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Cellular Network

Infrastructure of base stations (BS)
provided by an operator.

Individual users talk to these stations and listen to them

send/receive data (Internet, VOD, mobile TV, etc).
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Technology and geometry

Radio communications between users and BS’s share
some part of the electromagnetic spectrum.

Successive “generations” of cellular networks (1G,...,4G,
GSM, CDMA, HSDPA, LTE, etc) use different
technologies to “separate” individual communications (in
time and/or frequency, and/or coding).
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Technology and geometry

Radio communications between users and BS’s share
some part of the electromagnetic spectrum.

Successive “generations” of cellular networks (1G,...,4G,
GSM, CDMA, HSDPA, LTE, etc) use different
technologies to “separate” individual communications (in
time and/or frequency, and/or coding).

Performance of the (radio part) of a cellular network
depends very much on its geometry (relative location of
BS’s and users).
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Geometry and dynamics

SINR

←Honeycomb
vs

Poisson-Voronoi→

geometry: (static) pattern of BS with their path-loss fields,
dynamics: arrivals/departures/mobility of users

Questions: SINR based QoS prediction⇒ capacity models
⇒ operator dimensioning tools.
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Shadowing and network geometry

Shadowing — signal power loss due to reflection,
diffraction, and scattering. Modeled by random field with
log-normal marginals with mean 1 and some variance.

Impacts geometry of cellular networks:
Serving BS ≡ with smallest path-loss 6≡the closets one.

Problems:
Is believed to degrade QoS (?)⇒ Not always!
How it harms the “perfect” honeycomb?⇒ Makes it
more Poisson-like. Poisson analysis may be useful!
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OUTLINE of the remaining part of the talk

Foundations of wireless communications

Geometry of cellular networks

Poisson pp — basic facts

Poisson pp as a model for BS

When everything is similar to Poisson — a convergence
result

When shadowing improves performance — heavy tails
in action
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Foundations of wireless communications
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Signal propagation

Maxwell’s electromagnetic field equations? — Not needed. Simple
statistical models relating received power Prec to the emitted one Pem.

direct path shadowing (diffraction) fading (multipath)
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Signal propagation

Maxwell’s electromagnetic field equations? — Not needed. Simple
statistical models relating received power Prec to the emitted one Pem.

direct path shadowing (diffraction) fading (multipath)

Deterministic path-loss: Prec ≈ Pem · (distance)−β

for some β > 0, (path-loss exponent).

Random path-loss: Prec ≈ S · F · Pem · (distance)−β,
S, F random variables for shadowing and fading.
Typically S ∼ log-normal, F ∼ exponential (Rayleigh fading).

– p. 8



Signal detection and processing

Basic radio channel characteristic:
Signal-to-Interference-and-Noise Ratio SINR =

useful signal
︷ ︸︸ ︷

power of the signal from serving BS

noise power+ total power received from non-serving BS
︸ ︷︷ ︸

interference
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Signal coding

constant bit-rate (CBR) coding (e.g. for voice, mobile TV)
1(SINR > Const)— existence of connection
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Signal coding

constant bit-rate (CBR) coding (e.g. for voice, mobile TV)
1(SINR > Const)— existence of connection

variable bit-rate coding (VBR) (e.g. for data transfer)
f(SINR)— channel throughput (# Bits/sec that can be
sent in the channel with a given bit-error probability).

Shannon’s theorem:
f(x) ∼ log(1 + x) is maximal theoretical throughput in a
channel a Gaussian channel.

More recent information theoretic concepts (not considered
in this presentation): MIMO (multiple antenna systems),
broadcast and MAC channels (joint coding to and from
several users), interference cancellation.
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Geometry of cellular networks
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Honeycomb model for BS placement

Traditionally considered as optimal placement of BS.
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Traditionally considered as optimal placement of BS.

Why? Hexagons can tile the plane. Have the smallest ratio
of perimeter to area (compared to equilateral triangles and
squares, which tile the plane too)
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Honeycomb model for BS placement

Traditionally considered as optimal placement of BS.

Why? Hexagons can tile the plane. Have the smallest ratio
of perimeter to area (compared to equilateral triangles and
squares, which tile the plane too)→ minimizes the relative
number of users next to the cell boundary (which are more
difficult to serve due to smaller SINR).
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Problems with the Honeycomb

Real deployment of BS is never
a honeycomb (due to obvious
architectural constrains). Often
“looks like a random pattern”.

4G deployment according
to H. S. Dhillon [UT Austin].
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Problems with the Honeycomb

Real deployment of BS is never
a honeycomb (due to obvious
architectural constrains). Often
“looks like a random pattern”.

4G deployment according
to H. S. Dhillon [UT Austin].

Honeycomb cellular networks may be also hard for
analytic evaluation.
E.g. distribution function of SINR of the “typical” user in
the network?
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“Wireless cell” is not (always) Voronoi

Voronoi Cell of X in {Xi}: set of “locations”
closer toX than to any point of {Xi};
{x : |x−X| ¬ inf i |x−Xi|}.
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“Wireless cell” is not (always) Voronoi

Voronoi Cell of X in {Xi}: set of “locations”
closer toX than to any point of {Xi};
{x : |x−X| ¬ inf i |x−Xi|}.

Users (usually) connect to the BS received with the
strongest signal.

Deterministic path-loss model→ BS serve users in their
Voronoi cells.

Random path-loss model (accounting for shadowing and
or fading)→ serving BS is not necessarily the closets
one.

Shadowing randomly “perturbs” geometry.
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If not Honeycomb then what?

Enough arguments to adopt a stochastic modeling of the BS!
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A bit of formalism:
Random point patterns (random elements in the space of locally finite
subsets of some space, here plane) are called point processes (pp).
Usually considered as random (purely atomic) measures (in point
process theory). Can be also seen as random closed sets (in stochastic
geometry).
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If not Honeycomb then what?

Enough arguments to adopt a stochastic modeling of the BS!
A bit of formalism:
Random point patterns (random elements in the space of locally finite
subsets of some space, here plane) are called point processes (pp).
Usually considered as random (purely atomic) measures (in point
process theory). Can be also seen as random closed sets (in stochastic
geometry).

Point processes exhibiting some “point repulsion” are
potentially suitable to model BS locations:
Gibbs pp (with appropriate conditional density), Hard-core models (e.g.

arising from random sequential packing of balls), Determinantal pp

(arise in physics, random matrix theory, combinatorics), Zeros of

Gaussian Analytic Functions, Perturbed Lattices, etc.

:-( Usually not amenable to explicit quantitative analysis of SINR!
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And if we assume

“completely random” network?

Completely random point pattern ≡ Poisson pp.

– p. 17



Poisson pp versus a “perturbed Honeycomb”

Poisson pp a perturbed Honeycomb

Poisson pp is easy to work with but exhibits more clustering.
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Poisson point process
— basic facts
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Poisson pp

Definition: Φ = {Xi} is a Poisson pp of intensity measure Λ
in a (Polish) space E if

(1) number of points of Φ in any set A,
Φ(A), is Poisson random variable
with mean Λ(A).

(2) numbers of points of Φ in disjoint
sets, Φ(A1), . . .Φ(An), n ­ 1 are
independent random variables.
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Poisson pp

Definition: Φ = {Xi} is a Poisson pp of intensity measure Λ
in a (Polish) space E if

(1) number of points of Φ in any set A,
Φ(A), is Poisson random variable
with mean Λ(A).

(2) numbers of points of Φ in disjoint
sets, Φ(A1), . . .Φ(An), n ­ 1 are
independent random variables.

“Complete independence” (2) characterizes Poisson pp
(provided it is simple, without fixed atoms).
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Poisson pp and random mapping of points

Consider probability kernel p(x, ·) from E to some (Polish)
space E

′. Given pp Φ on E, consider independent, mapping
of eachX ∈ Φ to E

′ with distribution p(X, ·).
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Poisson pp and random mapping of points

Consider probability kernel p(x, ·) from E to some (Polish)
space E

′. Given pp Φ on E, consider independent, mapping
of eachX ∈ Φ to E

′ with distribution p(X, ·).

Displacement Theroem: Independent mapping of points of
Poisson pp of intensity Λ on E to E

′, with kernel p(x, ·) is
Poisson pp on E

′ with intensity Λ′(·) =
∫

E
p(x, ·) Λ(dx).

Corollary:

Independent thinning (removing of points) of Poisson pp
remains Poisson.

Independent marking, i.e. attaching “auxiliary” random
elementsKi ∈ K to Poisson points {Xi} makes
{(Xi,Ki)} Poisson on E× K.

Application: —Ki radio channel conditions from BSXi.
– p. 21



Poisson pp as a weak limit

A “spatial” extension of the “classical” Poisson theorem for
the convergence of binomial variables to Poisson.

Poisson Theorem: Independent thinning of arbitrary pp
converges weakly to Poisson pp, provided the retention
probability goes to 0, and the process is rescaled to
preserve constant intensity.
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Theorem: Independent, successive translations of points of
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Poisson pp as a weak limit

A “spatial” extension of the “classical” Poisson theorem for
the convergence of binomial variables to Poisson.

Poisson Theorem: Independent thinning of arbitrary pp
converges weakly to Poisson pp, provided the retention
probability goes to 0, and the process is rescaled to
preserve constant intensity.

Theorem: Independent, successive translations of points of
arbitrary pp converges weakly to Poisson process, provided
... (cf Daley&Vere-Jones 2008).

Application: The latter result will be used to show that
“increasing variability” of the radio channel conditions makes
any given network geometry (including the Honeycomb) “is
perceived” by a given user as Poisson pp...
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Linear and extremal “shot-noise”

Φ = {Xi}— pp on E, f — real function o E. Define:

I = IΦ,f =
∫
f(x)Φ(dx) =

∑

Xi∈Φ
f(Xi)

— shot-noise,

Z = ZΦ,f = sup{f(Xi) : Xi ∈ Φ}
— extremal shot-noise

– p. 23



Linear and extremal “shot-noise”

Φ = {Xi}— pp on E, f — real function o E. Define:

I = IΦ,f =
∫
f(x)Φ(dx) =

∑

Xi∈Φ
f(Xi)

— shot-noise,

Z = ZΦ,f = sup{f(Xi) : Xi ∈ Φ}
— extremal shot-noise

Fact: For Poisson pp of intensity Λ(·)
LΦ(f) = E[e−I] = exp

{
−

∫

E
(1− e−f(x)) Λ(dx)

}
,

P{Z ¬ t } = exp
{
−

∫

E
1(f(x) > t) Λ(dx)

}
.
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Linear and extremal “shot-noise”

Φ = {Xi}— pp on E, f — real function o E. Define:

I = IΦ,f =
∫
f(x)Φ(dx) =

∑

Xi∈Φ
f(Xi)

— shot-noise,

Z = ZΦ,f = sup{f(Xi) : Xi ∈ Φ}
— extremal shot-noise

Fact: For Poisson pp of intensity Λ(·)
LΦ(f) = E[e−I] = exp

{
−

∫

E
(1− e−f(x)) Λ(dx)

}
,

P{Z ¬ t } = exp
{
−

∫

E
1(f(x) > t) Λ(dx)

}
.

Application: Z — signal from the strongest BS, I — interference.
Question: Distribution of SINR?
L/(w + I) for w > 0 can be evaluated as well.
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“Typical point” of Poisson pp

Consider stationary pp Φ on R
d of intensity λ ∈ (0,∞)

(mean number of points per unit of volume).
Stationary (homogeneous) Poisson pp: Λ(dx) = λdx.
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d of intensity λ ∈ (0,∞)

(mean number of points per unit of volume).
Stationary (homogeneous) Poisson pp: Λ(dx) = λdx.

“Typical pint” of Φ is supposed to be a point uniformly
sampled from Φ.

Formalized in Palm theory. One defines Palm distribution
P0 of Φ: P0{Γ } = 1/λE

[∫

[0,1]d 1(Φ− x ∈ Γ)Φ(dx)
]

where E corresponds to the stationary distribution of Φ.
P0 is the distribution of points of Φ “seen by an observer
sitting on its typical point”.
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“Typical point” of Poisson pp

Consider stationary pp Φ on R
d of intensity λ ∈ (0,∞)

(mean number of points per unit of volume).
Stationary (homogeneous) Poisson pp: Λ(dx) = λdx.

“Typical pint” of Φ is supposed to be a point uniformly
sampled from Φ.

Formalized in Palm theory. One defines Palm distribution
P0 of Φ: P0{Γ } = 1/λE

[∫

[0,1]d 1(Φ− x ∈ Γ)Φ(dx)
]

where E corresponds to the stationary distribution of Φ.
P0 is the distribution of points of Φ “seen by an observer
sitting on its typical point”.

Theorem [Slivnyak-Mecke characterization of Poisson pp]
P0{Γ } = P{Φ + δ0 ∈ Γ} iff Φ is Poisson pp.

“Typical Poisson point sees stationary configuration.”
– p. 24



Neighbours of the typical point

For a stationary point process Φ of intensity λ on R
2 define

K(r) = 1
λ

E0[Φ({x : |x| ¬ r})− 1] (Riplay’sK function)

expected number of “additional” points of Φ within the
distance r of its typical point.
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Neighbours of the typical point

For a stationary point process Φ of intensity λ on R
2 define

K(r) = 1
λ

E0[Φ({x : |x| ¬ r})− 1] (Riplay’sK function)

expected number of “additional” points of Φ within the
distance r of its typical point.

Define also L(r) =
√

K(r)/π (Riplay’s L function).

Fact: For Poisson ppK(r) = πr2, L(r) = r (Slivnyak-Mecke).

Application: Estimators of Riplay’s
K and L functions, are used to com-
pare (regularity/clustering in) ob-
served point patterns ... to be used
for BS patterns. L function for the Honeycomb
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Poisson pp as a model for BS
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Poisson or not Poisson

Figure lifted from a talk by Harpreet S. Dhillon of University of Texas at Austin.
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Poisson or not Poisson

Figure lifted from a talk by Harpreet S. Dhillon of University of Texas at Austin.

More (counter-) arguments for Poisson modeling of real network
deployment in

C.-H. Lee, C.-Y. Shih, and Y.-S. Chen, “Stochastic geometry based models for modeling
cellular networks in urban areas”, Wireless Networks, 2012.
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Comparison of Riplay’s function

”Poisson-like network” more “regular” network

Empirical Riplay’s L function for real positioning of BS in some
big European city

thanks to M. Jovanovic and M.K. Karray [Orange Labs]
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User in Poisson network

Consider one user located at, say, the origin of the plane
R
2.
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User in Poisson network

Consider one user located at, say, the origin of the plane
R
2.

Locations of BS on the plane represented by
homogeneous Poisson pp Φ = {Xi ∈ R

2} on the plane.

Usual path-loss model: the received power of a signal
originating from a base station atXi is

PXi =
SXi
ℓ(|Xi|)

=
SXi

(K|Xi|)β
,

where ℓ(x) = (K|x|)β is a deterministic path-loss
function, with constantsK > 0 and β > 2, and the
random variable Si represents shadowing.
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Path-loss to serving BS

The smallest path-loss (to a serving BS):

L∗ = min
Xi∈Φ

(K|Xi|β)

SXi
.

– p. 30



Path-loss to serving BS

The smallest path-loss (to a serving BS):

L∗ = min
Xi∈Φ

(K|Xi|β)

SXi
.

Fact: The distribution function of L∗ admits a simple
expression in Poisson model

P(L∗ ­ t) = exp{−λπE[S2/β]t2/β/K2} ,

for a general distribution of S with E[S2/β] <∞.
proof: extremal shot-noise distribution.
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SINR to serving BS

SINR corresponding to L∗:

SINR∗ =
1/L∗

W +
∑

Xi∈Φ
SXi/(K|Xi|)

β − 1/L∗
.
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SINR to serving BS

SINR corresponding to L∗:

SINR∗ =
1/L∗

W +
∑

Xi∈Φ
SXi/(K|Xi|)

β − 1/L∗
.

Fact: P{SINR∗ ­ t } =
∑⌈1/t⌉
n=1 (−1)

n−k
(n−1
k−1

)
t−2n/βn In,β(Wa−β/2)Jn,β(tn),

where a = λπE[S2/β]/K2, tn = t
1−(n−1)t ,

In,β(x) =
2n

∫∞
0 u

2n−1e−u
2−uβxΓ(1−2/β)−β/2du

βn−1(C′(β))n(n−1)! , with C′(β) = 2π
β sin(2π/β)

,

Jn,β(x) =
∫

[0,1]n−1

n−1∏

i=1
v
i(2/β+1)−1
i (1−vi)2/β

n−1∏

i=1
(x+ηi)

dv1 . . . dvn−1, with

ηi := (1− vi)
∏n−1
k=i+1 vk

cf. H. P. Keeler, B.B., and M.K. Karray, Proc. of IEEE ISIT, 2013
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Shadowing makes everything is similar to
Poisson — a convergence result.
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Claim

Hexagonal or any spatially homogeneous network with
shadowing of sufficiently large variance is perceived at a
given user location as an equivalent Poisson network
without shadowing.
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Claim

Hexagonal or any spatially homogeneous network with
shadowing of sufficiently large variance is perceived at a
given user location as an equivalent Poisson network
without shadowing.

It means that distribution of the path-loss, interference,
SINR, and many more characteristics of the network
“measured” by this user can be approximated using the
equivalent Poisson network model.
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Arbitrary network with log-normal shadowing

Locations of BS on the plane represented by a locally
finite point pattern φ = {Xi ∈ R

2}; arbitrary, subject to
some general condition, to be specified.
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(σ)
i = exp(−σ

2/2 + σZi) be iid (across
BS) log-normal random variables with mean one and
variance σ2, where Zi are standard normal random
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Arbitrary network with log-normal shadowing

Locations of BS on the plane represented by a locally
finite point pattern φ = {Xi ∈ R

2}; arbitrary, subject to
some general condition, to be specified.

Let SXi = S
(σ)
i = exp(−σ

2/2 + σZi) be iid (across
BS) log-normal random variables with mean one and
variance σ2, where Zi are standard normal random
variables.

Assume path-loss constant

K = K(σ) = K exp
(

−σ
2(β−2)
2β2

)

Usually one uses logarithmic standard deviation (log-SD)
v = σ10/ log 10 (SD of the path-loss expressed in dB) to
parametrize the shadowing variance.
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User’s perception of the network

Denote by

N = N (σ) :=

{

Y
(σ)
i =

K(σ)β|Xi|β

S
(σ)
i

: Xi ∈ φ

}

the path-loss process of the typical user, i.e.; the values of
path-loss it has with all BS.
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User’s perception of the network

Denote by

N = N (σ) :=

{

Y
(σ)
i =

K(σ)β|Xi|β

S
(σ)
i

: Xi ∈ φ

}

the path-loss process of the typical user, i.e.; the values of
path-loss it has with all BS.

For convenience, we considerN (σ) as a point process on

R
+ having unit-mass atoms located at Y (σ)i .

Note:N is a one-dimensional image of the planar network
geometry φ perceived by the user at the origin.
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Homogeneous network assumption

Let B0(r) = {x : |x| < r} ball of radius r centered at the
origin.

(Empirical) homogeneity condition: we require that

#{Xi ∈ B0(r)}

πr2
→ λ as r →∞

for some constant λ, 0 < λ <∞;

λ is the (empirical) density of the network.
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Homogeneous network assumption

Let B0(r) = {x : |x| < r} ball of radius r centered at the
origin.

(Empirical) homogeneity condition: we require that

#{Xi ∈ B0(r)}

πr2
→ λ as r →∞

for some constant λ, 0 < λ <∞;

λ is the (empirical) density of the network.

This condition is satisfied in particular by any regular lattice
(e.g. honeycomb) network model, all reasonable perturbed
lattice models and for almost any realization φ of a random
ergodic point process Φ.
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Convergence result

Theorem:
Let φ be a given pattern of BS satisfying the homogeneity
condition with empirical density λ. Then, the
one-dimensional imageN (σ) of the network φ perceived by
the user at the origin converges weakly as σ →∞ to the
Poisson point process on R

+ with the intensity measure

Λ(t) = λπ
K2
t
2

β . This image is characteristic for a planar
Poisson network of BS with intensity λ.
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Proof idea

Increasing by∆ the variance of the log-normal shadowing
corresponds on the logarithmic scale, to adding to all

path-loss values Y (σ)i received by given user (i.e. points of
N (σ)) independent Gaussian terms. Indeed

S
(σ+∆)
i = exp(−(σ +∆)2/2 + (σ +∆)Zi)

=distr. S
(σ)
i × exp(−σ∆−∆

2/2 + ∆Z′i).
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Proof idea

Increasing by∆ the variance of the log-normal shadowing
corresponds on the logarithmic scale, to adding to all

path-loss values Y (σ)i received by given user (i.e. points of
N (σ)) independent Gaussian terms. Indeed

S
(σ+∆)
i = exp(−(σ +∆)2/2 + (σ +∆)Zi)

=distr. S
(σ)
i × exp(−σ∆−∆

2/2 + ∆Z′i).
ForN (σ), on the logarithmic scale, one can use the Poisson
convergence result for successive translations of points.
Sufficient condition for such a result:

supi P(Y
(σ)
i ∈ [0, t])→ 0

and
E
[
N (σ)([0, t])

]
→ Λ(t)

can be verified; cf. B.B., H. P. Keeler and M.K. Karray, Proc. of IEEE
Infocom, 2013. – p. 38



Statistical confirmation

How large σ should be to use Poisson approximation?

In a given (simulated or real-data scenario), one can
compare the empirical distribution of L∗ and SINR∗ to
theoretical distribution (just presented) in Poisson model.

The values of L∗ and SINR∗ are measured by users and
reported to the operator in a real network. Operators
usually have data regarding the empirical distribution of
L∗ and SINR∗.
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L∗, honeycomb versus Poisson

We assume some value of path-loss exponent β from
2.5 to 5.
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L∗, honeycomb versus Poisson

We assume some value of path-loss exponent β from
2.5 to 5.

We simulate the honeycomb with shadowing of
increasing variance σ and calculate the empirical DF
of L∗.

We statistically test (Kolmogorov-Smirnov (K-S)) the
goodness of fit of this empirical DF to the theoretical DF
in Poisson model.

Result: Starting from the log-
SD v of 7dB to 15dB (depend-
ing on β from 2.5 to 5) the
K-S test does not distinguish
honeycomb from Poisson at a
reasonable confidence level.
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SINR∗ real network data versus Poisson
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When shadowing improves performance
— heavy tails in action
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Shadowing; a stochastic resonances?
Blocking probability v/s shadowing variance
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Elements of explanation

User call-blocking depends on
Signal from the stronger (serving) BSmaxi Pi.
signal-to-interference-and-noise ratio from it
SINR∗ = maxi Pi

W+
∑
i Pi−maxi Pi

.

where Pi = Si(K|Xi|)−β. Assume log-normal S with
E[S] = 1 and increasing variance.
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Elements of explanation

User call-blocking depends on
Signal from the stronger (serving) BSmaxi Pi.
signal-to-interference-and-noise ratio from it
SINR∗ = maxi Pi

W+
∑
i Pi−maxi Pi

.

where Pi = Si(K|Xi|)−β. Assume log-normal S with
E[S] = 1 and increasing variance.

Signal from the strongest station decreases in variance
of S. (No surprise.) Indeed, S converges in Pr and in L1 to 0,
when V ar(S)→∞.

For negligible noiseW = 0, mean SINR increases in
variance of S. (Surprise?) Not really: single big-jump principle
of heavy tailed variables! For log-normal (heavy tailed) Si:
maxi Si ∼

∑

i Si, hence maxi Si∑
i Si−maxi Si

∼ ∞.
– p. 44



Conclusions
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CONCLUSIONS

Deployment of BS is usually not regular (far from the
“optimal” Honeycomb”). Often Poisson pp can be used
to model it.

Poisson pp allows to capture explicitly the distribution of
the path-loss and SINR of a given user to its serving
(strongest) BS, which is a fundamental cellular network
characteristic.

Shadowing impacts geometry of cellular networks. It
makes it “even more” Poisson. It can also “separate” the
strongest signal from the interference thus increasing
SINR (which is a good thing).
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thank you
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