray (2013).




COR.: For arbitrary distribution of § with E(S2?/8) < oo and
deterministic W
[1/7]
pr= ) (U GI)T, P s(Wa ™) T () -

n==~k
Keeler, BB, Karray (2013).

In particular for > 1 we have [1/7] = 1 and thus p = 0
for all kK > 2 (like VT, one-coverage only!) and

—2/83 00
F2(71‘ +/2) ue™* TO=2/0) Ly, ("'_ﬁ/zuﬂ) -
3 0

P=DP1 =

Dhillon, Ganti, Baccelli, Andrews (2012).




For n = 1: by the Little’s law

EW®D] = EW] = / p(z) Ade ,

R2

where p(x) Is the typical cell coverage probability.




For n = 1: by the Little’s law

EW®D] = EW] = / p(z) Ade ,

]RZ

where p(x) Is the typical cell coverage probability.
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where p(x) Is the typical cell coverage probability.
p(x) admits explicit expression assuming S exponential.

This can be done without loss of generality by the invariance
property of N/.

The proof (n = 1) follows by direct calculations with
exponential S.
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The probabilities P** " (0 € M=y Ca,) can be evaluated

explicitly assuming (without loss of generality!) exponential
S and using (higher-order) Slivnyak’s theorem

Pwl,ooo,wn

P — P<I>+Zj,7;1 O *
The proof follows by direct calculations with exponential S.




Thank you for today.

Tomorrow: Relations to Poisson-Dirichlet
processes
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