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Medium Access Control (MAC) Protocol

In packet switching networks logically addressed packets
are sent from their source toward their ultimate destination,
possibly through intermediate nodes.

A set of standard rules in charge of this process (called the
communication protocol) is typically structured in a few
layers.

The Medium Access Control (MAC) layer is a part of the
data communication protocol organizing simultaneous
packet transmissions in the network.
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Aloha MAC

In our talk we will consider the, perhaps most simple,
algorithm used in the MAC layer, called Aloha:
at each time slot (we will consider only slotted; i.e., discrete,
time case), each potential transmitter independently tosses
a coin with some bias p; it accesses the medium (transmits)
if the outcome is heads and it delays its transmission
otherwise.
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Tuning Aloha Parameter p

In Aloha algorithm it is important to tune the value of the
Medium Access Probability (MAP) p, so as to realize a
compromise between two contradicting types of wishes:

a "social one" to have as many concurrent transmissions
as possible in the network and

an "individual one" to have high chances that authorized
transmissions be successful and/or efficient.

The contradiction between these two wishes stems from the
fact that the very nature of the "medium" in which the
transmissions take place (Ethernet cable or electromagnetic
field in the case of wireless communications) imposes some
constraints on the maximal number and configuration of
successful concurrent transmissions.
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Aloha in Wireless Ad-hoc Networks

In this talk we will focus on Aloha in wireless
ad-hoc networks; i.e.:

networks made of nodes arbitrarily repartitioned in some
region,

nodes exchange packets either transmitting or receiving
them on a common frequency,

(in contrast to cellular networks) do not relay on any fixed
infrastructure to carry the packets on long distances,

but use intermediary retransmissions by nodes lying on
the path between the packet source node and its
destination node.
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Analysis of Stochastic Models

In this context, the variability of radio channel conditions (so
called fading) and arbitrary geometry of the network make
spatial, stochastic modeling particularly pertinent as it allows
to capture all these uncertainties in a statistical manner.

Mathematical analysis of simple yet not-simplistic stochastic
models is an important alternative for (crude) simulations of
these networks.

In our talk we will show a few such models and results
difficult (or impossible) to obtain via crude simulations.

– p. 9/71



ALOHA
IN BASIC POISSON BIPOLAR

NETWORK MODEL
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Bipolar Ad-hoc Network — Snapshot
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Bipolar Ad-hoc Network Model with Aloha

Independently marked Poisson point process (p.p.)
Φ̃ = {(Xi, ei, yi, Fi)}, where

1. Φ = {Xi} denotes the locations of the nodes (the
potential transmitters); Φ is always assumed Poisson
with positive and finite intensity λ;
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Bipolar Ad-hoc Network Model with Aloha

Independently marked Poisson point process (p.p.)
Φ̃ = {(Xi, ei, yi, Fi)}, where

1. Φ = {Xi} denotes the locations of the nodes (the
potential transmitters); Φ is always assumed Poisson
with positive and finite intensity λ;

2. {ei} is the medium access indicator of node i; (ei = 1 if
node i is allowed to transmit and 0 otherwise).
Aloha principle:The random variables ei are i.i.d. and
independent of everything else, with P(ei = 1) = p (p is
the MAP).
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Bipolar Ad-hoc Network Model with Aloha

Independently marked Poisson point process (p.p.)
Φ̃ = {(Xi, ei, yi, Fi)}, where

1. Φ = {Xi} denotes the locations of the nodes (the
potential transmitters); Φ is always assumed Poisson
with positive and finite intensity λ;

2. {ei} is the medium access indicator of node i; (ei = 1 if
node i is allowed to transmit and 0 otherwise).
Aloha principle:The random variables ei are i.i.d. and
independent of everything else, with P(ei = 1) = p (p is
the MAP).
Consequence of Aloha: the set of nodes that transmit
Φ1 = {Xi : ei = 1} is a Poisson p.p. with intensity
λ1 = λp (as an independent thinning of Φ).
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Receivers in Bipolar Model

3. {yi} denotes the location of the receiver for node Xi (we
assume here that no two transmitters have the same
receiver). We assume that {Xi − yi} are i.i.d random
vectors with |Xi − yi| = r; i.e. each receiver is at
distance r from its transmitter.
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Wireless Channel Conditions — Fading

4. {Fi = (F
j
i : j)} where F

j
i denotes the virtual power

emitted by node i (provided ei = 1) towards receiver yj ;
by this we understand the product of the (effective)
power of transmitter i and of the random fading from this
node to receiver yj .
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Wireless Channel Conditions — Fading

4. {Fi = (F
j
i : j)} where F

j
i denotes the virtual power

emitted by node i (provided ei = 1) towards receiver yj ;
by this we understand the product of the (effective)
power of transmitter i and of the random fading from this
node to receiver yj .

The random vectors {Fi} are assumed to be i.i.d. and the
components (F

j
i , j) are assumed to be i.i.d. as a generic r.v.

denoted by F with mean 1/µ assumed finite.
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Wireless Channel Conditions — Fading

4. {Fi = (F
j
i : j)} where F

j
i denotes the virtual power

emitted by node i (provided ei = 1) towards receiver yj ;
by this we understand the product of the (effective)
power of transmitter i and of the random fading from this
node to receiver yj .

The random vectors {Fi} are assumed to be i.i.d. and the
components (F

j
i , j) are assumed to be i.i.d. as a generic r.v.

denoted by F with mean 1/µ assumed finite.

A spacial important case consists in assuming constant
emitted power and Rayleigh fading which implies
exponential F .
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Omnidirectional Path-loss

Select some omnidirectional path-loss (OPL) model l(·).
The receiver of node i receives the transmitter located at
node j with a power equal to F

j
i /l(|Xj − yi|), where | · |

denotes the Euclidean distance on the plane.
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Omnidirectional Path-loss

Select some omnidirectional path-loss (OPL) model l(·).
The receiver of node i receives the transmitter located at
node j with a power equal to F

j
i /l(|Xj − yi|), where | · |

denotes the Euclidean distance on the plane.

An important special case consists in taking

l(u) = (Au)β for A > 0 and β > 2,(1)

which we call in what follows OPL 3.
Note that 1/l(u) has a pole at u = 0, and thus in particular
is not correct for small distances. Despite it, the OPL 3
path-loss model (1), we will use it as our default model,
because it is precise enough for large enough values of u, it
simplifies analysis and reveals important scaling laws.
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Coverage (Successful Transmission)

We will say that transmitter {Xi} covers its receiver yi in the
reference time slot if

SINRi =
F i

i /l(|Xi − yi|)
W + I1

i

≥ T ,(2)

where

I1
i =

∑
Xj∈ eΦ1, j 6=i

F i
j /l(|Xj − yi|) is the shot-noise of Φ̃1,

namely, and models the interference,

W > 0 is the external (thermal) noise — a r. v.
independent of everything else; default assumption in
this talk W = const.

and where T is some SINR threshold.

We say equivalently that xi is successfully received by yi.
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Coverage Indicator as a New Mark

Denote by δi the indicator that location yi is covered by
transmitter Xi; i.e., that the SINR condition (2) holds. We
will consider δi as a new mark of Xi.
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Coverage Indicator as a New Mark

Denote by δi the indicator that location yi is covered by
transmitter Xi; i.e., that the SINR condition (2) holds. We
will consider δi as a new mark of Xi.

The marked point process Φ̃ enriched by δi is stationary;
i.e., its distribution is invariant with respect to any transition.
However, in contrast to the original marks ei, yi, Fi, given the
points of Φ, the random variables {δi} are neither
independent nor identically distributed.
Indeed, the points of Φ lying in dense clusters have a
smaller probability of coverage than more isolated points
due to interference; in addition, the shot noise variables I1

i

make that δi’s dependent.
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Coverage Indicator as a New Mark

Denote by δi the indicator that location yi is covered by
transmitter Xi; i.e., that the SINR condition (2) holds. We
will consider δi as a new mark of Xi.

The marked point process Φ̃ enriched by δi is stationary;
i.e., its distribution is invariant with respect to any transition.
However, in contrast to the original marks ei, yi, Fi, given the
points of Φ, the random variables {δi} are neither
independent nor identically distributed.
Indeed, the points of Φ lying in dense clusters have a
smaller probability of coverage than more isolated points
due to interference; in addition, the shot noise variables I1

i

make that δi’s dependent.

Do we have some typical node?
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Coverage Probability for the Typical Node

By probability of coverage of the typical node, given it is a
transmitter, we understand

P0{ δ0 = 1 | e0 = 1} = E0[δ0 | e0 = 1],

where P0 is the Palm probability associated to the (marked)
stationary point process Φ̃ and where δ0 is the mark of the
point X0 = 0 a.s. located at the origin 0 under P0.
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Palm Probability — a Reminder

This Palm probability P0 is derived from the original
(stationary) probability P by the following relation

P0{ δ0 = 1 | e0 = 1} =
1

λ1|B|
E
[∑

i

δi1(Xi ∈ B)
]
;

B is an arbitrary subset of the plane and |B| is its surface.
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Palm Probability — a Reminder

This Palm probability P0 is derived from the original
(stationary) probability P by the following relation

P0{ δ0 = 1 | e0 = 1} =
1

λ1|B|
E
[∑

i

δi1(Xi ∈ B)
]
;

B is an arbitrary subset of the plane and |B| is its surface.

Knowing that λ1|B| is the expected number of transmitters
in B, the typical node coverage probability is the mean
number of transmitters which cover their receivers in any
given window B in which we observe our network. Note that
this mean is based on a double averaging: a mathematical
expectation – over all possible realizations of the network
and, for each realization, a spatial averaging – over all
nodes in B.
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Palm Probability — Ergodic Interpretation

If the underlying point process is ergodic (as it is the cased
for our i.m. Poisson p.p. Φ̃) the typical node coverage
probability can also be interpreted as a spatial average of
the number of transmitters which cover their receiver in
almost every given realization of the network and large B

(tending to the whole plane).
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Palm Probability — Poisson p.p. Case

For a stationary i.m. Poisson p.p. the probability P0 can
easily be constructed due to Slivnyak’s theorem:
under P0, the nodes of our Poisson network and their marks
follow the distribution

Φ̃ ∪ {(X0 = 0, e0, y0, F0)} ,

where Φ̃ is the original stationary i.m. Poisson p.p. (i.e. that
seen under the original probability P) and (e0, y0, F0) is a
new copy of the mark independent of everything else and
distributed like all other i.i.d. marks (ei, yi, Fi) of Φ̃ under P.
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Palm Probability — Poisson p.p. Case

For a stationary i.m. Poisson p.p. the probability P0 can
easily be constructed due to Slivnyak’s theorem:
under P0, the nodes of our Poisson network and their marks
follow the distribution

Φ̃ ∪ {(X0 = 0, e0, y0, F0)} ,

where Φ̃ is the original stationary i.m. Poisson p.p. (i.e. that
seen under the original probability P) and (e0, y0, F0) is a
new copy of the mark independent of everything else and
distributed like all other i.i.d. marks (ei, yi, Fi) of Φ̃ under P.

Under P0, the node at the origin X0 = 0 is called the the
typical node. Note that the typical node, is not necessarily a
transmitter; e0 is equal to 1 or 0 with probability p and 1 − p

respectively.
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Back to the Coverage Probability

Denote by pc(r, λ1, T ) = E0[δ0 | e0 = 1] the probability of
coverage of the typical node given it is a transmitter.
It follows from the above construction (Slivnyak’s theorem)
that this probability only depends on the density of effective
transmitters λ1 = λp, on the distance r and on the SINR
threshold T ; it can be expressed using three independent
generic random variables F, I1, W by the following formula:

pc(r, λ1, T ) = P0{ F 0
0 > l(r)T (W + I1

0) | e0 = 1 }
= P{ F ≥ T l(r)(I1 + W ) } .(3)
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Back to the Coverage Probability

Denote by pc(r, λ1, T ) = E0[δ0 | e0 = 1] the probability of
coverage of the typical node given it is a transmitter.
It follows from the above construction (Slivnyak’s theorem)
that this probability only depends on the density of effective
transmitters λ1 = λp, on the distance r and on the SINR
threshold T ; it can be expressed using three independent
generic random variables F, I1, W by the following formula:

pc(r, λ1, T ) = P0{ F 0
0 > l(r)T (W + I1

0) | e0 = 1 }
= P{ F ≥ T l(r)(I1 + W ) } .(3)

First goal: evaluate pc(r, λ1, T ).
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Coverage Probability with Rayleigh Fading

Proposition 1 In Poisson bipolar network model with
exponential F

pc(r, λ1, T ) = exp
{

−µWTl(r)−2πλ1

∫ ∞

0

u

1 + l(u)/(T l(r))
du

}
.

(4)
In particular if W ≡ 0 and that the path-loss model (1) is
used then

pc(r, λ1, T ) = exp(−λ1r
2T 2/βK(β)) ,(5)

where

K(β) =
2πΓ(2/β)Γ(1 − 2/β)

β
=

2π2

β sin(2π/β)
.(6)
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Proof of Proposition 1

From (3) with exponential F (of parameter µ) by
independence we obtain

pc(r, λ1, T ) = exp
[
−µT l(r)(I1 + W )

]

= e−µW T l(r)E[e−µT l(r)I1

] .

The second factor in the above expression is just the
Laplace transform of the Poisson Shot-noise LI1(s)

evaluated at s = µT l(r). It admits the following closed form
expression

LI1(s) = E[e−I1s] = exp
{

−λ12π

∫ ∞

0
t
(
1−LF (s/l(t))

)
dt

}
,

(7)
where LF is the Laplace transform of F (here exponential).
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Coverage Probability with General Fading

The results of Proposition 1 can be extended to a general
case of F using Plancherel-Parseval theorem. We skip the
details for simplicity.
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Application

Example 1 Assume one wants to operate a network with
Aloha MAC where each transmitter-receiver distance is r

and a successful transmission is guaranteed with a
probability at least 1 − ε, where ε is a predefined QoS.
Then, the MAP p parameter of Aloha should be such that
pc(r, λp, T ) = 1 − ε. In particular, assuming the path-loss
setting (1), one should take

p = min

(
1,

− ln(1 − ε)

λr2T 2/βK(β)

)
≈ min

(
1,

ε

λr2T 2/βK(β)

)
.

For example, for T = 10dB a and OPL 3 model with β = 4,
r = 1, one should take p ≈ min (1, 0.064 ε/λ) .

aA positive real number x is 10 log10(x) dB.
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Mean Packet Progress

When trying to maximize the coverage probability
pc(r, λ1, T ) one obtains degenerate maximum at r = 0.

Assuming that our network relays packets, which have to
reach some distant destination nodes, a more meaningful
optimization consists in maximizing some transmission
distance-based characteristics. For example the mean
progress made in a typical transmission:

prog(r, λ1, T ) = rE0[δ0] = rpc(r, λ1, T ) .(8)
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Optimizing Mean Packet Progress

Assume now some given map intensity λ1 = pλ of
transmitters.

We look for the distance r which maximizes the mean
packet progress prog(r, λ1, T ).

Obviously small r makes the transmissions more sure but
involves more relaying nodes to communicate on some
given (large) distance. On the other hand large r reduces
the number of hops but might increase the number faults
and retransmissions on a given hop.
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We denote by

rmax = rmax(λ1) = arg max
r≥0

prog(r, λ1, T )

the best transmission distance for the density of
transmitters λ1 whenever such a value exists and is unique.

Let
ρ = ρ(λ1) = prog(rmax, λ1, T )

be the optimal mean packet progress.
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Proposition 2 In the Poisson bipolar network model (with a
general fading), OPL 3 function and W = 0

rmax(λ) =
const3

T 1/β
√

λ1
,

ρ(λ) =
const4

T 1/β
√

λ1
,

where the constants const3 and const4 do not depend on
R, T, µ, provided rmax is well defined. If F is exponential (i.e.
for Rayleigh fading) and l(r) given by (1) then
const3 = 1/

√
2K(β) and const4 = 1/

√
2eK(β).

We can conclude that the optimal distance rmax(λ1) from
transmitter to receiver should be of the order of the distance
to the nearest neighbor of the transmitter, namely ∼ 1/

√
λ.
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Mean packet progress still does not lead to pertinent
optimizations of the network model, as it regards one
(typical) transmission.

In particular, prog(r, λp, T ) is trivially maximized when
p → 0, i.e.; when transmissions are very efficient but very
rare in the network.
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Density of Successful Transmissions

In fact, we will need some network (social) performance
metrics; as e.g., (spatial) density of successful transmissions

dsuc(r, λ1.T ) =
1

|B|
E
[∑

i

eiδi1(Xi ∈ B)
]

that, by stationarity, does not depend on the particular
choice of set B and by Campbell’s formula is equal to

dsuc(r, λ1.T ) = λ1pc(r, λ1, T ) = λp pc(r, λp, T ).(9)
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Other Spatial/Social Performance Metrics

The following characteristics can also be expressed in terms
of the coverage probability pc(r, λ1, T ).

spatial density of progress, dprog, the mean number of
meters progressed by all transmissions taking place per
unit surface unit;

spatial density of Shannon throughput, dthrou, the mean
throughput per unit surface unit;

spatial density of transport, dtrans, the mean number of
bit-meters transported per second and per unit of
surface.

We skip the details.
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Optimal Density of Successful Trans.

In what follows we will be interested in optimizing
dsuc(r, λp, T ) in MAP parameter p of Aloha in order to find a
compromise between the average number of concurrent
transmissions per unit area and the probability that a given
authorized transmission will be successful.
Define

λmax = arg max
0≤λ<∞

dsuc(r, λ, T )

whenever such a value of λ exists and is unique.
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Proposition 3 Under the assumptions of Proposition 1 with
p = 1 the unique maximum of dsuc(r, λ, T ) is attained at

λmax =

(
2π

∫ ∞

0

u

1 + l(u)/(T l(r))
du

)−1

,

and the maximal value is equal to

dsuc(r, λmax, T ) = e−1λmaxe
−µW T l(r) .

In particular, assuming W ≡ 0 and OPL 3 model (1)

λmax =
1

K(β)r2T 2/β
,

dsuc(r, λmax, T ) =
1

eK(β)r2T 2/β
.
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Optimal MAP p

Corollary 1 Under assumptions of Proposition 1 with some
given r the value of the MAP p that maximizes the density of
successful transmissions is

pmax = min(1, λmax/λ) .
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Degeneracy of Joint Optimization inp and r

Assume for simplicity a W = 0 and OPL 3 path-loss (1).
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Degeneracy of Joint Optimization inp and r

Assume for simplicity a W = 0 and OPL 3 path-loss (1). In
Proposition 3 we found that for fixed r, the optimal density of
successful transmissions dsuc is attained when the density
of transmitters is equal to λ1 = λmax.It is now natural to look
for the distance r maximizing the mean progress for the
network with this optimal density of transmitters. We obtain

sup
r≥0

prog(r, λmax, T ) = sup
r≥0

r pc(r, λmax, T )

= sup
r≥0

r
dsuc(r, λmax, T )

λmax

= sup
r≥0

r
const2
const1

= ∞

and thus the optimal choice of r consists in taking r = ∞,
and consequently λmax = 0.
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Bipolar Model — Conclusions

Simple yet not simplistic model. Allows for

closed form expression for the successful transmission
probability.

pertinent optimization of many network performance
metrics in r or in p.

A better receiver model is needed to study the joint
optimization in the transmission distance and in Aloha
MAP p.
We will propose such models in
BEYOND THE POISSON BIPOLAR NETWORK MODEL.
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OPPORTUNISTIC ALOHA
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Idea

In the basic Spatial Aloha scheme, each node tosses a coin
to access the medium independently of the fading variables.
It is clear that something more clever can be done by
combining the random selection of transmitters with the
occurrence of good channel conditions.

The general idea of Opportunistic Aloha is to select the
nodes with the channel fading larger than a certain threshold
as transmitters in the reference time slot.
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Model Modification

Opportunistic Aloha can be described by
Φ̃ = {(Xi, θi, yi, Fi)}, where {(Xi, yi, Fi)} is as in the basic
Poisson Bipolar Model (1)–(4), with item (2) replaced by:

(2’) Opportunistic Aloha principle: The MAC indicator ei of
node i (ei = 1 if node i is allowed to transmit and 0
otherwise) is the following function of the channel
condition to its receiver F i

i : ei = 1(F i
i > θi), where {θi}

are new random i.i.d. marks, with a generic mark
denoted by θ.
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Model Modification

Opportunistic Aloha can be described by
Φ̃ = {(Xi, θi, yi, Fi)}, where {(Xi, yi, Fi)} is as in the basic
Poisson Bipolar Model (1)–(4), with item (2) replaced by:

(2’) Opportunistic Aloha principle: The MAC indicator ei of
node i (ei = 1 if node i is allowed to transmit and 0
otherwise) is the following function of the channel
condition to its receiver F i

i : ei = 1(F i
i > θi), where {θi}

are new random i.i.d. marks, with a generic mark
denoted by θ.

Special cases of interest are that where θ is constant, and
that where θ is exponential with parameter ν. (allows for
close-form expression for the coverage probability).
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Model Modification

Opportunistic Aloha can be described by
Φ̃ = {(Xi, θi, yi, Fi)}, where {(Xi, yi, Fi)} is as in the basic
Poisson Bipolar Model (1)–(4), with item (2) replaced by:

(2’) Opportunistic Aloha principle: The MAC indicator ei of
node i (ei = 1 if node i is allowed to transmit and 0
otherwise) is the following function of the channel
condition to its receiver F i

i : ei = 1(F i
i > θi), where {θi}

are new random i.i.d. marks, with a generic mark
denoted by θ.

Special cases of interest are that where θ is constant, and
that where θ is exponential with parameter ν. (allows for
close-form expression for the coverage probability).
As in Aloha {ei} are again i.i.d. marks of the point process
Φ̃, which now depend on {θi, F i

i }.
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In Opportunistic Aloha the set of transmitters is a Poisson
p.p. Φ1 (different from that in plain Aloha) with intensity
λP(F > θ) (where F is a generic F i

i and θ a generic θi, with
(F, θ) independent).

Thus in order to compare Opportunistic Aloha to the plain
Aloha one can take p = P{ F > θ }, where p is the MAP of
plain Aloha, which guarantees the same density of
(selected) transmitters at a given time slot.
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Note that the virtual power emitted by any node to its
receiver, given it is selected by Opportunistic Aloha has for
law the distribution of F conditional on F > θ. Below, we will
denote by Fθ a random variable with this law. However, by

independence of (F
j
i , j), the virtual powers F

j
i , j 6= i,

toward other receivers are still distributed as F .
Consequently, the interference I1

i experienced at any
receiver has exactly the same distribution as in plain Aloha.

– p. 43/71



Coverage Probability

Hence, the coverage probability for the typical transmitter
can be expressed by the following three independent
generic random variables

p̂c(r, λ1, T ) = P{ Fθ > Tl(r)(I1 + W ) } ,

where I1 is the generic shot-noise generated by Poisson
p.p. with intensity λ1 = P{F > θ}λ and (non-conditioned)
fading variables Fj (as in (3)).
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Proposition 4 Assume Rayleigh fading (exponential F with
parameter µ), exponential distribution of the threshold θ with
parameter ν, and (for simplicity) W ≡ 0 and the OPL 3
model (1). Then

p̂c(r, λ1, ν)

=
µ + ν

ν
exp{−λ1T

2/βr2K(β)}

−µ

ν
exp

{
−λ1

(
(µ + ν)T

µ

)2/β

r2K(β)
}

,

with λ1 = λν/(µ + ν).
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Opportunistic vs plain Aloha
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Opportunistic Aloha (constant θ = 1/ν) 

Opportunistic Aloha (exponential θ of rate ν)
Plain Aloha

The density of successful transmissions dsuc of
Opportunistic Aloha for various choices of θ. The
propagation model is (1). We assume Rayleigh fading with
mean 1 and W = 0, λ = 0.001, T = 10dB, r =

√
1/λ and

β = 4. For comparison the constant value λmaxpc(r, λmax) of
plain Aloha is plotted.

– p. 46/71



BEYOND THE POISSON BIPOLAR
NETWORK MODEL
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Locations of Receivers — Network Split

We will consider now a few possible scenarios where the
receiver of a given transmitter is not necessarily at
distance r, as in the Poisson bipolar model considered so
far.
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Locations of Receivers — Network Split

We will consider now a few possible scenarios where the
receiver of a given transmitter is not necessarily at
distance r, as in the Poisson bipolar model considered so
far.
In what follows we will always assume that the transmitters
choose their (actual) receivers in the original set Φ of nodes
of the network. More precisely, nodes Φ0 = Φ \ Φ1 not
allowed to access the medium (those with ei = 0) form the
set of potential receivers.

The virtual powers F
j
i have now the following modified

interpretation:

(4’) F
j
i denotes the virtual power (modified by the channel

condition) emitted by node i (provided ei = 1) towards
node j in Φ0.
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Aloha and Network Split

In case of Aloha MAC, at a given time slot, the transmitters
Φ1 and the potential receivers Φ0 form two independent
Poisson p.p’s. with intensities, respectively, λ1 = λp and
λ0 = λ(1 − p).
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MAC and Routing Interplay

In practice, some routing algorithmspecifies the receivers(s)
(relay node(s)) of each given transmitter. The joint design
and analysis of MAC and routing is a difficult task even if we
assume the simplest MAC (Aloha).
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MAC and Routing Interplay

In practice, some routing algorithmspecifies the receivers(s)
(relay node(s)) of each given transmitter. The joint design
and analysis of MAC and routing is a difficult task even if we
assume the simplest MAC (Aloha).

We propose models based on simplifying assumptions on
the routing layer. Specifically, we will assume that each
transmitter selects its receiver according to one of the
following two routing principles:

as close by as possible,

the most distant successful receiver (in a given
direction).

– p. 50/71



Nearest Receiver (NR) Model

Assume that each transmitter selects the nearest point in Φ0

of nodes which do not emit a the considered time slot.
Formally, this consists in replacing the assumption
concerning the distribution of {yi} in (3) of the definition of
the Poisson bipolar model by the following one

(3’) The receiver yi of the transmitter Xi ∈ Φ is the point
yi = Y ∗

i = arg minYi∈Φ0{|Yi − Xi|}.
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Nearest Receiver (NR) Model

Assume that each transmitter selects the nearest point in Φ0

of nodes which do not emit a the considered time slot.
Formally, this consists in replacing the assumption
concerning the distribution of {yi} in (3) of the definition of
the Poisson bipolar model by the following one

(3’) The receiver yi of the transmitter Xi ∈ Φ is the point
yi = Y ∗

i = arg minYi∈Φ0{|Yi − Xi|}.

The nearest receiver yi is almost surely well defined for all i

(due to homogeneous Poisson assumption) however some
additional specifications is required on what happens if two
or more transmitters pick the same receiver. In what follows
that either the receivers are capable of multi-receptions or
the SINR threshold T > 1, which (by a simple algebraic
argument) excludes such multi-receptions.

– p. 51/71



Coverage Probability in NR Model

Since Φ1 and Φ0 are independent Poisson p.p.s it is easy to
calculate the probability pc(NR, λ1, T ) of successful
reception for the typical emitter in the NR model conditioning
on of the distance from the origin to the nearest point of Φ0.
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Coverage Probability in NR Model

Since Φ1 and Φ0 are independent Poisson p.p.s it is easy to
calculate the probability pc(NR, λ1, T ) of successful
reception for the typical emitter in the NR model conditioning
on of the distance from the origin to the nearest point of Φ0.
Proposition 5 The coverage probability in the NR model is
equal to

pc(NR, λ1, T ) = 2πλ0

∫ ∞

0
r exp(−λ0πr2)pc(r, λ1, T ) dr ,

where pc(r, λ1, T ) is the probability of coverage at
distance r evaluated for the Poisson bipolar model under the
same assumptions except for the receiver location.
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Coverage Probability in NR Model

Since Φ1 and Φ0 are independent Poisson p.p.s it is easy to
calculate the probability pc(NR, λ1, T ) of successful
reception for the typical emitter in the NR model conditioning
on of the distance from the origin to the nearest point of Φ0.
Proposition 5 The coverage probability in the NR model is
equal to

pc(NR, λ1, T ) = 2πλ0

∫ ∞

0
r exp(−λ0πr2)pc(r, λ1, T ) dr ,

where pc(r, λ1, T ) is the probability of coverage at
distance r evaluated for the Poisson bipolar model under the
same assumptions except for the receiver location.
Other characteristics (mean progress, density of successful
transmission) can also be evaluated in a similar way.
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Density of Successful Trans. in NR Model

We are now interested in optimizing
dsuc(NR, λp, T ) = λp pc(NR, λp, T ) in MAP parameter p of
Aloha.
Assume for simplicity W ≡ 0, OPL 3 model (1) and
exponential F . Then by Propositions and 1 we have

dsuc(NR, λp, T ) =
λp(1 − p)

(1 − p) + pT 2/βK(β)/π
.
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Density of Successful Trans. in NR Model

We are now interested in optimizing
dsuc(NR, λp, T ) = λp pc(NR, λp, T ) in MAP parameter p of
Aloha.
Assume for simplicity W ≡ 0, OPL 3 model (1) and
exponential F . Then by Propositions and 1 we have

dsuc(NR, λp, T ) =
λp(1 − p)

(1 − p) + pT 2/βK(β)/π
.

The above function (of p) attains the unique
non-degenerate maximum for some 0 < p∗ < 1, which gives
a compromise between the average number of concurrent
transmissions per unit area and the probability that a given
authorized transmission will be successful in the NR model.
Moreover, the optimal tuning of p∗ does not depend on the
node density λ.
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Most Distant Successful Receiver (MDSR)

We need to extend the i.m. p.p. Φ̃ by introducing marks di;
the latter are i.i.d. unit vectors in R2 representing directions
in which the nodes aim to send packets. We assume
following assumption concerning the choice of receivers:

(3”) The receiver yi of the transmitter Xi ∈ Φ is its SINR
neighbor that maximizes the effective progress of the
transmitted packet in the direction di

yi = arg max
Xj∈V (Xi)

{〈Xj − Xi, di〉} ,

By the set SINR neighbors V (Xi) of Xi we understand
subset of potential receivers Φ0, which successfully capture
the packet transmitted by Xi when Xi transmits at the given
time slot, plus Xi itself.
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A major difference between this opportunistic mechanism
and all previously considered cases is that it has much more
chance to lead to a successful transmission. Indeed, it
suffices that at least one receiver with a positive abscissa in
a given direction successfully captures the packet. For this
reason we can call this scheme an opportunistic selection of
the receiver.
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Analysis of the MDSR Model

Unfortunately, calculating the probability of successful
transmission in MDSR model is more tricky. We have only
bounds.
We can prove that, as for NR model, the density of progress
dprog(λ, p) attains a non-degenerate maximum for some
MAP 0 < p∗ < 1. In case of W ≡ 0, OPL 3 model (1) and
exponential F , the optimal tuning of p∗ does not depend on
the node density λ.
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Optimal tuning of MAP p in MDSR Model
dp̃rog(λ, p)
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Density of modified progress dp̃rog(λ, p) (lower bound of the
“true” one) in the MDSR model. Here, β = 3, λ = 1 and with
T = {10, 13, 15}dB (curves from top to bottom).
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LOCAL DELAYS IN ALOHA —
TOWARD SPACE–TIME ANALYSIS
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Our aim is to discuss the mean time to transmit a packet
under Aloha, which will be referred to as the local delay in
what follows.
This will require the introduction of the underlying
time-space structure.
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Time-Space Scenario in Poisson Network

We add time-dimension to the basic Poisson Bipolar model
and its extensions.
We assume a sequence of time slots n = 0, 1, . . . to which
all nodes are synchronized.
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Time-Space Scenario in Poisson Network

We add time-dimension to the basic Poisson Bipolar model
and its extensions.
We assume a sequence of time slots n = 0, 1, . . . to which
all nodes are synchronized.
Poisson p.p. Φ = {Xi} modeling locations of nodes remains
unchanged in time.

Marks ei = ei(n), Fi = Fi(n) representing, respectively,
MAC status and virtual power (channel quality) are
re-sampled independently, identically, in each time slot n.

Noise W is random but static in time; i.e., W = W (n).

The above scenario of fast fading, static noise is an
example; other scenarios can be considered.
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Time-Space Scenario, cont.

Locations of receivers yi, depend on the model:

in the basic Poisson bipolar model remain constant in
time at a distance r,

in the NR and MDSR model are found in each tome slot
according to the corresponding role. Note that the set of
potential receivers depend on ei(n) and thus vary in
time.
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Mean Local Delay

By the mean local delay ℓ = E0[L] we understand the
expected number of time slots L required for the typical
node to successfully transmit one packet.

It turns out that this mean time very much depends on the
receiver model which is chosen. In several “reasonable”
cases surprisingly(?) ℓ = ∞. In fact this is not a surprise (to
be explained).
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Wireless Contention Phase Transition

For some models, we observe the following wireless
contention phase transition: ℓ < ∞ or ℓ = ∞ depending on
the choice of model parameters, as the transmission
distance r or MAP p or mean noise E[W ] or mean signal
power E[F ] = 1/µ.
We explain it on the simplest example of the basic Poisson
Bipolar model.
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Mean Local Delay in Poisson Bipolar Model

Given repartition of nodes Φ and noise W (and all other
random model components that do not change in time, if
any) under Palm probability P0, the events
En = {node X0 = 0 successfully transmits at time n} n ≥ 0

are independent (Bernoulli) trials with probability of success

p(Φ, W ) = p P{ F > l(r)T (W + I1(Φ)} ,

where I1(Φ) is the “conditional realization” of the shot noise
given node positions Φ and noise W .
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Mean Local Delay in Poisson Bipolar Model

Given repartition of nodes Φ and noise W (and all other
random model components that do not change in time, if
any) under Palm probability P0, the events
En = {node X0 = 0 successfully transmits at time n} n ≥ 0

are independent (Bernoulli) trials with probability of success

p(Φ, W ) = p P{ F > l(r)T (W + I1(Φ)} ,

where I1(Φ) is the “conditional realization” of the shot noise
given node positions Φ and noise W .
The number of trials before the first success is thus
geometric r.v. with parameter p(Φ, W ). Its mean is know to
be 1/p(Φ, W ). De-conditioning w.r.t. Φ we obtain

E0[ℓ] = E0
[ 1

p(Φ, W )

]
.
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Local Delay in Poisson Bipolar Model, cont.

Proposition 6 In the Poisson Bipolar model with fast
Rayleigh fading and static noise we have

ℓ =
E[eµW T l(r)]

p
exp

{
2πpλ

∫ ∞

0

vT l(r)

l(v) + (1 − p)T l(r)
dv

}
.
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Local Delay in Poisson Bipolar Model, cont.

Proposition 6 In the Poisson Bipolar model with fast
Rayleigh fading and static noise we have

ℓ =
E[eµW T l(r)]

p
exp

{
2πpλ

∫ ∞

0

vT l(r)

l(v) + (1 − p)T l(r)
dv

}
.

The exp{. . .} in the above formula is finite for any p, T, r for
path loss model OPL 3. However this is typically not the
case for E[eµW T l(r)], which is exponential moment of W of
order T l(r)µ. Often this moment is finite only for some
sufficiently small value of T l(r)µ. This may give rise to the
wireless contention phase transition due to noise limitations
(see the next slide).
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Example of Phase Transition forℓ

Assume exponential noise W of parameter ν. Then
E[eµW T l(r)] = ν

ν−T l(r) < ∞ for T l(r)µ < ν and infinite for
T l(r)µ > ν. Thus whe have (in this fast Rayleigh fading,
static exponential noise case) the following incarnations of
the wireless contention phase transition: all other
parameters fixed, there is a threshold on
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ν−T l(r) < ∞ for T l(r)µ < ν and infinite for
T l(r)µ > ν. Thus whe have (in this fast Rayleigh fading,
static exponential noise case) the following incarnations of
the wireless contention phase transition: all other
parameters fixed, there is a threshold on

distance r to the receiver below which the mean local
delay is finite and above which it is infinite;

mean transmission power 1/µ above which the mean
local delay is finite and below which it is infinite;

mean thermal noise power 1/ν below which the mean
local delay is finite and above which its is infinite.
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Example of Phase Transition forℓ

Assume exponential noise W of parameter ν. Then
E[eµW T l(r)] = ν

ν−T l(r) < ∞ for T l(r)µ < ν and infinite for
T l(r)µ > ν. Thus whe have (in this fast Rayleigh fading,
static exponential noise case) the following incarnations of
the wireless contention phase transition: all other
parameters fixed, there is a threshold on

distance r to the receiver below which the mean local
delay is finite and above which it is infinite;

mean transmission power 1/µ above which the mean
local delay is finite and below which it is infinite;

mean thermal noise power 1/ν below which the mean
local delay is finite and above which its is infinite.

SINR threshold T , below which the mean local delays is
finite and above which it is infinite.
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Phase Transition for ℓ — Interpretation

Under the above assumptions for the Poisson bipolar model

individually each node has (some) positive transmission
probability (depending on its position in the network),
finite local delay and thus positive temporal throughput.

However, for an important fraction of nodes this delay is
so large that the spatial average of the local delay is
infinite.
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Phase Transition for ℓ — Interpretation

Under the above assumptions for the Poisson bipolar model

individually each node has (some) positive transmission
probability (depending on its position in the network),
finite local delay and thus positive temporal throughput.

However, for an important fraction of nodes this delay is
so large that the spatial average of the local delay is
infinite.

One observes similar phenomena for NR and MDSR
models, (even for constant W — thus having all exponential
moments). The wireless contention phase transition in these
models are due to the randomness of the distance to the
receiver.
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Local Delay and Restart Algorithm

The observed problem of ℓ possibly being infinite is a
consequences of the fact that the local delays typically are
heavy-tailed r.v.s, and this even if all variables generating
our model are light-tailed.
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Local Delay and Restart Algorithm

The observed problem of ℓ possibly being infinite is a
consequences of the fact that the local delays typically are
heavy-tailed r.v.s, and this even if all variables generating
our model are light-tailed.

It is primarily because of the SINR coverage logic, where
one transmits full packets at time slots when the receiver is
covered at the required SINR and where one wastes all the
other time slots. For a “classical” example of such behavior
see the so called “Restart algorithm” [Jelenkovic,
Asmussen], where it is explained why we have heavy tails
and possibly infinite means.
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Beyond the SINR Coverage / Restart Algo.

Adaptive coding offers the possibility of breaking the
coverage/Restart logic: it gives up with minimal
requirements on SINR and it provides some non-null
throughput at each time slot, where this throughput depends
on the current value of the SINR e.g. via Shannon’s formula.
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Beyond the SINR Coverage / Restart Algo.

Adaptive coding offers the possibility of breaking the
coverage/Restart logic: it gives up with minimal
requirements on SINR and it provides some non-null
throughput at each time slot, where this throughput depends
on the current value of the SINR e.g. via Shannon’s formula.

In this latter case, one can show that the mean local delay
(given the throughput prescribed by the Shannon’s formula)
is finite under very mild assumptions.

See more details in the monograph “Stochastic Geometry
and Wireless Networks” by F. Baccelli and B.B. to appear in
Frontiers and Trends in Networking Now Publishers.
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STOCHASTIC ANALYSIS —
CONCLUDING REMARKS
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In stochastic modeling we are not interested in one
particular configuration of nodes but in some “ensemble” of
possible configurations, which are observed with some
“chances”. (example: Poisson repartition of nodes).
Problem: when/what statistical assumptions are valid?
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In stochastic modeling we are not interested in one
particular configuration of nodes but in some “ensemble” of
possible configurations, which are observed with some
“chances”. (example: Poisson repartition of nodes).
Problem: when/what statistical assumptions are valid?

Stochastic analysis gives universal answers in the form of
mathematical expectations which can and have to
interpreted in terms of space/time averages.

For the stochastic analysis to be feasible one needs to
construct simple yet not simplistic models. In particular: we
have considered simplified version of MAC (slotted Aloha),
without nodes mobility, and routing “caricatures”.
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