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OUTLINE

Today:

“Germ-grain” coverage models in stochastic geometry,

SINR (or shot-noise) coverage model,

Palm and stationary coverage characteristics.

Tomorrow:

Poisson-Dirichlet processes,

Relations to SINR coverage.
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“Germ-grain” coverage models
in stochastic geometry
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General “germ-grain” coverage model

Consider a general germ-grain (GG) coverage model
f (X i ; Ci )g, where f X i g are “germs” forming a point process
� on Rd , and Ci = Ci (X i ; �) are, possibly dependent,
random closed subsets of Rd , called “grains”.
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General “germ-grain” coverage model

Consider a general germ-grain (GG) coverage model
f (X i ; Ci )g, where f X i g are “germs” forming a point process
� on Rd , and Ci = Ci (X i ; �) are, possibly dependent,
random closed subsets of Rd , called “grains”.

Voronoi tessellation and Boolean Model are special cases of
GG coverage model. – p. 4



Voronoi tessellation (VT)

Ci = f y 2 Rd : jy � x j � j y � X i j 8 X i 2 � g
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Boolean model (BM)

Ci = X i � G i = f X i + y : y 2 G i g ;

where, given � = f X i g, G i are i.i.d. random closed
(compact) sets in Rd .
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Coverage probabilities

Let f (X i ; Ci )g be a general stationary GG model. In
particular, � = f X i g is a stationary point process. One
considers two types of coverage characteristics:
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Coverage probabilities

Let f (X i ; Ci )g be a general stationary GG model. In
particular, � = f X i g is a stationary point process. One
considers two types of coverage characteristics:

Coverage by the typical grain
p(x ) := P0f x 2 C0g where x 2 Rd and C0 = C(0; �) the
grain attached to the typical point X 0 = 0 of � considered
under its Palm distribution P0.
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Coverage probabilities

Let f (X i ; Ci )g be a general stationary GG model. In
particular, � = f X i g is a stationary point process. One
considers two types of coverage characteristics:

Coverage by the typical grain
p(x ) := P0f x 2 C0g where x 2 Rd and C0 = C(0; �) the
grain attached to the typical point X 0 = 0 of � considered
under its Palm distribution P0.
Stationary coverage

p := P
n

0 2
S

i Ci

o
arbitrary location 0 covered by the union.
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Stationary coverage number

More generally, denote by N , the number of grains covering
the origin 0

N :=
X

i

1(0 2 C i )

and its (stationary) distribution by

pk := PfN � kg :

pk is called stationary k -coverage probability
Obviously, p = p1 = Pf 0 2

S
i Ci g stationary coverage

probability.
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Exercise: coverage in Poisson-VT

Typical cell coverage

p(x ) := P0
n

jx � 0j � j x � X i j 8 0 6= X i 2 �
o

Slivnyak = Pf �( B x ( jx j )) = 0 g

Poisson de�nition = e� �� d jx jd

;

where B a ( r ) = f y : jy � aj � r g and � d = jB 0(1) j and � is
the intensity of Poisson � .
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Exercise: coverage in Poisson-VT

Typical cell coverage

p(x ) := P0
n

jx � 0j � j x � X i j 8 0 6= X i 2 �
o

Slivnyak = Pf �( B x ( jx j )) = 0 g

Poisson de�nition = e� �� d jx jd

;

where B a ( r ) = f y : jy � aj � r g and � d = jB 0(1) j and � is
the intensity of Poisson � .

Stationary coverage: (Almost) trivially

pk := P
n

# f i : 0 2 V i g � k
o

= 1 for k = 1 and 0 for k � 2.

Indeed, VT is a partition of Rd modulo boundaries of the
cells, on which 0 lies with probability P = 0 .
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Exercise: coverage in (Poisson-) BM

Typical grain coverage
By the Slivnyk's theorem and the independence of grains G i

p(x ) := P0f x 2 0 � G0g = Pf x 2 G0g is given directly by
the generic grain G distribution.
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Exercise: coverage in (Poisson-) BM

Stationary coverage: N is Poisson( � E[jGj ]) .

– p. 11



Exercise: coverage in (Poisson-) BM

Stationary coverage: N is Poisson( � E[jGj ]) . Indeed:

pk : = P
n

# f i : 0 2 X i � G i g � k
o

= Pf � 0(Rd) � kg ;

where � 0 =
P

X i 2 � 1(0 2 X i � G i ) � X i is an independent
thinning of points of � .
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Exercise: coverage in (Poisson-) BM

Stationary coverage: N is Poisson( � E[jGj ]) . Indeed:

pk : = P
n

# f i : 0 2 X i � G i g � k
o

= Pf � 0(Rd) � kg ;

where � 0 =
P

X i 2 � 1(0 2 X i � G i ) � X i is an independent
thinning of points of � . � 0 is a non-homogeneous Poisson
process w intensity measure
� 0(dx ) := E[� 0(dx )] = Pf 0 2 x � Gg � dx = Pf x 2 �Gg � dx ,
where �G = f� y : y 2 Gg.
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Exercise: coverage in (Poisson-) BM

Stationary coverage: N is Poisson( � E[jGj ]) . Indeed:

pk : = P
n

# f i : 0 2 X i � G i g � k
o

= Pf � 0(Rd) � kg ;

where � 0 =
P

X i 2 � 1(0 2 X i � G i ) � X i is an independent
thinning of points of � . � 0 is a non-homogeneous Poisson
process w intensity measure
� 0(dx ) := E[� 0(dx )] = Pf 0 2 x � Gg � dx = Pf x 2 �Gg � dx ,
where �G = f� y : y 2 Gg. Consequently
pk =

P 1
n = k e� � 0

� 0n =n ! where � 0 := � 0(Rd) = � E[jGj ].
In particular

p0 = e� � E[j �G j ] :
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Factorial moments ofN

For n � 1, the k -th factorial moment of (an integer valued rv)
N is de�ned as

E[N ( k ) ] := E
h
N (N � 1)+ : : : (N � k + 1) +

i
:
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Factorial moments ofN

For n � 1, the k -th factorial moment of (an integer valued rv)
N is de�ned as

E[N ( k ) ] := E
h
N (N � 1)+ : : : (N � k + 1) +

i
:

FACT Factorial moments characterize the distribution of the
random variable. In particular, for k � 1

pk =
1X

n = k

( � 1)n � k

�
n � 1

k � 1

�
n !E[N (n ) ] ;

Pf N = k g =
1X

n = k

( � 1)n � k

�
n

k

�
n !E[N (n ) ] ;

E[zN ] =
1X

n =0

(z � 1)n n !E[N (n ) ] ; z 2 [0; 1] :
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Little's law (or a mass transport principle)

E[N (1) ] = E[N ]

= E
h X

X i 2 �

1(0 2 C i )
i

Campbell =

Z

Rd

Px f 0 2 Cx g � dx

symmetry =

Z

Rd

P0f x 2 C0g � dx

=

Z

Rd

p(x ) dx = � E0[jC0 j ] ;

where p(x ) is the typical grain coverage probability.
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Higher-order extensions

For n � 1, quite similarly

E[N (n ) ] = E
h X

X i 1
;X i 2

;:::;X i n 2 �

distinct

1
�

0 2
n\

j =1

C i j

�i

higher-order Campbell =

Z

Rd

Px 1 ;:::;x n

�
0 2

n\

j =1

Cx

�
� (n ) (d(x 1 : : : x n ))

where Px 1 ;:::;x n is n -fold Palm distribution of � and � (n ) ( �) is
n -fold factorial moment measure of � .
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Higher-order extensions

For n � 1, quite similarly

E[N (n ) ] = E
h X

X i 1
;X i 2

;:::;X i n 2 �

distinct

1
�

0 2
n\

j =1

C i j

�i

higher-order Campbell =

Z

Rd

Px 1 ;:::;x n

�
0 2

n\

j =1

Cx

�
� (n ) (d(x 1 : : : x n ))

where Px 1 ;:::;x n is n -fold Palm distribution of � and � (n ) ( �) is
n -fold factorial moment measure of � .
In case of Poisson � of intensity� ( �) ,

Px 1 ;:::;x n

� = P�+
P n

j =1 � x j
(Slivnyak's Thm)

and � (n ) (d(x 1 : : : x n )) = � (dx 1) : : : � (dx n ) .
– p. 14



Stationary coverage via moment expansion

COR

pk =
1X

n = k

( � 1)n � k

�
n � 1

k � 1

�
n !

Z

Rd

Px 1 ;:::;x n

�
0 2

n\

j =1

Cx

�

� � (n ) (d(x 1 : : : x n ))

and similarly for Pf N = k g, E[zN ].
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Stationary coverage via moment expansion

COR

pk =
1X

n = k

( � 1)n � k

�
n � 1

k � 1

�
n !

Z

Rd

Px 1 ;:::;x n

�
0 2

n\

j =1

Cx

�

� � (n ) (d(x 1 : : : x n ))

and similarly for Pf N = k g, E[zN ].

Factorial moment expansions exist for more general
characteristics of the point process. BB (1995).
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Coverage model for communications
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SINR

SINR= Signal-to-Interference-and-Noise Ratio

SINR =
USEFUL SIGNAL RECEIVED POWER

ALL OTHER SIGNALS RECEIVED POWER (and/or) NOISE

SINR characterizes the throughput of the communication
channel; i.e., the number of bits/second that can be reliably
sent in this channel.
Formalization on the ground of information theory.

noise

usful signal
received power
(interference)

all other

– p. 17



SINR coverage model

In what follows, we will consider a GG coverage model,
where

germs represent locations of wireless transmitters

grains are regions where the SINR with respect to
respective transmitter is large enough.

– p. 18



SINR cell

SINR grain, or cell:

C i =

(

y 2 R2 :
Si =` ( jy � X i j )

W + 

P

j 6= i Sj =` ( jy � X j j )
� �

)

� = f X i g hom. Poisson p.p. on R2 of int. � ; locations of
wireless transmitters (extension to Rd straightforward)

~� = f (X i ; S i )g independently marked � , Si � S � 0,
E[S2=� ] < 1 ; random signal propagation effects,
“shadowing”, “fading”

W � 0, r.v. independent of ~� ; “noise” power

` ( r ) = ( Kr ) � , (K � 0, � > 2) “path-loss” function,

�; 
 � 0 parameters.
– p. 19



SINR coverage model

f (X i ; C i )g

clearly is an example of a GG model with dependent grains.

Introduced (in a bit more general setting) in Baccelli,
BB (2001).

Studied since then in many many variants and aspects.

Recently called shot-noise coverage model in Chiu,
Stoyan, Kendall, Mecke (2013); (interference modeled by a
shot-noise �eld).

– p. 20
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“In-between” MB and VT

When 
 = 0 (no interference) SINR grains (cells) are
independent; Boolean Model approximations,

When W = 0 (no noise) and � ! 1 (“strong path-loss”)
SINR cells converge to Voronoi cells,

Playing with W ! 0 and � ! 1 SINR becomes
Johnson-Mehl.
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SINR coverage model; examples
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SINR coverage model; examples
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Qualitatively different from BM and VT

Locally:

Maximal overlapping phenomenon: N has a �nite
support (unlike in BM, where N � Poisson); to be
explained...

– p. 29



Qualitatively different from BM and VT

Locally:

Maximal overlapping phenomenon: N has a �nite
support (unlike in BM, where N � Poisson); to be
explained...

Globally:

Bounded super-critical percolation regime: Increasing
node density may destroy in�nite components.

– p. 29



Percolation in SINR coverage model

Dousse, F. Baccelli, and P Thiran (2003),

Dousse, Franceschetti, Macris, Meester, Thiran (2006)

in
te

rf
er

en
ce

 c
an

ce
lla

tio
n 

fa
ct

or

node density

Percolation domain

percolation

no percolation

no 
perco-
lation

Increasing node density may destroy in�nite component(s)!
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Coverage characteristics
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Coverage by the typical cell

Without loss of generality 
 = 1 .

Under Palm P0, cell C0 of X 0 = 0 , x 2 R2, jx j = r ,

P0f x 2 C0g = P0

�
S0 � �W ` (r ) + � ` ( r )

X

i 6=0

Si

` ( jy � X i j )

�

– p. 32



Coverage by the typical cell

Without loss of generality 
 = 1 .

Under Palm P0, cell C0 of X 0 = 0 , x 2 R2, jx j = r ,

P0f x 2 C0g = P0

�
S0 � �W ` (r ) + � ` ( r )

X

i 6=0

Si

` ( jy � X i j )

�

By the Slivnyak's theorem

P0

�
S0 � �W ` (r ) + � ` ( r )

X

i 6=0

Si

` ( jy � X i j )

�

= P

�
S � �W ` (r ) + � ` ( r )

X

i

Si

` ( jy � X i j )

�

with S, W and
P

i ( ::: ) independent under P.
– p. 32



Shot-noise functional

The linear functional

I =
X

i

f (X i ) =

Z
f (x )�( dx )

of a point process � = f X i g is called in SG shot-noise (SN)
of � with the response function f .

– p. 33



Shot-noise functional

The linear functional

I =
X

i

f (X i ) =

Z
f (x )�( dx )

of a point process � = f X i g is called in SG shot-noise (SN)
of � with the response function f .

The Laplace transform L I of the SN I can be directly
expressed by the Laplace transform of the point process �

L I ( � ) = E
h
e� �

R
f ( x )�( dx )

i
= L � ( �f ) :
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Shot-noise functional

The linear functional

I =
X

i

f (X i ) =

Z
f (x )�( dx )

of a point process � = f X i g is called in SG shot-noise (SN)
of � with the response function f .

The Laplace transform L I of the SN I can be directly
expressed by the Laplace transform of the point process �

L I ( � ) = E
h
e� �

R
f ( x )�( dx )

i
= L � ( �f ) :

Consequently, for Poisson point process � of intensity �( dx )

L I ( � ) = e�
R

(1 � e� �f ( x ) ) �( dx ) :

– p. 33



Back to the typical cell coverage

The Laplace transform of I =
P

i
Si

` ( jy � X i j ) with

` ( r ) = ( Kr ) � is equal to

L I ( � ) = e� �K � 2 � 2=� � �(1 � 2=� )E[S
2
� ]

where �( a) =
R1

0 t a� 1e� t dt (gamma function).
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Back to the typical cell coverage

The Laplace transform of I =
P

i
Si

` ( jy � X i j ) with

` ( r ) = ( Kr ) � is equal to

L I ( � ) = e� �K � 2 � 2=� � �(1 � 2=� )E[S
2
� ]

where �( a) =
R1

0 t a� 1e� t dt (gamma function).

Calculation of P0f x 2 C0g is reduced to the problem of
calculating the probabilities

P
n

�W ` (r ) + � ` ( r ) I � S � 0
o

;

where S and W and I are independent with known Laplace
transforms L W ; L I and L S , respectively.
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A Riemann boundary problem (RBP)

For a given 	( z) de�ned for z on the imaginary axis I , �nd
	 + (z) and 	 � (z) de�ned and analytic on Re( z) � 0 and
Re( z) � 0, respectively, satisfying

	( z) = 	 + (z) + 	 � (z) for z 2 I :

– p. 35



A Riemann boundary problem (RBP)

For a given 	( z) de�ned for z on the imaginary axis I , �nd
	 + (z) and 	 � (z) de�ned and analytic on Re( z) � 0 and
Re( z) � 0, respectively, satisfying

	( z) = 	 + (z) + 	 � (z) for z 2 I :

Sokhotski's solution: unique

	 � (z) =
	( z)

2
1(z 2 I ) �

1

2�i

Z 1

�1

	( � )

� � z
d�;

where, for z 2 I , the singular at z integral is understood in
the principal value sense (limit of the integral over

( �1 ; z � � ] [ [z + �; 1 ) with � ! 0), provided 	( z) is Hölder and
integrable on the imaginary axis with j 	( z) j � A= jzj for
some A and large jz j .

– p. 35



Probabilities via the RBP

FACT: Consider random variable Y having a density and
denote by L Y its Laplace transform. Then

P(Y � 0) =
1

2
�

1

2�i

Z 1

�1

L Y ( i� )

�
d�;

where i is the imaginary unit and the singular at 0 integral is
understood in the principal value sense.

– p. 36



Probabilities via the RBP

FACT: Consider random variable Y having a density and
denote by L Y its Laplace transform. Then

P(Y � 0) =
1

2
�

1

2�i

Z 1

�1

L Y ( i� )

�
d�;

where i is the imaginary unit and the singular at 0 integral is
understood in the principal value sense.

proof: Denote by f (x ) the density of Y and de�ne
f + (x ) = f (x )1( x � 0) , f � (x ) = f (x )1( x � 0) . Consider
	( z) =

R1
�1 e� zx f (x ) dx and 	 � (z) =

R1
�1 e� zx f � (x ) dx .

	 and 	 � satisfy the Rieman boundary problem having the
unique solution. Thus Pf Y � 0g must be equal to 	 + (0)
where 	 � (z) is the Sokhotski's solution of the problem.
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Typical cell coverage via the RBP

COR.: I has density provided Pf S > 0g > 0 and

P0f x 2 C0g

=
1

2
�

1

2i�

Z 1

�1

L W ( � i�� ` ( r )) L I ( � i�� ` ( r )) L S ( i� )

�
d� :

with the singular at 0 integral understood in the principal
value sense.
Baccelli, BB (2001)
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Plancherel-Parseval theorem

FACT: For all square integrable functions f and g,
Z 1

�1
f ( t )g( t )dt =

Z 1

�1

bf (s)bg(s)ds;

where bf (s) =
R

R e� 2i�ts f ( t )dt , denotes Fourier transform

and bg(s) is the complex conjugate of bg(s) .

– p. 38



Plancherel-Parseval theorem

FACT: For all square integrable functions f and g,
Z 1

�1
f ( t )g( t )dt =

Z 1

�1

bf (s)bg(s)ds;

where bf (s) =
R

R e� 2i�ts f ( t )dt , denotes Fourier transform

and bg(s) is the complex conjugate of bg(s) . Consequently,

Z b

a
f ( t )dt =

Z 1

�1

bf (s)
e2i�bs � e2i�as

2i�s
ds:
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Plancherel-Parseval theorem

FACT: For all square integrable functions f and g,
Z 1

�1
f ( t )g( t )dt =

Z 1

�1

bf (s)bg(s)ds;

where bf (s) =
R

R e� 2i�ts f ( t )dt , denotes Fourier transform

and bg(s) is the complex conjugate of bg(s) . Consequently,

Z b

a
f ( t )dt =

Z 1

�1

bf (s)
e2i�bs � e2i�as

2i�s
ds:

COR.:Assume Pf S > 0g > 0. Then P0f x 2 C0g =
Z 1

�1
L I (2 i�` ( r )T s) L W (2 i�` ( r )T s)

L S ( � 2i�s ) � 1

2i�s
ds :

– p. 38



Case exponentialS

Assume S exponential (mean 1 without loss of generality).
With jx j = r

P0f x 2 C0g = P
n

S � �W ` (r ) + � ` ( r ) I
o

= E
h
e� �W ` ( r ) � � ` ( r ) I

i

= L W

�
� ` ( r )

�
� L I

�
� ` ( r )

�

= L W

�
� (Kr ) �

�
� exp

n
� �r 2� 2=� � �(1 � 2=� )�(1 + 2 � )=�

o

Explicit expression!
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Case exponentialS

Assume S exponential (mean 1 without loss of generality).
With jx j = r

P0f x 2 C0g = P
n

S � �W ` (r ) + � ` ( r ) I
o

= E
h
e� �W ` ( r ) � � ` ( r ) I

i

= L W

�
� ` ( r )

�
� L I

�
� ` ( r )

�

= L W

�
� (Kr ) �

�
� exp

n
� �r 2� 2=� � �(1 � 2=� )�(1 + 2 � )=�

o

Explicit expression!
Exponential distribution of S corresponds to wireless
channels with the so called Rayleigh fading.
So it is not merely for mathematical convenience!
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Case exponentialS

Assume S exponential (mean 1 without loss of generality).
With jx j = r

P0f x 2 C0g = P
n

S � �W ` (r ) + � ` ( r ) I
o

= E
h
e� �W ` ( r ) � � ` ( r ) I

i

= L W

�
� ` ( r )

�
� L I

�
� ` ( r )

�

= L W

�
� (Kr ) �

�
� exp

n
� �r 2� 2=� � �(1 � 2=� )�(1 + 2 � )=�

o

Baccelli, BB (2003), cf also Zorzi, Pupolin (1994) for an
early idea (with “doubly-stochastic” exponential S)
This very simple observation inspired amazing amount of
subsequent works in the engineering literature...
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Stationary coverage

Denote the number of cells covering the origin 0 by

N =
X

i

1(0 2 C i ) :

We are interested in the distribution of N

pk := PfN � kg :

pk is called stationary k -coverage probability and
p := p1 = Pf 0 2

S
i C i g stationary coverage probability.
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Bounded support ofN

FACT:
N � d 1=� e P-a.s. ;

where dx e is the ceiling of x (the smallest integer not less
than x ). In other words

pk = 0 for k � 1 +
1

�
:
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Bounded support ofN

FACT:
N � d 1=� e P-a.s. ;

where dx e is the ceiling of x (the smallest integer not less
than x ). In other words

pk = 0 for k � 1 +
1

�
:

Recall,
for VT p1 = 1 and pk = 0 for k � 2,
and for BM N is a Poisson variable, thus pk > 0 for all k � 0.
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Bounded support ofN

Proof: y 2 C i j for j = 1 ; : : : ; n means

SINRi j :=
Si j =` ( jy � X i j j )

W +
P

k6= i j
Sk =` ( jy � X k j )

� � j = 1 ; : : : ; n:
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Bounded support ofN

Proof: y 2 C i j for j = 1 ; : : : ; n means

SINRi j :=
Si j =` ( jy � X i j j )

W +
P

k6= i j
Sk =` ( jy � X k j )
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Proof: y 2 C i j for j = 1 ; : : : ; n means

SINRi j :=
Si j =` ( jy � X i j j )

W +
P

k6= i j
Sk =` ( jy � X k j )

� � j = 1 ; : : : ; n:

Equivalently, for STINR (TI=Total Interference):

STINRi j :
Si j =` ( jy � X i j j )

W +
P

k Sk =` ( jy � X k j )
�

�

1 + �
j = 1 ; : : : ; n:

Consequently

1 >
nX

j =1

Si j =` ( jy � X i j j )

W +
P

k Sk =` ( jy � X k j )
�

n�

1 + �

and thus n < 1 + 1 =� .
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Finite factorial expansions

COR E[N ( k ) ] := E
h
N (N � 1)+ : : : (N � k + 1) +

i
= 0 for

k � 1 + 1
� and thus the usual expansions are in fact �nite

sums: for k � 1

pk =
d1=� eX

n = k

( � 1)n � k

�
n � 1

k � 1

�
n !E[N (n ) ] ;

Pf N = k g =
d1=� eX

n = k

( � 1)n � k

�
n

k

�
n !E[N (n ) ] ;

E[zN ] =
d1=� eX

n =0

(z � 1)n n !E[N (n ) ] ; z 2 [0; 1] :
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= 0 for
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� and thus the usual expansions are in fact �nite

sums: for k � 1

pk =
d1=� eX

n = k

( � 1)n � k

�
n � 1

k � 1

�
n !E[N (n ) ] ;

Pf N = k g =
d1=� eX

n = k

( � 1)n � k

�
n

k

�
n !E[N (n ) ] ;

E[zN ] =
d1=� eX

n =0

(z � 1)n n !E[N (n ) ] ; z 2 [0; 1] :

As for U -statistics, i.e. functionals of the form
P

( X i j : j ) 2 � ( n )

� (X i j : j ) ;
cf. Reitzner, Schulte (2013).
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Invariance of the distribution of N

Denote � :=
n

Yi :=
Si

` ( jX i j )
; X i 2 �

o
(user path-gain process)
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Invariance of the distribution of N

Denote � :=
n

Yi :=
Si

` ( jX i j )
; X i 2 �

o
(user path-gain process)

LEM.: � is inhomogeneous Poisson pp on (0 ; 1 ) with

intensity measure 2a=� t � 1� 2=� dt , where a := �� E[S
2
� ]

K 2 .

COR.: The k -coverage probabilities (and all functionals of �
and W ) depend only on � and a W , but are invariant w.r.t.
the distribution of S.

Helpful in proofs, where for mathematical convenience S
can be assumed exponential with the results generalized to
arbitrary S by appropriate modi�cation of a.

Credits: shot-noise equiv. Gilbert, Pollak (1960), Lowen, Teich (1990),
in physics (spin glasses) Bolthausen, Sznitman (1998),
in the SINR context BB, Karray, Klepper (2010)
in secrecy graphs, Pinto, Barros, Win (2012). – p. 45



Invariance, cont'd

Proof: By the displacement theorem, � is Poisson point
process on (0 ; 1 ) .
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Invariance, cont'd

Proof: By the displacement theorem, � is Poisson point
process on (0 ; 1 ) . We calculate its intensity measure:

�([ s; 1 )) := E[�([ s; 1 ))]

= �

Z

R2

Pf S=` ( jz j ) � s g dz

=2 ��

Z 1

0
r Pf S=` (r ) � s g dr

=2 ��

Z 1

0
r E

h
1

�
r � (sS)1=� =K

�i
dr

=2 �� E

" Z ( sS ) 1=� =K

0
r dr

#

=
�s 2=� �

K 2
E

h
S

2
�

i
:
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Some special functions forE[N (n ) ]

For n � 1, de�ne some functions of x � 0

I n;� (x ) =

2n
1R

0
u 2n � 1e� u 2 � u � x �(1 � 2=� ) � �= 2

du

� n � 1(�(1 � 2=� )�(1 + 2 =� )) n (n � 1)!
:

In particular

I n;� (0) =
2n � 1

� n � 1(C 0( � )) n
;

where C 0( � ) = �(1 � 2=� )�(1 + 2 =� ) .
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Another special functions forE[N (n ) ]

For n � 1, de�ne also functions of (x 1; : : : ; x i ) � 0

J n;� (x 1; : : : ; x n )

=
(1 +

P n
j =1 x j )

n

Z

[0;1]n � 1

Q n � 1
i =1 v i (2 =� +1) � 1

i (1 � v i )2=�
Q n

i =1 (x i + � i )
dv1 : : : dv n � 1;

where 8
>>>>>><

>>>>>>:

� 1 = v1v2 : : : v n � 1

� 2 = (1 � v1)v2 : : : v n � 1

� 3 = (1 � v2)v3 : : : v n � 1

� � �

� n = 1 � vn � 1:
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Factorial moments ofN

PROP.: Assume E(S2=� ) < 1 and (for simplicity)
deterministic W . Then for n � 1

E[N (n ) ] =

(
� � 2n=�

n I n;� (W a � �= 2)J n;� ( � n ) for 0 < � < 1
n � 1

0 otherwise,

where
� n =

�

1 � (n � 1) �
:

Keeler, BB, Karray (2013).
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Factorial moments ofN

PROP.: Assume E(S2=� ) < 1 and (for simplicity)
deterministic W . Then for n � 1

E[N (n ) ] =

(
� � 2n=�

n I n;� (W a � �= 2)J n;� ( � n ) for 0 < � < 1
n � 1

0 otherwise,

where
� n =

�

1 � (n � 1) �
:

Keeler, BB, Karray (2013).
Remark, the smaller � the larger maximal non-null moments.
Also, E[N (n ) ] depends on W only via I n;� (W a � �= 2) ;
(factorization of E[N (n ) ] with respect to W , similar to the
factorization of p(x ) for exponential S).
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Stationary coverage distribution

COR.: For arbitrary distribution of S with E(S2=� ) < 1 and
deterministic W

pk =
d1=� eX

n = k

( � 1) n � k ( n � 1
k � 1 ) � � 2n=�

n I n;� (W a � �= 2)J n;� ( � n ) :

Keeler, BB, Karray (2013).
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Stationary coverage distribution

COR.: For arbitrary distribution of S with E(S2=� ) < 1 and
deterministic W

pk =
d1=� eX

n = k

( � 1) n � k ( n � 1
k � 1 ) � � 2n=�

n I n;� (W a � �= 2)J n;� ( � n ) :

Keeler, BB, Karray (2013).

In particular for � � 1 we have d1=� e = 1 and thus pk = 0
for all k � 2 (like VT, one-coverage only!) and

p = p1 =
2� � 2=�

�(1 + 2
� )

Z 1

0
ue � u 2 �(1 � 2=� ) L W

�
a � �= 2u �

�
du :

Dhillon, Ganti, Baccelli, Andrews (2012).
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Proof idea

For n = 1 : by the Little's law

E[N (1) ] = E[N ] =

Z

R2

p(x ) � dx ;

where p(x ) is the typical cell coverage probability.
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Proof idea

For n = 1 : by the Little's law

E[N (1) ] = E[N ] =

Z

R2

p(x ) � dx ;

where p(x ) is the typical cell coverage probability.

p(x ) admits explicit expression assuming S exponential.

This can be done without loss of generality by the invariance
property of N .

The proof (n = 1 ) follows by direct calculations with
exponential S.
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Proof idea, cont'd

For n � 1, quite similarly

E[N (n ) ] = E
h X

X i 1
;X i 2

;:::;X i n 2 �

distinct

1
�

0 2
n\

j =1

C i j

�i

higher-order Campbell =

Z

R2

Px 1 ;:::;x n

�
0 2

n\

j =1

Cx

�
� n dx 1 : : : dx n :
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�
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n\
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C i j

�i

higher-order Campbell =

Z

R2

Px 1 ;:::;x n

�
0 2

n\

j =1

Cx

�
� n dx 1 : : : dx n :

The probabilities Px 1 ;:::;x n

�
0 2

T n
j =1 Cx

�
can be evaluated

explicitly assuming (without loss of generality!) exponential
S and using (higher-order) Slivnyak's theorem

Px 1 ;:::;x n

� = P�+
P n

j =1 � x j
:
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explicitly assuming (without loss of generality!) exponential
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Px 1 ;:::;x n
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The proof follows by direct calculations with exponential S.
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Thank you for today.
Tomorrow: Relations to Poisson-Dirichlet

processes

– p. 53
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