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1 Introduction

This dissertation shows some examples of the development of stochastic geometry tools in relation with
queueing theory and modeling of communication networks.

1.1 General context

Stochastic geometry is now a reach branch of applied probability, which allows to study random phe-
nomena on the plane or in higher dimension. It is intrinsically related to the theory of point processes.
Initially its development was stimulated by applications to biology, astronomy and material sciences.
Nowadays, it is also used in image analysis and in the context of communication networks. It this latter
case its role is similar to this played by the theory of point processes on the real line in the classical
queueing theory.

At first glance, the usage of stochastic geometry for modeling of communication networks is a rela-
tively new idea. In fact, we would like to stress the pioneering role of E. Gilbert in this domain. One
can consider Gilbert’s paper of 1961 both as the first paper on continuum percolation (percolation of
the Boolean model) and as the first paper on the analysis of the connectivity of large wireless networks
by means of stochastic geometry. Similar observations can be made on Gilbert’s seminal paper of 1962
on Poisson-Voronoi tessellations.

The first papers following Gilbert’s ideas appeared in the modern engineering literature shortly before
year 2000; i.e., before the massive popularization of wireless communications. They were using mainly
the classical stochastic geometry models (as Voronoi tessellations or Boolean model) in this new context;
see e.g. (Baccelli et al. 1997; Baccelli and Zuyev 1997; Baccelli and Zuyev 1999). Nowadays, the number
of papers using some form of stochastic geometry is increasing very fast in engineering journals and
conferences, where one of the most important observed trends is an attempt to better take into account
in geometric models specific mechanisms of wireless communications.

Wireless networks consist of nodes distributed on the plane (or in 3D space) and communicating
by sharing a common radio medium. Key elements of the analysis of these networks are: power of the
signal received at different locations on the plane (space) from some particular emitting node (e.g. the
closest one to this location, with the strongest received signal, the most remote within some range) and
the total power received from the whole collection of nodes. It is so because, as both information theory
and signal-detection theory teach us, the ratio of these received powers, called signal to interference ratio
(SIR) characterizes the throughput of the radio channel form a given emitter to a given location. Since
the power of an emitted signal is attenuated by the distance between the emitter and the receiver, the
geometry of the location of nodes plays a key role in determining the SIR’s. Stochastic geometry, besides
other useful models, offers excellent tools to handle various received powers from random configuration
of nodes. These tools are called shot noise (SN) field and extremal SN field.



More generally, stochastic geometry provides a natural way of defining and computing macroscopic
properties of communication networks, by some averaging over all potential geometrical patterns of
the nodes, in the same way as queuing theory provides averaged response times or congestion over
all potential arrival patterns within a given parametric class. When the underlying random model is
spatially ergodic, this probabilistic analysis also provides a way of estimating spatial averages which
often capture the key dependencies of the network performance characteristics (connectivity, stability,
capacity, etc.) in function of a relatively small number of parameters. stochastic geometry modeling of
communication networks seems particularly relevant for large scale network performance analysis. This
is a very natural approach e.g. for ad hoc networks, or more generally to describe user positions, when
these are best described by random processes. But it can also be applied to represent both irregular and
regular network architectures as observed in cellular wireless networks.

1.2 Objectives

An objective of this dissertation is to show some examples of works, which develop and apply stochastic
geometry tools in queueing and network theory. We begin with an application to queueing theory
which allows to express the stationary distribution of a given multidimensional content process by the
ruin probabilities of some corresponding dual risk process. Then, we continue with the study of some
problems related to the Boolean model and the Voronoi tessellations in the context of their applications
to, respectively, broadcast and access networks. Finally, we present two articles, which give foundations
for a stochastic geometry framework for the modeling of wireless communication networks.

1.3 Composition of the dissertation

The dissertation is composed of seven articles, which can be classified in the following four groups.

1. The first one consist of only one article, [1], that utilizes the Choquet’s capacity functional — a
basic tool of the theory of random closes sets — to construct a Markov process on the space of
closed sets, which is in some particular relation to a given Markov process. The relation, called
in the queueing theory content-risk duality, allows to express the stationary distribution of the
content process by the ruin probabilities of the risk process.

The six remaining articles deal with two classical stochastic geometry models: the Boolean one ([2],
[5]), the Voronoi tessellation ([4], [6]) and propose a new coverage model that is inspired by wireless
communications ([3],[7]). Each subject is treated by two articles. The first of them presents results
constituting a direct contribution to the stochastic geometry, and is followed by a more application
oriented one, where these results or developed techniques are exploited in some communication network
context. More precisely:

2. Article [2] gives bounds for the size of some aggregates of sets (called clumps) in the Boolean model.
A coupling of the Boolean clump with some Galton-Watson branching process, which is the main
technique used in this paper, is also applied in [5] to evaluate performance of some multicast flows
on random trees spanning more general aggregates of points in Poisson point process.

3. The Voronoi tessellation generated by a non-homogeneous Poisson or stationary double-stochastic
Poisson (Cox) point process is considered in [4]. It is shown how the distribution of the cell
generated by a given point and the typical cell (in the stationary Cox case) can be approximated
by means of the distribution of the typical cell of some stationary Poisson point processes. These
results are extended in [6] to (possibly) unbounded characteristics of the cell and discussed in the
context of their applications to modeling of non-homogeneous communication networks.

4. Finally, in [3], a new stochastic geometry coverage model (or germ-grain model) with dependent
grains was proposed and studied. Motivated by the interference effect, observed in wireless com-
munications, we let the grains (cells) of this model depend on the shot-noise field created by the
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point process of germs (denoting locations of antennas) and some additional marks (playing the
role of emitted powers), via a response function (interpreted as the power attenuation function).
A variant of this model is latter used in [7] to address some important question of ad hoc networks.

Each of the above four subjects was studied by the author with different collaborators.

1.4 Main results

Besides of the theoretical results presented in [1], extending the stationary recursive and Siegmund’s
dualities to higher dimension, the main results contributing to the stochastic geometry are:

• The necessary and sufficient conditions on the existence of higher moments and exponential mo-
ments of the clump size in the Boolean model with grains having unbounded support, given in [2].
This provides some complements to the result on the finiteness of the first moment presented
in (Hall 1985).

• Development of an approximation technique which allows to treat distributions of cells of some
non-homogeneous Poisson Voronoi tessellations, done in [4]. It is, to the best of our knowledge,
the first study of this tessellation in non-stationary Poisson case.

• The stochastic geometry model proposed in [3] is, to the best of our knowledge, novel. Important
theoretical results concern its well-definiteness and coverage properties.

The main contributions to modeling and analysis of communication networks are:

• A stochastic geometry model of flows on multicast trees and a study of its characteristics, done
in [5].

• A class of analytically tractable non-homogeneous Poisson Voronoi tessellations considered in [4]
and [6] might be is used in macroscopic models of access networks.

• The stochastic geometry model of [3] can be straightforwardly used e.g. to study the coverage of
cellular networks (e.g. CDMA networks, as shown in [14]). Moreover, in [7], we develop its variant
catching important aspects of ad hoc networks. These two articles give foundations for a compre-
hensive stochastic geometry framework for the modeling of wireless communication networks. A
special feature of this framework is the usage of the shot noise in conjunction with other classical
stochastic geometry models to study the geometry of SIR’s.

The remaining part of this document is organized as follows. In Sections 2–5 we briefly review the
articles contributing the the subjects 1–4 described in Section 1.3 above. In Section 6 we briefly comment
on the impact that they have on other works of the author and more generally on the domain. The list
of all other then author’s own publications, cited in this document by “(Author(s) Year)”, is given at
the end.

2 Content–risk duality in multidimensions

One-dimensional case, the state of art. In one-dimensional Euclidean space a nice duality theory
has been developed between “content” like processes (such as storage or queues) and insurance “risk”
like processes. The main result is that the probability that the steady-state content exceeds level x
equals the probability that a dual risk process, starting off at level x ≥ 0 (units of money), is eventually
ruined (hits level 0). Specifically, given a real-valued stochastic process {Vn : n ≥ 0} with steady-state
given by P(V ≥ x) = limn→∞ P(Vn ≥ x), there exists a real-valued process {Rn : n ≥ 0} with “ruin”
time

τ(x) =

{

min{n : Rn = 0|R0 = x},

∞ if Rn > 0 for all n ≥ 0,
(2.1)
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such that
P(V ≥ x) = P(τ(x) <∞) (2.2)

provided a certain stochastic monotonicity condition holds. In effect, a steady-state probability can be
replaced by a first-passage time probability.

The two main general approaches to duality have been the classic Markovian approach of Sieg-
mund (Siegmund 1976) (“Siegmund’s duality”) and the more recent stationary recursive approach of
Asmussen and Sigman (Asmussen and Sigman 1996). The application of such duality is severely limited
due to the one-dimensional framework. For example, it can not be applied to c-dimensional queueing
processes such as the classic Kiefer-Wolfowitz (see (Kiefer and Wolfowitz 1955)) workload vector for
G/G/c queues.

Our results. In [1] we generalize, in discrete time, both stationary recursive and Siegmund’s approach
to the case when the content process has values in a general state space.

Approach. The main idea is to allow a risk process to be set-valued, and to define ruin as the first
time that the risk process becomes the whole space. The risk process can also become infinitely rich,
which means that it eventually takes on the empty set as its value. 1

In what follows we will briefly review the results of Section 3 of [1] that deals with Siegmund’s duality,
because in this case the used tools of stochastic geometry are more involved. In particular the Choquet’s
capacity is used to define an appropriate probability measure on the space of random closed sets. The
Choquet’s capacity is a fundamental concept of the probability theory on this space and plays a similar
role as the (cumulative) probability distribution function for random variables on R.

2.1 Siegmund’s duality on a general state space via Choquet’s capacity

The crucial observation of this approach, in the case of a non-negative real-valued Markov process
{Vn : n ≥ 0} with Px(Vn ∈ ·) denoting P(Vn ∈ ·|V0 = x), is that

Py(R1 ≤ x)
def
= Px(V1 ≥ y) (2.3)

defines a “dual” Markov process {Rn : n ≥ 0} on [0,∞], with Py(Rn ∈ ·) denoting P(Rn ∈ ·|R0 = y),
such that

Py(Rn ≤ x) = Px(Vn ≥ y), for all n ≥ 1

if and only if Px(V1 ≥ y) is a right-continuous, nondecreasing function of x for each fixed y ∈ R. The
point here is that only under such restrictions does P(·)(V1 ≥ ·) define a Markov transition kernel (M-t-k)
on R. The dual process has both 0 and ∞ as absorbing states.

A naive way of trying to extend this approach to R
d-valued Markov processes, is to try again to use

(2.3) as the starting point. But the rather mild monotonicity and right-continuity conditions, sufficient
in one dimension, are no longer sufficient in higher dimensions to ensure that this indeed defines a M-
t-k. Recall that the necessary condition for a function to be a multidimensional distribution function
is having positive increments and it seems unreasonable to assume such conditions here (for this would
seriously limit the applicability of our theory).

Instead, inspired by stochastic geometry, under suitable mild conditions, by specifying an appropriate
M-t-k we can define a set-valued “dual” Markov process {V n : n ≥ 0} that satisfies

PD(V n ∋ x) = Px(Vn ∈ D), n ≥ 1, (2.4)

1One might find it a bit awkward that in our set-valued risk processes, “ruin” corresponds to the event that the risk
process eventually takes its value as the whole space and “infinitely rich” to the event that the empty set ∅ is hit. But one
can simply re-define the risk process to be its set complement, in which case ruin will correspond to hitting the empty set
and infinitely rich to the whole space. We chose things as we did for mathematical convenience, specifically to work on the
space of closed sets.
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where PD(V n ∈ ·) = P(V n ∈ ·|V 0 = D).
Assume for the rest of this section that {Vn : n ≥ 0} is a given Markov process, with M-t-k K(x,D) =

Px(V1 ∈ D), on a locally compact, Hausdorff and separable space E with Borel σ-algebra B(E). Our
objective is to find a measurable space, being a family of subsets of E, and a M-t-k K on it so that the
“dual” Markov process {V n : n ≥ 0} corresponding to K satisfies (2.4) for all subsets D of this family
and x ∈ E.

There are (at least) two main families of subsets of E with their standard σ-algebras considered
in stochastic geometry: the family P(E) of all subsets of E and the family F of closed subset of E,
with their appropriate σ-algebras denoted respectively by M and σf (for technical details we refer to
Matheron (Matheron 1975).)

Note that (2.4) itself is not enough to define uniquely a M-t-k: for example it does not tell us how
to compute PD({V 1 ∋ x1} ∪ {V 1 ∋ x2}) for distinct elements x1, x2.

Note however, that any such M-t-k would have to satisfy the inequalities

max
x∈I

Px(V1 ∈ D) ≤ PD

(

⋃

x∈I

{V 1 ∋ x}
)

≤
∑

x∈I

Px(V1 ∈ D) (2.5)

for any finite set I of distinct elements x ∈ E. The upper bound above might exceed 1, so it can’t
in general define a probability measure, but the lower max bound can be used to define for each fixed
D ∈ B(E) the so called space law and consequently the unique probability measure K(D, ·) on the space
(P(E),M) of all subset of E. This is proved in Proposition 3.1 in [1].

Unfortunately, K(D, ·) is well defined for D ∈ B(E) only (not all D ⊆ E), and thus one cannot
construct from it a bonafide M-t-k on P(E) using Chapman-Kolmogorov equations. What we have is,
for fixed D ∈ B(E), a random set V 1 satisfying (2.4) for n = 1. But this random set might take its value
not in B(E) ruling out our construction to a next transition V 2. Moreover, in general B(E) 6∈ M.

Thus we have to refine the our analysis taking another space that serves our purpose and involves
the topology of E. It happens that the space F of closed subsets of E is a right choice.

More precisely, under some additional condition that we call upper semi-continuity of the M-t-k K
((USC) in [1]) the same lower bound in (2.5) can be used to define for each closed D ∈ F a Choquet’s
capacity and consequently the unique probability measure K(D, ·) on the space (F , σf ) of closed subsets
of E. This is proved in Proposition 3.3 in [1].

The main objective of Section 3 of paper [1]; i.e., a Siegmund’s duality for Markov process in a
general state space is stated in Proposition 3.4. Namely, the existence of the dual Markov process
{V n : n ≥ 0} with M-t-k K satisfying (2.4) for all x ∈ E, D ∈ F and n ≥ 1. This result follows from the
Chapman-Kolmogorov equations.

The dual Markov process {V n : n ≥ 0} has interesting monotonicity properties. Namely, with no
further conditions, it is stochastically monotone with inclusion being the partial order on F (Propo-
sition 3.7 in [1]. Moreover, if some stochastic monotonicity is assumed for K (conditions (D1)–(D2)
in [1]) then the steady-state probabilities of the Markov process given by M-t-k K can be replaced by
first-passage time probabilities for the dual set-valued Markov process given by K, as in the classical
one-dimensional relation (2.2). This is the subject of Proposition 3.8 in [1].

3 Bounds for characteristics of trees generated by aggregates of

points in Poisson point process, with applications to broad-

cast networks

General model. Trees that we consider in [5] have vertex sets embedded in a homogeneous Poisson
point process Φ = {Xi}i in R

d with intensity λ. Assume that the points of Φ have some independent
identically distributed (i.i.d.) marks Ri = R(Xi), which take values in E = {1, 2, . . . , ℓ}. The space E
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may be finite (as in [5]) or infinite (ℓ = ∞, as in [2]). The distribution of the generic mark R is given by
the set of probabilities

qk = P(R = k), k ∈ E . (3.1)

We will denoted the above independently marked pint process by Φ̃ = {(Xi, Ri)}.
Let us define bonds between points of different marks using a collection of closed bounded sets {Gkl ⊂

R
d : k, l ∈ E}. Denote by Xi  Xj the relation Xj ∈ Xi +GR(Xi)R(Xj). Put A0(Xi) = {Xi} and define

by induction the set of n-accessible points An(Xi) as all Xj ∈ Φ, such that, for some Xm ∈ An−1(Xi),

Xm  Xj and Xj 6∈ A(n−1)(Xi) ≡
⋃n−1

k=0 Ak(Xi). The set of all points accessible from Xi is then given
by

A(Xi) =
⋃

n

An(Xi)

and can be seen as a mark of Xi. We will call the set A(Xi) the aggregate associated with Xi. In [2]
and [5] we are interested in the properties of a typical aggregate; i.e., having the Palm distribution
(as the mark of the underlying Poisson point process Φ̃). By Slivnyak’s theorem (see, e.g., (Stoyan,
Kendall, and Mecke 1995), § II.4.4, pages 121–123), its distribution coincides with the distribution of
the aggregate A(0) constructed with respect to the process Φ∪{0} with an independent R(0) having the
common mark distribution. Considering the Palm distribution, we will write simply A and An to refer,
respectively, to the typical aggregate and to the set of n-accessible points with respect to the origin.

With the typical aggregate A we associate an oriented tree TC = (A,EC) (the subscript stands for
“clump”) rooted at the origin and having the edge set

EC = {(v(Xi), Xi), Xi ∈ A \ {0}},

where for every Xi such that Xi ∈ An, n ≥ 1, the ancestor v(Xi) is chosen by independent sampling
from {Xj ∈ An−1 : Xj  Xi} assuming equal probability for all elements. Such construction yields a
tree connecting the origin to every point of A in the least possible number of hops.

Classical example. A classical special case of the above construction is the tree spanning clump
in Boolean model with spherical grains. Recall that a classical Boolean model in R

d is a random set
Ξ =

⋃

i(Xi + Bi) generated by a Poisson point process Φ = {Xi}i and a sequence of i.i.d. compact
subsets {Bi}i of R

d, independent of Φ, where x+B = {y+x ∈ R
d : y ∈ B}. Maximal connected subsets

of Ξ are called clumps. Consider a Boolean model with all Bi = B(Ri) being balls centered at the origin
of random radii Ri ∈ E. Then (Xi + Bi) ∩ (Xj + Bj) is non-empty if and only if |Xj −Xi| ≤ Ri + Rj

that is equivalent to Xj ∈ Xi +GRiRj
, with Gr1r2

= B(r1 + r2). Hence, the aggregate A(Xi) consists of
all points of Φ covered by the Boolean clump containing Xi; see Figure 1.

Our goals.

• The principal goal of [2] is to answer the question of existence of moments of typical Boolean
clump size (defined as the number of grains) allowing for unbounded random grains; i.e, under
the assumption that q has unbounded support on E = {1, 2, . . .}. We also investigate other
distributional properties of the clump size and structure, For example, we derive bounds for tail
probabilities of the vector of numbers of grains of any particular size present in the clump as well
as estimates for the radius of the maximal ball present in it. We briefly review these results in
Section 3.1 below.

• In [5] we are interested in some flows on the trees generated by more general aggregates in a
Poisson point process. These aggregates are supposed to represent connected subsets of nodes of
an ad-hoc network distributed in the space. Our definition of flows is motivated by the broadcast
of data packets from one source to many destinations in these networks. We provide some bounds
on characteristics of these flows, which can be used to approximate load induced on a network by
a particular broadcast session. We briefly review these results in Section 3.2 below.
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Figure 1: Tree spanning the clump of a given ball in the simulation of a Boolean Model with spherical
grains.

Approach. Trees generated by Poisson aggregates have dependent branches, and this makes the anal-
ysis of their distributions difficult. We obtain our results in [2] and [5] using the technique of stochastic
domination by Galton–Watson trees. This idea is due to Hall (see (Hall 1988)), who used it to give
sufficient conditions for finiteness of Boolean clumps and their first moments.

3.1 Bounds for clump size characteristics in the Boolean model

Consider an independently marked Poisson point process Φ = {(Xi, Ri)} as described in the paragraph
Classical example above and the Boolean model Ξ =

⋃

Xi + B(Ri) it generates. Consider a ball G
centered at the origin, with integer radius. Let Mk (k ≥ 1) denote the number of those balls B(Ri) with
radius Ri = k in the Boolean model which contribute to the clump CG; i.e., to the maximal connected
subset of Ξ∪G containing G. The clumps size M =

∑∞
k=1Mk is the is the total number of balls in CG.

Our principal goal in [2] is to investigate conditions on the intensity λ of the underlying Poisson p.p. and
the distribution of R, which guarantee the existence of higher moments, and exponential moments, of
the clump size M . (We speak of existence of an exponential moment of M if the probability generation
function (p.g.f.) E[sM ] is finite for some s > 1.) The radius of the initial ball G, to which the definition
of the clump size M refers, is not essential for the moment conditions and thus may be taken to be equal
to 1.

The state of art. Problems of clumping in the Boolean model are treated extensively in Chapter 4
of Hall (Hall 1988). Theorem 4.11 in Section 4.7 there, whose content appeared first in the paper (Hall
1985) of the same author, gives sufficient conditions for the size of each clump to be finite and conditions
which characterize the finiteness of the expected size of the clump containing an “arbitrary sphere”;
i.e. when a Palm version of the clump size is considered. The idea presented in the proof of this theorem

(see pp. 278–279 there) is to study a multitype branching process (Z
(n)
1 , Z

(n)
2 , . . . ) (n ≥ 0) — the set of
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types k = 1, 2, . . . being countably infinite — whose total number of individuals Z
(∞)
k =

∑∞
n=0 Z

(n)
k of

any given type k stochastically dominates the number of balls Mk with radius equal to k in the clump
CG.

It is a well-known fact from the theory of branching process, at least in the case of finitely many
types, that the expected number of individuals in the n th generation of this process is described by the
n th power of its matrix of means. (The proof of the equation given in Harris (Harris 1963, p. 37) may
be adapted easily to the infinite-type case.) Therefore, upper bounds on the entries of the matrix powers
can be used to ensure finiteness of the first moment of the total number of individuals Mk in the clump

E[Mk] ≤ E[Z
(∞)
k ] =

∞
∑

n=0

E[Z
(n)
k ] .

This branching process (Z
(n)
1 , Z

(n)
2 , . . . ) (n ≥ 0), however, cannot be used straightforwardly for higher

moment approximations because the dependency on the matrices of higher moments is much more
complicated (cf. loc cit for the case of the second moments, i.e. the covariance matrix), and because of
technical difficulties in advanced theory of branching processes whose types belong to an infinite set.

Our contribution. The crucial point in our approach is to construct another multitype branching

process (Z̄
(n)
1 , Z̄

(n)
2 , . . . Z̄

(n)
k , Z̄(n)) (n ≥ 0) with only a finite number of types. Our process resides on

the same probability space and dominates the one constructed by Hall. More precisely, we construct a
family of such processes indexed with finite subsets I = {i1, i2, . . . , ik} of {1, 2, . . .}. Each such auxiliary

process almost surely dominates the process (Z
(n)
1 , Z

(n)
2 , . . . ) (n ≥ 0) coordinate-wise on the set I, and

its last coordinate dominates the total number of individuals
∑

k 6∈I Z
(n)
k with types outside this set. We

call this device a coupling procedure.
According to the standard theory of branching processes (with a finite number of types), the joint

probability generating function (p.g.f.) of the total number of individuals of different types (Z̄
(∞)
1 , Z̄

(∞)
2 ,

. . . Z̄
(∞)
k , Z̄(∞)), with Z̄

(∞)
k =

∑∞
n=0 Z̄

(n)
k is given as the solution of a finite system of functional equations

(equations (3.2)–(3.3) in [2]).
Our main tool result, a stochastic bound, relating the clump size vector (M1,M2, . . .) of infinite

dimension to the total number of individual (Z̄
(∞)
1 , Z̄

(∞)
2 , . . . Z̄

(∞)
k , Z̄(∞)) in our branching process with

finite number of types, is formulated in Theorem 3.1 in [2]. The coupling argument appears in its proof.
Using this stochastic bound and studding analytically the solution of equations (3.2)–(3.3) in [2] we

derive in Theorems 4.2–4.3 sufficient conditions for higher moments of the clump size to be finite.
These conditions turn out to be also necessary, as stated in Theorems 4.4–4.5 in [2]. Utilizing

Theorem 3.1 once more, in Section 5 of [2] we derive other distributional properties of the structure of
the Boolean clump.

Our approach allows also to derive in Corollary 4.7 sufficient conditions for the finiteness of the
Lebesgue’s measure of the clump.

3.2 Performance characteristics of multicast flows

Motivation. The motivation for this study comes from telecommunications. A wide range of network-
ing applications, such as conferencing, media streaming, and software distribution, require simultaneous
delivery of data from a single source to multiple destinations. One-to-many routing protocols usually
construct a distribution tree composed of paths connecting the source to all receivers. Unicast protocols
treat packet delivery over different paths separately, which results in redundant transmissions of packets
over edges belonging to several paths. Multicast provides a more efficient alternative (at the cost of an
additional intelligence of network nodes): packets can be duplicated at the vertices where routing paths
diverge making the transmission of a single packet copy per tree edge sufficient (see (Almeroth 2000) for
a survey on multicast routing techniques). Our aim in [5] is to evaluate the performance of a network

8



running a multicast session and, in particular, to quantify the load reduction with respect to the unicast
session.

Our model. We model the support of a multicast session by a marked oriented tree T = (V,E,M),
with the vertices constituting a countable set V of an arbitrary nature, the edges E ⊂ V × V directed
from the root vertex i0, and the vertex marks M = (m(i))i∈V .

The marks m(i) = (r(i), σ(i), τ(i)) represent vertex characteristics. Here σ(i) ∈ {0, 1} is the indicator
of the multicast ability; i.e., the ability to replicate a received packet. If σ(i1) = 0 the number of packet
copies transported by any edge (i1, i2) equals the number of vertices in the sub-tree rooted at i2, whereas
if σ(i1) = 0 it is at most 1. Moreover, τ(i) ∈ {0, 1, . . .} is the number of end receivers at the vertex; i.e.,
the number of identical packet copies requested by this vertex i, and r(i) ∈ E = {1, . . . , ℓ} is the vertex
type. We assume ℓ <∞.

Denote by D(i) the set of immediate descendants of i in T and by T (i) = (V (i), E(i),M(i)) the
sub-tree of T generated by the vertex i.

Characteristics. The principal performance characteristics that we define are local flow volume K(i)
defined as the total number of packets sent by vertex i to its immediate descendants, and total flow
volume L(i) defined as the total number of packet transfers within the whole sub-tree T (i). They are
formally defined by formulas (2.1)–(2.3) in [5].

The following simple recurrence equation, being packet preservation principle, is our main algebraic
tool when studding these principal performance characteristics:

L(i) =
∑

j∈D(i)

(

K(j) + L(j)
)

, (3.2)

where K(j) is the number of packet copies received by vertex j in order to satisfy every packet request
within T (j) (formally defined in (2.2) in [5].

The analysis in [5] is done also for a general additive and multiplicative edge weights and yields, as
special cases, several other characteristics related to transmissions (packet loss rate, maximal delay) and
to the underlying tree (total number of vertices, summary edge length).

Probabilistic scenario. Two scenarios are considered in [5].

• First, we study K(i) and L(i) in an exact way, in the case when T is generated by a multitype
Galton–Watson (G-W) branching processes. In this case the main analytical tools are recurrent
equations on the joint p.g.f. of K(i), L(i). These equations result from the packet preservation
relation (3.2) and the standard recurrent equations concerning the number of individual is succes-
sive in successive generations of the G-W process. We briefly review these results in Section 3.2.1
below.

• The obtained exact results in the case of G-W process are used in Section 4 of [5] to give upper
bounds on the respective characteristics of the flows on the trees generated by aggregates of points
of a Poisson process, which is the second stochastic scenario considered in this paper. The con-
nection between the former and the latter scenario is is again the Hall’s branching process which
stochastically dominates the number of vertices of different types in the tree spanning the Poisson
aggregate.

3.2.1 Flow characteristics for Galton–Watson trees

Now, we place ourselves in a probabilistic setting and consider a multitype Galton–Watson branching
process with types in E = {1, 2, . . . , ℓ} (for the theory of branching processes see, e.g., (Harris 1963)
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and (Athreya and Ney 1972)). Such process can be seen as a random tree TB whose edges connect every
individual to its direct descendants.

Fix the root type r(i0) = k0. The progeny of an individual i is the vector Z(i) =
(

Zm(i)
)

m∈E
,

where Zm(i) is the number of direct descendants of i having type m. We make a standard assumption
for branching processes that for i’s of the same generation, all Z(i) are mutually independent. Hence,
the process is defined by the distribution of Z(i), or equivalently, by the family of conditional p.g.f’s
ψ = (ψk)k∈E acting on z = (zm)m∈E, zm ≥ 0

ψk(z) = E
[

∏

m∈E

zZm(i)
m |r(i) = k

]

. (3.3)

We denote by Λ = (λkm)k,m∈E the so called matrix of the first moments of the G-W process.
The marks of the non-root vertices r(·) ∈ E correspond to the individuals’ types. Regarding the

multicast ability and the number of end receivers (σ(·), τ(·)), we assume that their joint distribution
depends only on r(·) and is given by the set of probabilities

pk
ij = P

(

σ(·) = i, τ(·) = j | r(·) = k
)

, i ∈ {0, 1}, j ∈ {0, 1, . . .}. (3.4)

Hence, the distribution of the marked tree TB = (VB , EB,MB) is completely defined.
Consider a family φ = (φk)k∈E where φk = φk(z1, z2) is the joint p.g.f. of the couple (K(i), L(i))

under condition r(i) = k

φk(z1, z2) = E
[

z
K(i)
1 z

L(i)
2

∣

∣r(i) = k
]

.

Introduce also φ(n) =
(

φ
(n)
k

)

k∈E
as the family of the p.g.f.’s of

(

K(n)(i), L(n)(i)
)

given r(i) = k, where

K(n)(i) and L(n)(i) are respectively, local and total flow volumes evaluated with respect to the truncation
of the tree T (i) at the depth n; i.e., the sub-tree including only those vertices j of T (i) that can be reached
from i by a path π(i, j) of at most n+ 1 vertices.

Define the operator F [·] = (Fk[·])k∈E acting on the family u = (uk)k∈E of non-negative functions
uk = uk(z1, z2) of z1, z2 ≥ 0 as follows

Fk[u] = ψk

(

f(u)
)

, (3.5)

where f(u) =
(

fm(u)
)

m∈E
is given by

fm(u) = (1 − z1z2)um(0, z2)pm
10 + z1z2 um(1, z2)

∞
∑

j=0

pm
1j + um(z1z2, z2)

∞
∑

j=0

(z1z2)jpm
0j . (3.6)

Our first result for the multicast flows on the G-W process stated in Proposition 3.1 in [5] says that
the family of p.g.f.’s φ(n), n = 1, 2, . . . , satisfies the recurrence relation φ(n+1) = F [φ(n)].

The main fix-point result concerning the p.g.f of the vector (K(i), L(i)) is stated in Proposition 3.4
in [5]. It says that if the matrix Λ of the first moments of the G-W process is positively regular, non-
singular, with spectral radius ρ(Λ) < 1 then the family of p.g.f’s φ is the only solution of F [φ] = φ, such
that ‖φ‖∞ ≤ 1.

Several conclusions follow from the above general results, in particular concerning first moments of
K(n)(i), L(n)(i), and (K(i), L(i)) stated in Section 3.2 in [5].

4 Approximate decomposition of some modulated-Poisson Voro-

noi tessellations, with applications to modeling of communi-

cation networks

General context. Voronoi tessellation (VT) is a frequently used model of tessellation of the space (an
extensive list of areas of applications can be found in (Stoyan, Kendall, and Mecke 1995; Okabe, Boots,
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and Sugihara 1995)). For a given locally finite system of points in the Euclidean space, VT is a division
of the space into polyhedra (into polygons in the case of the plane) “about” the points of the system.
Precisely, the Voronoi polygon (cell in common terminology) about a chosen point of the system is the
subset of points of the space that lie closer to the chosen point than to any other point of the system. If
the underlying system of points is a Poisson point process we call the resulting random tessellation the
Poisson Voronoi tessellation (PVT).

In order to study statistical properties of random VT’s one introduces the so called typical cell of
the tessellation. Very roughly speaking, in stationary case, it can be seen as “randomly chosen” from
the set of cells. In non-stationary case its distribution depends on the location and is interpreted as
conditional, given the underlying process has its point at this location (formal definitions require Palm
theory). Known formulas for distributional properties of the typical cell of PVT’s are almost entirely
confined to the stationary (homogeneous Poisson) case. Even then, formulas are very complicated and
mainly approximations are known (see a review in Section 10.6 of (Stoyan, Kendall, and Mecke 1995),
and (Hayen and Quine 2000; Goldman and Calka 2001; Calka 2002; Hayen and Quine 2002) for some
new results).

Goal. We want to propose [4] and [6] some class of non-homogeneous Poisson Voronoi tessellations,
and develop an approximation technique that allows to approximate the statistical properties of the cells
with an explicitly controlled precision.

Motivation. One of the motivations for the this study is modeling of modern communication networks,
where application of the PVT has already proved to give some interesting results (see eg. (Baccelli, Klein,
Lebourges, and Zuyev 1997; Baccelli and Zuyev 1997; Gupta and Kumar 2000)) and [17]. Generally
speaking, within this setting points of the Poisson process represent various communication devices (con-
centrators, routers, base stations, etc.) and the associated cells represent the regions of the plane or space
served by these devices. Adopting Poisson assumption reflects (in a statistical way) various irregularities
of a real network architecture. Assuming that the underlying Poisson process is stationary implies that
these irregularities are however homogeneous, meaning e.g. that the respective mean densities of the
repartition of the network elements are constant on the plane. This scenario is often too simplistic, since
it ignores spatial fluctuations of the traffic (large cities versus rural areas etc; cf. Figure 2 (a)). On the
other hand, more adequate, non-homogeneous Poisson models rapidly become to difficult to analyze. A
possible attitude to take if we want to improve upon this situation is to find a general framework, in
which already available results concerning homogeneous cases could be integrated as “local solutions”
into a “global” non-homogeneous model.

Our approach. Modeling of inhomogeneity is not an easy task. In order to preserve the postulate
formulated above we propose in [4] to use simple parametric models of modulated-Poisson (Cox) point
processes. For the VT’s generated by these models (cf. Figure 2 (c)) we develop in [4] and in [6] an
approximation technique for the distribution and mean functionals of the typical cell. The idea is to
approximate the unknown distribution in the non-homogeneous case by a mixture of the known distri-
butions for homogeneous Poisson cases. As the main result, we give analytically tractable bounds for the
error of the approximation. This approach makes possible the analysis of a wide class of nonhomogeneous
PVT’s by means of the formulas and estimates already established for homogeneous cases.

4.1 Modulated-Poisson Voronoi tessellations and a quasi-tessellation

Let Φu =
∑

i εXu
i

, u = 1, . . . , ℓ be independent stationary Poisson point processes on R
d, with intensities,

respectively λu > 0; here and throughout εz is the atom measure at z. Let a measurable partition
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Figure 2: (a) Density of the population in France in 1990, in habitants/km2, (b) a simulation of the
homogeneous PVT tessellation, (c) a simulation of an inhomogeneous PVT, the inhomogeneity is modeled
by taking the density of nuclei in 20 circular, randomly chosen regions of radius 1, to be 10 times bigger
than in the remaining part of the plane.

χ = {χu : u = 1, . . . , ℓ} of R
d be given. We call the inhomogeneous Poisson point process

Φχ ≡
ℓ

∑

u=1

∑

i

1I(Xu
i ∈ χu)εXu

i

the χ-modulated Poisson process (χ-mod PP). Obviously χ-mod PP is an inhomogeneous (in general)
Poisson point process with intensity measure Λχ(·) given by

Λχ(dx) ≡ E

[
∫

Rd

1I(y ∈ dx) Φχ(dy)

]

=

ℓ
∑

u=1

1I(x ∈ χu)λu dx. (4.1)

Denote by V (x, φ) the subset of points of R
d (called Voronoi cell of x in φ) of points in R

d that lie
closer to x ∈ R

d than to any other point of the point measure φ on R
d; i.e.,

V (x, φ) = {y ∈ R
d : |y − x| ≤ inf

φ∋z 6=x
|y − z|},

where |x| is the Euclidean norm in R
d. For a given point process Φ =

∑

i εXi
, the Voronoi tessellation

(VT) generated by Φ is the marked point process

Φ̃ =
∑

i

ε(Xi,Vi(Φ)−Xi) ,

where marks are shifted to the origin random closed sets Vi(Φ) = V (Xi,Φ). The Voronoi tessellation
generated by Φχ will be called the χ-modulated-Poisson Voronoi tessellation (χ-mod PVT). Note that
we consider the Voronoi tessellation as a marked point and as such, it has its intensity measure

Λ̃v
χ(dx× L) ≡ E

[
∫

Rd

1I(y ∈ dx)1I(V (0,Φχ − x) ∈ L) Φχ(dy)

]

,

where L is an appropriately measurable subset of the space of closed subsets of R
d and

∑

i εxi
+ x =

∑

i εxi+x.
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Note at this stage, that this intensity does not admit any exact decomposition analogous to (4.1). A
reason for this is that the Voronoi cell V (x,Φχ) of a given point x in the the χ-mod PP Φχ depends on
its neighboring points, which might be in different sets of the partition χ. However, sometimes such a
decomposition might be a good approximation.

A quasi-tessellation. In order gain some intuition lest consider the following χ-modulated-Poisson
Voronoi quasi-tessellation (PVqT). Let V(Φu) =

∑

i ε(Xu
i ,V u

i −Xu
i ) be the PVT’s generated by indepen-

dent homogeneous Poisson point processes Φu with intensities λu, u = 1, . . . , ℓ. We will call the following
marked point process

Vq(Φχ) =

ℓ
∑

u=1

∑

i

1I(Xu
i ∈ χu)ε(Xu

i
,V u

i
−Xu

i
) (4.2)

the χ-modulated-Poisson Voronoi quasi-tessellation (χ-mod PVqT). Note that each point Xu
i ∈ Φu ∩χu

belongs to Vq(Φχ) and has there as the mark its “original” Voronoi cell of Φu (and not the Voronoi
cell created by Φχ). In consequence χ-mod PVqT Vq(Φχ) admits the exact decomposition analogous
to (4.1). However, the cells of the quasi-tessellation, unlike cells of a “true tessellation”, might not be
disjoint and their union might not cover the whole space. Obviously the phenomena of “overlapping”
cells and “wholes” are more likely to occur close to the boundary of each χu where some points of Φu

have neighbors among the points of Φv, v 6= u. (Again: it would be a true tessellation, namely the
χ-mod PVT, if all the cells were generated by the common pattern Φχ of points and not out of the
component point processes Φu.) However, we might expect, that at least in some cases, the existence of
the cells intersecting boundaries of χu is negligible and the distribution of the “true” χ-mod PVT can
be approximated by χ-mod PVqT.

Boundary cell identification. We sketch here our basic idea how to identify a cell V (x,Φχ), with
x ∈ χu for some u ∈ 1, . . . , ℓ, such that V (x,Φχ) 6= V (x,Φu). For simplicity we assume dimension d = 2.
The identification of such cells (in any dimension d ≥ 2 is the basis of all error approximations developed
in [4], and [6].

For a given point x ∈ R
2 and a realization φ of a point process on R

2, let N (x, φ) denote the subset
of points of φ, which in the Voronoi tessellation V(φ) have cells sharing an edge with the cell V (x, φ).
Formally

N (x, φ) =
{

y ∈ φ : φ
(

B(x, y, z)
)

= 0 for some z ∈ φ, x, y, z distinct
}

. (4.3)

where B(x, y, z) is the ball circumscribed on the points x, y, z. We have used above the well known
principle, saying that three given elements from the set of the nuclei generating a VT share a common
vertex if and only if the ball circumscribed on them does not contain in its interior any other nucleus.
The union of empty balls B(x, y, z) appearing in the definition of N (x, φ) is called the fundamental
region (or the Voronoi flower) of the cell V (x, φ) (see Figure 3). Note that the cell V (x, φ) preserves its
shape when the pattern of nuclei φ is subject to changes only outside the fundamental region of V (x, φ).
Thus, a cell V (x,Φχ) with its nucleus x ∈ χu for some u = 1, . . . , ℓ, can be different from V (x,Φu) if
the fundamental region of V (x,Φχ) is not totally contained in χu.

Verifying the inclusion property for the whole fundamental region is not an easy task. In is much
easier to verify simply, for a nucleus x ∈ χu, whether at least one of its neigbours in N (x, φ) is out-
side χu. Note however that it might be the case that all the neighbours N (x, φ) are in χu, and that the
fundamental region of V (x, φ) intersects χc

u. Then a modification of the pattern φ in the intersection
of χc

u with the fundamental region of V (x, φ) might modify the shape of the cell V (x, φ). However any
thinning (removing of points) of φ in χc

u will not modify the fundamental region of the cell V (x, φ) and
consequently will not modify V (x, φ) itself.

The above observation let us treat cell V (x,Φχ), with x ∈ χu for some u = 1, . . . , ℓ, as possibly being
different than V (x,Φu) only if at least one of its neigbours in N (x,Φmax

u ) is outside χu, where Φmax
u

13
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Figure 3: Fundamental region of the cell with the nucleus located at (5, 0); (a) Any modification of the
pattern of the nuclei left to the vertical line x = 0 cannot modify this cell. (b) Any thinning of the
pattern of the nuclei left to the vertical line x = 0 cannot modify this cell. (c) A thinning or adding
points to the pattern of the nuclei left to the vertical line x = 0 can modify this cell.

is some auxiliary pattern, defined in Section 4 in [4], that has more points than Φχ and Φu, and from
whom both can be retrieved by thinning of points in χc

u.

Approximation method. In view of the fact that N (x, φ) depends on x and some pairs (in planar
case; in general d-tuples) of other points of φ satisfying some “void” condition (cf (4.3)), counting the
expected number of points x ∈ Φu ∩ χu in some fixed set B such that N (x,Φmax

u ) 6= ∅ for Poisson
Φmax

u involves some integral of the exponential void probabilities with respect to the factorial moment
measure of order d + 1 of Φmax

u . This, in turn, gives bounds on the expected number of the cells
of Vq(Φχ) in B, which are not identical to their counterparts in V(Φχ) and, in consequence, the error
of the approximation of the intensity measure of the marked p.p. V(Φχ) of the “true” tessellation by
this of the quasi-tessellation Vq(Φχ). This basic approximation is formulated in Lemma 4.1 in [4] with
an explicit error evaluation in Proposition 4.1 therein.

4.2 Approximation results, fixed modulation case

Distribution of a given cell. Using Campbell’s formula, and the approximation of the intensity
measure of V(Φχ) (Lemma 4.1 and Proposition 4.1 in [4]) one can obtain an approximation in total
variation of the distribution of the cell V (x,Φχ + εx) for x ∈ χu by the distribution of the typical cell
Mv

u of the homogeneous PVT V(Φu) (cf Corollary 4.1 in [4]), and the expectations of bounded functionals
of this cell (cf Corollary 4.2 in [4]).

The errors of the above approximation depend on the distance of the nucleus x to the boundary
of the element of the partition χu it belongs to. They are bounded explicitly in [4] for the following
examples of simple modulations (which are presented here in the contexts of their possible applications).

• Cell located at some distance to a “hot spot”. Assume χ1 = B(−r,0)(r), where Bx(r) is the disc in R
2
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centered at x, with radius r, assume χ2 = R
2 \ χ1

and consider a nucleus x ∈ χ2. Let λ1 > λ2. This
can be a simple model of the following scenario:
consider a city (modeled by the disc) with much
larger density λ1 of some kind of communication
devices, and consider a particular device located
at x, outside the city, where the respective density
is considerably smaller. Obviously, if the distance
from this particular device to the city (|x| in our
example) is large, then the distribution, and hence
all the mean functionals, of the cell served by the
device located at x, is approximately the same as
the distribution of the typical cell in homogeneous
Poisson scenario with density λ2. How good such
an approximation is for a given distance |x| is a
natural question in this context. One can consider
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Figure 4: Simulation of a PVT with a hot spot, where the
density of nuclei is 10 times bigger than outside it.

also a reverse situation, with λ1 < λ2 (a “cold spot”).

• Cell located at some distance to a “hot wall”. Let χ1 be a half-plane, χ2 = R
2 \χ1, and suppose x ∈

χ2, with |x| being the distance of x to χ1. Let λ1 >
λ2. This model is supposed to describe a similar
scenario as previously, but with the region of the
larger intensity of devices being so vast (comparing
to the distance |x|) that it is “seen” from x as a
half-plane. It seems to be relevant as well to a
network deployed in a coastal region, where the
population density is relatively large along the cost.
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Figure 5: Simulation of a PVT with a hot wall, where the
density of nuclei is 10 times bigger than elsewhere.

Unbounded functionals of a given cell in planar case. In [6] we refine the approximations
obtained in [4]) and in planar case (d = 2) consider nonnegative, possibly unbounded, functionals Ψ(V )
of the Voronoi cell V = V (x, φ), which are translation invariant; i.e., Ψ(V ) = Ψ(V − y) for all y ∈ R

2

and which satisfies the following property

Ψ(V ) ≤ A
(

R(V )
)α
, (4.4)

where A,α are some positive constants and R(V ) is the minimal radius of the disc centered at the
nucleus x of V , that covers V ; i.e.,

R(V ) = inf{r : V ⊂ Bx(r)} .

Examples of functionals Ψ, which satisfy the above conditions are

• Ψ(V ) = |V |, the area of V ,

• Ψ(V ) =
∫

V
f(y − x) dy, the total cost or load of connecting of all points in cell V to its nucleus

at x, where f is some non-negative cost function,
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• Ψ(V ) =
∫

V
f(y − x) dy ×

∫

V
g(y − x) dy for some non-negative cost functions f, g,

• Ψ(V ) = |∂V |, the length of the boundary of V .

These functionals appear naturally in modeling of communication networks as explained in Section 3.1.3
in [6] and their expected values of the typical PV cell in homogeneous Poisson case are known explicitly
(see Section 3.1.4 therein).

In order to be able to give bounds on the difference between the expected value of Ψ
(

V (x,Φχ+εx)
)

for
x ∈ χu and

∫

Ψ(V )Mv
u(dV ), where Mv

u denotes the distribution of the typical cell in homogeneous Pois-
son p.p. Φu, one has, not only to bound the probability that V (x,Φχ +εx) is a boundary cell (cf Bound-

ary cell identification above), but also bound the expectation of Ψ
(

V (x,Φχ + εx)
)

given this event.

This can be done using our assumption (4.4) on Ψ and a bound on E
[(

R(V (0,Φ))
)α∣

∣Φ
(

B(0, y, z)
)

= 0
]

for a homogeneous Poisson p.p. Φ, that is developed in Lemma A.1 in [6].
Working out the above program, we are able to give in Proposition 4.3 of [6] some approximations of

the mean functionals Ψ
(

V (x,Φχ+εx)
)

by (presumably known) expected values of these functionals of the
typical PV cell in homogeneous case, with the approximation errors explicitly bounded in Proposition 4.4
therein.

4.3 Approximation results, random modulation

Up to now we have considered a fixed modulation χ, a non-homogeneous modulated Poisson p.p. Φχ

and and a Voronoi cell V (x,Φχ + εx) of a fixed point x.
Now we assume a stationary decomposing random partition Ξ = {Ξu : u = 1, . . . , ℓ}; that is, that for

any vector x ∈ R
d the distribution of Ξ+x = {Ξu +x : u = 1, . . . , ℓ} is the same as Ξ. Moreover, let Ξ be

independent of Poisson processes Φu, u = 1, . . . , ℓ. This makes the Ξ-mod PP ΦΞ the stationary double-
stochastic-Poisson (Cox) point process and the stationary-Cox Voronoi tessellation (CoxVT) V(ΦΞ)
admits the distribution of the typical cell Mv

(Ξ).
Conditioning on Ξ = χ and using our previous results for a fixed modulation we can approximate the

distribution and functionals of the cell of the nucleus located at a given point, say at the origin x = 0.
Recall that these approximations depend on the law of the typical cell of the element χu the nucleus 0
belongs to. Moreover, approximation errors depend on the distance of the nucleus 0 to the boundary
of this partition element. Consequently, after de-conditioning with respect to χ, this element of the
partition becomes random (as so the distance of 0 to its boundary). We see thus that the typical cell of
the CoxVT should have a distribution close to some linear combination (mixture) of the distributions
in homogeneous cases, with the weights being the mean fractions of the space covered by the respective
elements Ξu of the random partition Ξ (usually in stochastic geometry one calls them volume fractions).
Moreover, approximation errors should depend on linear contact distribution functions of the boundaries
of the partition elements.

More precisely, denote by TΣ
∂Ξ(·) the half of the sum of the capacity functionals of the boundaries of

the elements Ξ; i.e., for each compact set K ⊂ R
d

TΣ
∂Ξ(K) =

1

2

ℓ
∑

u=1

P(∂Ξu ∩K 6= ∅) =
1

2

ℓ
∑

u=1

T∂Ξu
(K) ,

where ∂Ξu is the boundary of Ξu. Let pu = P( 0 ∈ Ξu ) denote the volume fraction of Ξu. For any
x, y ∈ R

d let 〈x, y〉 = {z ∈ R
d : z = ξx+ (1 − ξ)y, ξ ∈ [0, 1]} be the segment in R

d.
One proves in Proposition 5.1 in [4] that the distribution Mv

(Ξ) of the typical cell of the stationary-Cox

Voronoi tessellation V(ΦΞ) admits the following decomposition

Mv
(Ξ)(L) =

1

λ(Ξ)

ℓ
∑

u=1

λupuM
v
u(L) +R (4.5)
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where λ(Ξ) =
∑ℓ

u=1 λupu and the remainder term R is explicitly bounded in terms of TΣ
∂Ξ (see inequal-

ity (5.2) in [4]).
Propositions 4.7 and 4.8 of [6] extend the above result to the case expectations of nonnegative,

translation invariant functionals Ψ satisfying (4.4).
The following example of stationary CoxVT is considered in [4] and [6].

• Typical cell of the PVT modulated by a Boolean model. Let the partition Ξ = {X,Xc} be
given, where X is a stationary Boolean model (BM); i.e.,

X =
⋃

i

(Ci + Yi) (4.6)

where {Yi} is a Poisson point process (of the so-called germs) on R
2 and {Ci} is a sequence of (possibly

random, independent, identically distributed) sub-
sets of R

2 (called grains). Let for example λ1 > λ2.
In order to demonstrate a possible application con-
text of this model consider a country in which re-
gions of a higher density of communication devices
are scattered irregularly. Suppose we are not inter-
ested in a given particular location but in some “av-
erage device” typical for the whole country (such
notion is useful e.g. for a global economical plan-
ning). Then, instead of analyzing the given “real”
configuration of regions of higher density, it is cus-
tomary to consider it as a snapshot of a (random)
BM Ξ, where germs {Yi} model (e.g.) geographi-
cal centers of this regions and {Ci} model regions
themselves, centered to 0. Now, provided the par-
titioning of the plane by the BM is not very “fine”
with respect to the densities of the devices, the
typical cell for the whole country should have a

x

y
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−
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5
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Figure 6: PVT modulated by a Boolean model: the in-
homogeneity is modeled by taking the density of nuclei in 5
circular, randomly chosen regions of radius 3, to be 10 times
bigger than in the remaining part of the plane.

distribution close to the linear combination of the homogeneous cases with densities λ1 and λ2, with the
coefficients given by the fractions of the plane covered by the BM Ξ and its complement, respectively.
The error of such approximation, which we quantify in Example 5.1 in [4] and Example 5.3 in [4], comes
from existence of cells whose fundamental regions cross the boundaries between the partitioning sets.

5 On a coverage process ranging from the Boolean model to

the Poisson Voronoi tessellation with applications to wireless

communications

The model. Let Φ = {(Xi, Zi)} be a marked point process on the d-dimensional Euclidean space R
d,

where {Xi} denotes the locations of points, and where the marks Zi = (Si, Ai) are such that Si belong
to some metric space D and Ai = (ai, bi, ci) ∈ (R)3.

In addition to this marked point process, the model is based on a function L : D × R
d → R

+, which
is continuous w.r.t. its second argument, and such that L(s, x) → 0 when |x| → ∞ (where |x| is the
Euclidean norm of x in R

d).
We define the cell C0 attached to the point X0 as the following subset of R

d

C0 = C0(Φ) =

{

y : a0L(S0, y −X0) ≥ b0IΦ(y) + c0

}

. (5.1)
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Figure 7: Coverage model Ξ with grains (cells) given by (5.1).

where IΦ(y) denotes the value of the shot noise (SN) process (see e.g. (Westcott 1976; Rice 1977; Heinrich
and Schmidt 1985; Heinrich and Molchanov 1994)) of {Xi, Si} at point y for the response function L,
namely :

IΦ(y) =
∑

i

L(Si, y −Xi) =

∫

Rd×D

L(s, y − x) Φ(d(x, s)) .

The second formula is obtained when considering Φ as the random point measure Φ =
∑

i δ(Xi,Zi) and

when using the simplified notation Φ(d(x, s)) = Φ
(

d(x, s) × (R)3
)

.
The union of the cells

Ξ = Ξ(Φ) =
⋃

i

Ci(Φ)

is the associated coverage process; see Figure 7 for some snapshot of the simulated coverage model. To
the best of our knowledge, this model is new in the stochastic geometry setting and yields several well-
known models, as Voronoi tessellation, the Boolean model and the Johnson-Mehl model, as particular
limiting cases. It can also be seen as a germ-grain model with dependent marks.

Motivations. Consider a collection of transmitters {Xi} distributed in the space and emitting, re-
spectively, powers {Si} in some common radio medium. In one of the most simple scenario (which can
be easily enriched) the total power received from this collection of transmitters at a given location can be
modeled by the value of the SN field IΦ̃ at this location, where the response function is L(s, z) = s/l(|z|)
with l(r) being the so called omnidirectional path-loss function. This observation explains why SN fields
appear naturally in modeling of wireless communications.

The total power received from a set of transmitters scattered in the plane is often be considered as
interference (or noise) with respect to the signal received from one (or more) transmitter(s) not belonging
to this set. Within this setting, this total power plays a key role in signal detection theory (as we explain
in Chapter 2 of the monograph [28]; see also e.g. (Tse and Viswanath 2005)). More precisely, the bit-
reception error-probability depends on the ratio of the value of received power of the useful signal(s) to
the value of the interference and noise power. This ratio, called Signal-to-Interference-and-Noise ratio
(SINR) is a key parameter in analysis of wireless communications.
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Note that C0 in (5.1) with the response function L paying the role of the attenuation function, is a
subset of the space where the power of the signal received form the emitter located at X0 exceeds an
affine function of the interference. Thus, it can be interpreted as the subset of locations of potential
receives, which would be able to sustains a radio channel from X0 with some given quality (related to
the bit-reception error-probability).

What is the typical shape of the cell C0? What interactions exist between adjacent or remote cells?
Under natural stationarity and ergodicity assumptions, what is the proportion of the space which belongs
to exactly k cells? Is it possible to have coverage of x by arbitrarily many cells? Answers to the above
and other questions typically asked in stochastic geometry can of course be interpreted in terms of certain
performance characteristics of the wireless communication networks.

5.1 First results: sufficient conditions for the model to be a random closed

set

Section 3 in [3] addresses questions concerning Ξ as a random closed set. The default probabilistic
assumptions are the following: Φ is an independently marked Poisson point process (Poisson p.p. for
short) where the marks {Zi} constitute a sequence of independent identically distributed random vectors
characterized by the distribution of Z0. We sometimes use Z for a generic random mark. The default
option is that when the underlying (non marked) Poisson process is non homogeneous with µ(·) denoting
its intensity measure. We assume that µ is non-atomic; thus Φ is a simple p.p. This assumption allows
to derive several computational results.

Some existence results can be extended via Palm calculus to a more general setting. For this, we
mainly consider the case when the marked point process Φ is stationary and ergodic, with (constant)
intensity λ. In this more general setting the generic mark Z has the same distribution as Z0 under Palm
distribution P0.

In what follows, in order to avoid degeneracy and/or special cases, we make the following general
assumptions: a, b, c ∈ R

+ a.s. and P0(a0 = c0 = 0) = 0.

Finiteness and continuity of the SN field. Since L(·) is positive, IΦ(y) is well defined but can be
infinite. We require this random function to be a.s. finite and even more, to have finite expectation
E[IΦ(y)] =

∫

Rd×D
L(s, y − x)µ(dx)H(ds) < ∞ where H denotes the law of S0 ∈ D (see e.g. (Schmidt

1985)).
Moreover we will require that the cell C0 under Palm distribution (and in consequence all cells Ci

under Palm and stationary distribution) to be a random closed set. Since L is a continuous function of
its last argument, C0 is a.s. a closed set provided IΦ(y) is also a.s. continuous in y (lower semi-continuity
is sufficient). Some sufficient conditions for these properties are given in Proposition 3.1 in [3] under
Poisson assumption.

Coverage process. We will also require Ξ to be a random closed set (note that the countable union of
closed sets need not be closed). In fact we will require the stronger property that for any given bounded
set in R

d (with compact closure) the number of cells that have non-empty intersection with it is almost
surely finite. An equivalent statement is that the collection of cells is a.s. a Radon point measure on the
space of closed sets, so that it can be treated as a point process

∑

i δCi(Φ) on the space of closed sets.
This is a typical assumption for coverage processes (in particular for the Boolean model, see e.g. (Stoyan,
Kendall, and Mecke 1995), eq. (3.1.1), p. 59.).

Some sufficient condition for this latter property are given in Proposition 3.2 and Corollary 3.3 in [3]
for the Poisson case. Similar conditions can be derived for a general stationary ergodic case, as explained
in the concluding remark of Section 3 therein.
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5.2 Typical cell and the coverage process characteristics

Consider the cell C(x; Φ) attached to a point located at x of the marked Poisson p.p. Φ under the Palm
distribution Px. Due to Slivnyak’s theorem, the law of this set under Px is the same as that of the
random closed set

C(x; Φ + δ(x,Z)) = {y : aL(S, y − x) ≥ b(IΦ(y) + L(S, y − x)) + c} (5.2)

under P, where Φ is the original Poisson p.p. and Z = (S,A) = (S, (a, b, c)) is an “additional mark”
distributed like the other marks and independent of Φ. We will refer to (5.2) as the typical cell located
at x, although the name “typical cell” is natural only in stationary case. Indeed, if the Poisson point
process is homogeneous its characteristics are the same for all points x and we will speak of the typical
cell.

Cell coverage probability. Denote by px(y) the probability that point y ∈ R
d is covered by C(x; Φ+

δ(x,Z)). We have

px(y) = P
(

y ∈ C(x; Φ + δ(x,Z))
)

= P
(

aL(S, y − x) − c ≥ 0, b = 0
)

+P
(

(
a

b
− 1)L(S, y − x) −

c

b
− IΦ(y) ≥ 0

∣

∣

∣
b > 0

)

P(b > 0) . (5.3)

The distribution of the mark Z can be considered as given. Note also that the random variables IΦ(y)
and Z involved in (5.3) are independent. Thus in order to determine the probability px(y), we need
to know the marginal distribution of the shot-noise process IΦ(·) at y. This distribution is usually not
known explicitly, but only via its transforms. For example the characteristic functional of the process
IΦ(·) is given by

ϕI(ν) = E exp

[

i

∫

Rd

IΦ(y) ν(dy)

]

= exp

[
∫

Rd×D

(

exp

[

i

∫

Rd

L(s, y − x) ν(dy)

]

− 1

)

µ(dx)H(ds) , (5.4)

where ν is any measure on R
d such that the outer integral in (5.4) is finite (see e.g. (Rice 1977)). The

joint characteristic function of the vector (IΦ(y1), . . . , IΦ(yn)) can be obtained from (5.4) by setting ν =
∑n

k=1 ξkδyk
. Knowing the transforms: ϕI(ξ) of the variable IΦ(y), and ϕ(ξ) of (a/b−1)L(S, y−x)− c/b

(recall that we assumed b > 0 a.s.) and assuming that at least one of these two variables has a density
with respect to Lebesgue’s measure then we can express the coverage probability in terms of the following
contour integral

px(y) =
1

2
−

1

2iπ

∫ ∞

−∞

ν(ξ)νI(−ξ)

ξ
dξ , (5.5)

where the singular contour integral in the right-hand side, which has a pole at ξ = 0, is understood in
the principal value sense. This result follows from the solution of some Riemann boundary problem on
the real line explained in the proof of Proposition A.1 in [3].

The above expression, albeit numerically tractable (cf Figure 8) in not very explicit. However, there
are some special (and interesting) cases, when the coverage can be evaluated more explicitly. Assume for
example that S is exponential2 (i.e., H(s) = 1 − e−µs, where 1/µ is the mean of S). Assume moreover

2This assumption is not only for mathematical convenience; a constant emitted power combined with the so called
Rayleigh fading model of a radio channel leads to a random exponential received power; as we explain in Chapter 1 of the
monograph [28]; also e.g. (Tse and Viswanath 2005)).
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(as in paragraph Motivations above) that L(s, z) = s/l(|z|) for some nonnegative, nondecreasing (this
is not essential) function, and for simplicity take a/b− 1 = 1 and c/b = 1. Then by the independence
and the exponential assumption

px(y) = P
(

S ≥ l(|x− y|)(1 + IΦ(y)) ≥ 0
)

= e−µl(|x−y|)(1+IΦ(y)) = e−µl(|x−y|)LIΦ(µl(|x− y|)) , (5.6)

where LIΦ is the Laplace transform of IΦ(y), that is explicit in view of (5.4). The above observation
made in [7] is the basis for all explicit optimization study of some ad-hoc network model considered
in [7], which we review in Section 5.4 below.

Integrating px(y) with respect to the Lebesgue’s measure over R
d one obtains the mean ddimensional

volume vx of the cell of the point x.

The coverage process characteristics. The inequality
∑n

i=1 bi/ai < 1 is a necessary condition for
the set of cells Ci, i = 1, . . . , n, to have a common nonempty intersection (cf Lemma 5.1 in [3]). This
condition gives a stochastic bound on the number of overlapping cells in terms of the distribution of
marks a0, b0 (see Corollary 5.2). In particular, if b0/a0 ≥ ρ a.s for some fixed ρ > 0, then the number
of cells Nx covering any given point x is never larger that 1/ρ (no matter how large the intensity of the
underlying point process is. This is in strong contras to the situation observed in the Boolean model,
where Nx has unbounded support.

In proposition 5.3 of [3], if Poisson p.p. case, we express the factorial moments of Nx in terms of the
factorial moment measures of the underlying point process. Proposition 5.4 and Corollary 5.5 therein
gives some sufficient conditions on the finiteness of these moments.

Other characteristics of the coverage process Ξ, as e.g. its volume fraction P( 0 ∈ Ξ), can be obtained
via the factorial moments expansions — an approximation technique proposed in [9] and extended to
the spatial case in [13]. The first order expansion formula for the volume fraction p is presented in
Section 5.3 in [3].

5.3 From the Boolean model to the Poisson-Voronoi tessellation

Our coverage model yields several well-known models, as Voronoi tessellation, the Boolean model and
the Johnson-Mehl model, as particular limiting cases.

Towards the Boolean model. Note that the cells of Ξ given by (5.1) are not mutually independent
because of the presence of the shot-noise variable IΦ. However, if we assume b = 0 a.s. the cells
are independent, and Ξ is a Boolean model. In Section 6.1 of [3] we study the following continuity
problem: assume that b → 0 in some sense. In what sense and under what conditions does the typical
cell C(x,Φ + δ(x, Z)) and the whole process Ξ(Φ) tend to their counterparts in the Boolean model
obtained by assuming b ≡ 0? In Proposition 6.1 we answer this question considering Painlevé-Kuratowski
convergence on the space of closed sets. Then, in Propositions 6.4–6.7 we study convergence of some
mean functionals, as E[Nx], capacity functional of the typical cell and the whole process, mean volume
of the typical cell.

The above continuity is only a first step in the direction of the following more interesting differ-
entiability question: assume the above continuity holds, and take b small in some sense. What first
(and higher) order perturbation should one apply to the characteristics of the Boolean cells (which are
explicitly known) to get the characteristics of the dependent cells? Propositions 6.8–6.10 in [3] give such
perturbation results for the cell coverage probability and the mean cell volume; cf also Figure 8.

Towards the Voronoi tessellation. Recall that the form of the Voronoi cell V (x,Φ) attached to
point x is determined by some “neighboring” points of x in ∈ Φ only. It is quite reasonable to expect
that if we let the response function L(s, z) decrease fast in z, we will get the same effect. We formalize
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Figure 8: a) Exact values of the cell (located at 0) coverage probability p0(y) of some given point y.
The dashed line is obtained via the singular integral representation (5.5). Other curves are first, second,
14 th and 15 th order Taylor expansions of p0(y) as a function of the factor ǫ with which we multiply the
shot-nose IΦ in (5.1); ǫ = 0 gives a Boolean model. b) Similar approximations for the mean area of the
typical cell.

0

2

4

6

8

10

2 4 6 8 10 0

2

4

6

8

10

2 4 6 8 10

a) b)

0

2

4

6

8

10

2 4 6 8 10 0

2

4

6

8

10

2 4 6 8 10

c) d)

Figure 9: The coverage process Ξ tending to the
Voronoi tessellation of the plane. We have: a) α =
3, b) α = 5, c) α = 12, d) α = 100.
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Figure 10: The coverage process Ξ growing as in
the Johnson-Mehl model to the Voronoi tessella-
tion of the plane.

this observation in Section 6.2 of [3], assuming L(s, z) = sl(|z|) and taking appropriate families of
l-functions.

Figure 9 illustrates Proposition 6.13 in [3] showing some patterns of our coverage process Ξ with
l(y) = (1 + |y|)−α at various α tending (Painlevé-Kuratowski convergence) to the Voronoi tessellation of
the plane.

Under some parametrization our model behaves also as some Johnson-Mehl model; see Section 6.2
in [3] and cf. Figure 10.
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5.4 Modeling wireless ad-hoc networks

The stochastic geometry model described in [3] can be straightforwardly used e.g. to study the cellular
networks (see e.g. applications to CDMA networks shown in [14]). However some results, as e.g. the
formulas for the cell coverage probability, are universal for wireless communications, and can be used in
the context to other network architectures. In [7] we use a variant of our coverage model to analyze the
so called ad hoc networks.

Challenges. Ad-hoc network is a generic term denoting a communication network architecture, in
which there is no fixed infrastructure of antennas (base stations) serving mobile users, but these users
(called also nodes) constitute an auto-organized network of nodes communicating to each other typi-
cally via mutihops. This means that each packet from some given source-node is transmitted to its its
destination-node possibly using other nodes as relays. In such a scenario, the subset of nodes emitting at
a given time generates the corresponding shot-noise dependent cells of the coverage process, and other
nodes, which do not emit at this moment, are considered as potential receivers (see Figure 11).

The mechanism that decides which nodes are emitting and which are potential receivers at a given
time is called medium access (MAC) protocol. It is supposed to prevent simultaneous neighboring
transmissions from occurring, since such transmissions create interference to each other and hence are
more likely unsuccessful. On the other hand, to enable an efficient use of the network, the same MAC
protocol should allow as many simultaneous and successful transmissions as possible over different parts
of the network. This desired ability of wireless networks is known as spatial reuse.

A very simple MAC protocol, considered in [7], let at each time slot3, any potential node indepen-
dently toss a coin with some bias p (which is be referred to as the medium access probability (MAP))
and it allows this node to emit if the outcome is heads; otherwise this node delays its transmission. This
protocol, called Aloha, is a widely deployed and studied access protocol (the initial paper presenting
Aloha was published by (Abramson 1970)). The aim of this scheme in the spatial context is to create
random exclusion zones around each emitting node. It is of course far not perfect, in the sense that
allowing a node to emit does not guarantee the success of the transmissions. The advantage of this
scheme is that it is decentralized, meaning that there is no need for any central authority to implement
it.

When tuning the value of the MAP parameter p it is important to find a compromise between the
average number of concurring transmission per surface area and the guarantee that a given authorized
transmission will be successful. In fact, taking larger p one obtains more concurrent transmissions but
(statistically) smaller exclusion zones making these transmissions more vulnerable. On the other hand,
smaller p gives fewer transmissions with higher probability of success.

Another important geometric characteristic is one-hop distance on which the transmissions are ef-
fectuated. A smaller such distance makes the transmissions more likely successful but involves more
relaying nodes to communicate on some given (large) distance. On the other hand, a larger one-hop
distance reduces the number of hops but might increase the number faults and retransmissions on a
given hop.

The model we presented in [7] does not yet address more difficult routing issues (as it is attempted
in [26]). However, it is enough to consider the above problems. In particular we are able to define in
it and study the following performance characteristics related to the spatial repartition of nodes: the
probability of successful transmission to an optimal (in one hop) receiver, the mean number of successful
transmissions per unit surface area (called density of successful communications), the mean effective
progress made in one transmission, the mean number of communication-meters per surface area (density
of progress) and the spatial reuse.

Ad hoc network model with Aloha MAC. Let Φ = {(Xi, (ei, Si, Ti))} be a marked Poisson point
process with intensity λ on the plane R

2, where

3We assume a slotted Aloha model; a non-slotted model is analyzed [22].
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Figure 11: Coverage model for ad hoc network.

• {Xi} denote the locations of the nodes,

• {ei}i the medium access indicator of node i; ei = 1 for the nodes which are allowed to transmit
and ei = 0 means that the node is (a potential) receiver. The random variables ei are independent,
with P(ei = 1) = p.

• {Si}i denote the powers emitted by the nodes (for which ei = 1); the random variables {Si}
are assumed independent and identically distributed with mean 1/µ. An important special case
considered in [7], which we assume here, is that with exponentially distributed Si. It allows for a
quantitative analysis of the model.

• {Ti} are the SINR thresholds corresponding to some channel bit rates or bit error rates; here, for
simplicity, we will take Ti ≡ T constant.

In addition to this marked point process, the model is based on a path-loss l(r) where r is the distance
between emitter and receiver. We also consider a random variable W , independent of Φ, modeling an
external noise.

Note first that Φ can be represented as a pair of independent Poisson p.p. representing transmitters
Φ1 = {Xi : ei = 1}, and receivers Φ0 = {Xi : ei = 0}, with intensities, respectively, λp and λ(1 − p).

Let us suppose there is a node located at x that transmits with power S. Suppose there is a node
located at y ∈ R

2. We say that the node at x can communicate to y if and only if

S/l(|x− y|)

W + IΦ1(y)
≥ T , (5.7)

where IΦ1 is the shot-noise process of Φ1: IΦ1(y) =
∑

Xi∈Φ1 Si/l(|y − Xi|). Denote by δ(x, y,Φ1) the

indicator that (5.7) holds. Note that by stationarity of Φ1, that the probability E[δ(x, y,Φ1)] depends
only on the distance x − y and not on the specific locations of (x, y); so we can use the notation
p|x−y|(λp) = E[δ(x, y,Φ1)], where λp is the intensity of the transmitters Φ1. Note that this probability
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is equal to the cell coverage probability of some variant of the coverage model considered in Section 5.2.
Moreover, due to exponential assumption on S we have

pR(λ) = exp

{

− 2πλ

∫ ∞

0

u

1 + l(R)/(T l(u))
du

}

LW (µT/l(R)) , (5.8)

where LW (·) is the Laplace transform of W (cf (5.6) and see Lemma 3.1 in [7]). Assuming some particular
path-loss function (e.g. l(r) = (Ar)β) the above expression becomes even more explicit.

Successful transmission versus spatial reuse. The above result is a key ingredient in further
analysis of the model. For example, by the Campbell’s formula we can state that the mean number of
successful transmissions on the distance R per unit surface of our network is equal to pλpR(λp). This
characteristic can be explicitly optimized in p yielding some trade-off between the number of simultaneous
transmissions and the probability of the success of a typical transmission; see Section IV in [7].

Optimal relay node. The question of an optimal relay node (already related to routing) can be
formulated in our model in the following way. Suppose that a transmitter, say X0, located under Palm
distribution P0 at the origin X0 = 0 has to send information in some given direction (say along the x
axis) to some destination located far from it (say at infinity – see Figure 12). Since the destination is too
far from the source to be able to receive the signal in one hop, the source tries to find a non-transmitting
node in Φ0 such that the hop to this node maximizes the distance traversed towards the destination,
among these which are able to receive the signal. This node will be later in charge of forwarding the
data to the destination or a next intermediary node (this is not taken into account in the model). In
this case, the “effective” distance traversed in one hop, which we will call the progress, is equal to

D = max
Xj∈Φ0

(

δ(0, Xj,Φ
1)|Xj |

(

cos(arg(Xj))
)+

)

, (5.9)

where arg(y) is the argument of the vector y ∈ R
2 (−π < arg(y) ≤ π) and δ(x, y,Φ1) the indicator

that (5.7) holds. We are interested in the expectation d(λ, p) = E0[D] that only depends on λ and on
the MAP p, given all other parameters concerning emission and reception. By the Campbell’s formula,
the mean total distance traversed in one hop by all transmissions initialized in some unit area called
density of progress is equal to λpd(λ, p).

For a given λ, there is again the following trade-off in p between the spatial density of communications
and the range of each transmission. For a small p, there are few transmitters per unit area, but each of
them can likely reach a very remote receiver as a consequence of the fact that IΦ1 is small. On the other
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Figure 13: Lower bound of the density of progress for the model with exponential S and path-loss
function with function with β = 3, λ = 1 and W = 0, with T = {10, 13, 15}dB (curves from top
to bottom). The optimal values (argmax,max) are respectively {(0.052, 0.0086), (0.034, 0.0055), (0.026,
0.0040)}.

hand, a large p means many transmitters per unit area that create interference and thus possibly prevent
each other from reaching a remote receiver. Another feature associated with large p is the paucity of
receivers, which makes the chances of a jump in the right direction smaller.

It would be thus reasonable to quantify this trade-off and find p that maximizes the density of
progress. Unfortunately the mean total distance traversed in one hop d does not admit any explicit
expression in our model. We decided thus to analyze the above optimization problem using some lower
bound d̃(λ, p) = E[D̃] of d, where D̃ is defined as

D̃ = max
Xj∈Φ0

(

p|Xj |(λp)|Xj |
(

cos(arg(Xj))
)+

)

, (5.10)

(see Proposition 5.2 in [7] for the inequality between d and d̃).
The distribution function of D̃ can be expressed using the known formula for the distribution function

of some extremal shot-noise (see Proposition 5.4 in [7]). The formula for its mean D̃ follows easily by
integration of its tail distribution function (see Proposition 5.5 therein).

Having expressed the lower bound of the density of progress λpd̃ we can optimize it in p, which is
done in Section V.C in [7], and in this way give some conservative (due to the lower bound) answer
about the optimal tuning of the MAC parameter p; cf Figure 13.

6 Concluding remarks

We briefly comment here on the impact that some papers contributing to the dissertation have had on
other works.

• Results of [4] and [6] contribute to the methodology proposed in (Baccelli et al. 1997) for the
macroscopic modeling of communication networks by means of spatial tessellations. This method-
ology is currently actively developed at the University of Ulm (Germany) in collaboration with
France Telecom R&D (France). In particular, the modulated-Poisson Voronoi tessellation model
proposed and studied in [4] and [6] is the subject of further analysis in (Fleischer et al. 2007).
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• The paper [3] seems to be quite seminal both in the theory and in applications. I has been cited
(according to Science Citation Index) 7, 2 and, 6 times, respectively, in, mathematical, physical
and engineering journals (not counting for auto-citations). It triggered some mathematical research
on stochastic geometry models integrating a shot-noise field. For example (Dousse et al. 2006)
studies the continuum percolation problem in a variant of our coverage model.

• Paper [7] (or its preliminary version [18]), which proposed a new stochastic geometry approach to
ad-hoc networks, was remarked in the literature (cited at least 6 times). In particular, the idea
of the explicit calculus of the coverage probability in the case of Poisson repartition of nodes and
exponentially distributed powers (cf. (5.6) and the footnote on page 20 for some explanation) was
recently extended in (Hunter et al. 2007).

• As far as author’s own works are concerned, the articles [3] and [7] give foundations for a stochastic
geometry framework for the modeling of wireless communication networks. A special feature of
this comprehensive framework is the usage of the shot noise in conjunction with other stochastic
geometry models to study the geometry of SIR’s. This frameworks is being developed through
several papers. In particular [14], [7] and [22], [23] developed it in the context of cellular, ad-hoc
and sensor networks.

In a series of more technical papers [17], [15], [20], [21] a dynamic aspect of users served by a large
cellular network with power control is considered, engaging elements of queueing theory within
the stochastic geometry framework. Using a spatial birth-and-death process to model arrivals,
departures and mobility of customers, we obtain (via a spatial Erlang formula) explicit formulas
for blocking probabilities as well as the steady state mean throughput and mean delay for elastic
(data) traffic in the case of proportional fair service policies. This study was the subject of the PhD
thesis (Karray 2007) co-supervised by the author. Three patents [29] were filled on this subject
and the results are exploited by Orange, implemented in its UMTS dimensioning tools.

Other interesting subjects, as routing in mobile ad hoc networks are currently investigated (cf [26]).
The whole approach will be presented in the monograph [28].

• Spatial stochastic modeling of wireless networks (using spatial point processes, stochastic geometry,
random geometric graphs, etc) is the subject of the SpaSWiN workshop (see www.spaswing.org)
held each year in conjunction with WiOpt. The author was a co-organizer and a co-chair of the
first edition of this workshop in 2005 and is currently organizing its forth edition. The community
of researchers who contribute to spatial stochastic modeling of wireless networks is growing and
currently the IEEE Journal on Selected Areas in Communications (J-SAC) is planning to publish
a special issue on this subject.
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