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Ad-hoc Network

Network made of nodes “arbitrarily” repartitioned in some
region, exchanging packets either transmitting or receiving
them on a common frequency, use intermediary
retransmissions by nodes lying on the path between the
packet source node and its destination nodes.
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Ad-hoc = Poisson

Nodes “arbitrarily” repartitioned ≡ given network nodes are
modeled as an instance of a Poisson point process (p.p.).

– p. 3



Ad-hoc = Poisson

Nodes “arbitrarily” repartitioned ≡ given network nodes are
modeled as an instance of a Poisson point process (p.p.).

Recall: Φ is a (homogeneous) Poisson p.p. of intensity λ

(points per unit of surface) if:

number of points of Φ in any set A, Φ(A), is Poisson
random variable with mean λ times the surface of A.

numbers of points of Φ in disjoint sets are
independent random variables.
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Medium Access Control (MAC)

The Medium Access Control (MAC) layer is a part of the
data communication protocol organizing simultaneous
packet transmissions in the network.
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Aloha MAC = Independent Thinning

In our talk we will consider the, perhaps most simple,
algorithm used in the MAC layer, called Aloha:
at each time slot (we will consider only slotted; i.e., discrete,
time case), each potential transmitter independently tosses
a coin with some bias p; it accesses the medium (transmits)
if the outcome is heads and it delays its transmission
otherwise.
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Aloha MAC = Independent Thinning

In our talk we will consider the, perhaps most simple,
algorithm used in the MAC layer, called Aloha:
at each time slot (we will consider only slotted; i.e., discrete,
time case), each potential transmitter independently tosses
a coin with some bias p; it accesses the medium (transmits)
if the outcome is heads and it delays its transmission
otherwise.

Thus, (slotted) Aloha ≡ (independent) thinning of the pattern
of nodes willing to emit.

Thinning is a nice operation on a p.p.

In particular, thinning of Poisson p.p. of intensity λ leads
to Poisson p.p. of intensity pλ.
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Tuning Aloha Parameter p

In Aloha algorithm it is important to tune the value of the
Medium Access Probability (MAP) p, so as to realize a
compromise between two contradicting types of wishes:

a "social one" to have as many concurrent transmissions
as possible in the network and

an "individual one" to have high chances that authorized
transmissions be successful and/or efficient.
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Tuning Aloha Parameter p

In Aloha algorithm it is important to tune the value of the
Medium Access Probability (MAP) p, so as to realize a
compromise between two contradicting types of wishes:

a "social one" to have as many concurrent transmissions
as possible in the network and

an "individual one" to have high chances that authorized
transmissions be successful and/or efficient.

The contradiction between these two wishes stems from the
fact that the very nature of the "medium" in which the
transmissions take place (Ethernet cable or electromagnetic
field in the case of wireless communications) imposes some
constraints on the maximal number and configuration of
successful concurrent transmissions.
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Signal to Interference Ratio (SIR)

A given transmission is successful if the power of the
received signal is sufficiently large with respect to the
interference and possibly some extra noise, where

interference is the sum of the powers of signals received
from all other concurrent transmissions.

– p. 7



Signal to Interference Ratio (SIR)

A given transmission is successful if the power of the
received signal is sufficiently large with respect to the
interference and possibly some extra noise, where

interference is the sum of the powers of signals received
from all other concurrent transmissions.

Interference created at y by transmissions of Φ ≡
Shot-Noise (SN) I(y) =

∑
X∈Φ 1/l(|X − y|), where l(r) is

the power attenuation (path-loss) function on the distance r.
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Poisson Shot-Noise

Fact: If Φ is homogeneous Poisson p.p. than the Laplace
transform (LT) LI of the SN I(y) is

LI(s) = exp
[
−2λπ

∫ ∞

0
r(1− e1/l(r)) dr

]
.

Can be extended to joint LT of vectors (I(y1), . . . , I(y2)).
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Our Setting

In the remaining part of this talk we will show some
simple (?) models and results regarding ad-hoc networks
assuming

Poisson repartition of nodes on the plane,

Shot-Noise interference,

Aloha MAC.
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Related Works

The are now quite many works on various wireless
communications problems using the stochastic geometry
setting I have just mentioned (say Poisson p.p. network +

Shot-Noise interference).
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Related Works

The are now quite many works on various wireless
communications problems using the stochastic geometry
setting I have just mentioned (say Poisson p.p. network +

Shot-Noise interference).

Among them, most related to what I will be talking about are
by: J. Andrews, O. Dousse, M. Franceschetti, M. Haenggi,
Ph. Jacquet, M. Kountouris, P. Thiran, E. Yeh, and many
others ...

In a broader sense, many outstanding theoreticians of
stochastic geometry, random graphs, percolation theory
were and are also interested in communication technology
problems ...

I will not be able to pay tribute to the work they have done ...
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Outline

COVERAGE PROBABILITIES

LOCAL DELAYS

END-TO-END DELAYS ON LONG
ROUTS
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Outline

COVERAGE PROBABILITIES

LOCAL DELAYS

END-TO-END DELAYS ON LONG
ROUTS

← A phase transition

← A first passage percolation problem
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Part I

COVERAGE
(or SUCCESSFUL TRANSMISSION)

PROBABILITY IN A SPATIAL ALOHA
MODEL
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BASIC BIPOLAR AD-HOC NETWORK
MODEL WITH ALOHA
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Model

Independently marked Poisson point process (p.p.)
Φ̃ = {(Xi, ei, yi, Fi)}, where

1. Φ = {Xi} denotes the locations of the nodes (the
potential transmitters); Φ is always assumed Poisson
with positive and finite intensity λ;
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2. {ei} is the MAC indicator of node i; (ei = 1 if node i is
allowed to transmit and 0 otherwise).
Aloha principle:The random variables ei are i.i.d. and
independent of everything else, with P(ei = 1) = p (p is
the MAP).
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Model

Independently marked Poisson point process (p.p.)
Φ̃ = {(Xi, ei, yi, Fi)}, where

1. Φ = {Xi} denotes the locations of the nodes (the
potential transmitters); Φ is always assumed Poisson
with positive and finite intensity λ;

2. {ei} is the MAC indicator of node i; (ei = 1 if node i is
allowed to transmit and 0 otherwise).
Aloha principle:The random variables ei are i.i.d. and
independent of everything else, with P(ei = 1) = p (p is
the MAP).
Consequence of Aloha: the set of nodes that transmit
Φ1 = {Xi : ei = 1} is a Poisson p.p. with intensity
λ1 = λp (as an independent thinning of Φ).
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Receivers in Bipolar Model

3. {yi} denotes the location of the receiver for node Xi (we
assume here that no two transmitters have the same
receiver). We assume that {Xi − yi} are i.i.d random
vectors with |Xi − yi| = r; i.e. each receiver is at
distance r from its transmitter.
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Receivers in Bipolar Model

3. {yi} denotes the location of the receiver for node Xi (we
assume here that no two transmitters have the same
receiver). We assume that {Xi − yi} are i.i.d random
vectors with |Xi − yi| = r; i.e. each receiver is at
distance r from its transmitter.

This is an (acceptable at this stage) simplification.
Later in this talk we will show extensions.
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Wireless Channel Conditions — Fading

4. {Fi = (F
j
i : j)} where F

j
i denotes the virtual power

emitted by node i (provided ei = 1) towards receiver yj ;
by this we understand the product of the (effective)
power of transmitter i and of the random fading from this
node to receiver yj .

– p. 16



Wireless Channel Conditions — Fading

4. {Fi = (F
j
i : j)} where F

j
i denotes the virtual power

emitted by node i (provided ei = 1) towards receiver yj ;
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Wireless Channel Conditions — Fading

4. {Fi = (F
j
i : j)} where F

j
i denotes the virtual power

emitted by node i (provided ei = 1) towards receiver yj ;
by this we understand the product of the (effective)
power of transmitter i and of the random fading from this
node to receiver yj .

The random vectors {Fi} are assumed to be i.i.d. and the
components (F

j
i , j) are assumed to be i.i.d. as a generic r.v.

denoted by F with mean 1/µ assumed finite.
A spacial important case consists in assuming constant
emitted power and Rayleigh fading which implies
exponential F .
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Omnidirectional Path-loss

Select some omnidirectional path-loss (OPL) model l(·).
The receiver of node i receives the transmitter located at
node j with a power equal to F

j
i /l(|Xj − yi|), where | · |

denotes the Euclidean distance on the plane.
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Omnidirectional Path-loss

Select some omnidirectional path-loss (OPL) model l(·).
The receiver of node i receives the transmitter located at
node j with a power equal to F

j
i /l(|Xj − yi|), where | · |

denotes the Euclidean distance on the plane.

An important special case consists in taking

l(u) = (Au)β for A > 0 and β > 2,(1)

which we call in what follows OPL 3.

Note that 1/l(u) has a pole at u = 0, and thus in particular is not
correct for small distances. Despite it, the OPL 3 path-loss
model (1), we will use it as our default model, because it is
precise enough for large enough values of u, it simplifies analysis
and reveals important scaling laws.
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Coverage (Successful Transmission)

We will say that transmitter {Xi} covers its receiver yi in the
reference time slot if

SINRi =
F i

i /l(|Xi − yi|)
W + I1

i

≥ T ,(2)

where

I1
i =

∑
Xj∈eΦ1, j 6=i

F i
j /l(|Xj − yi|) is the SN of Φ̃1 and

models the interference,

W > 0 is the external (thermal) noise — a r. v.
independent of everything else.

and where T is some SINR threshold.

We say equivalently that xi is successfully received by yi.
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Coverage Indicator as a New Mark

Denote by δi the indicator that transmitter Xi covers its
receiver yi; i.e., that the SINR condition (2) holds. We will
consider δi as a new mark of Xi.
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receiver yi; i.e., that the SINR condition (2) holds. We will
consider δi as a new mark of Xi.

The marked point process Φ̃ enriched by δi is stationary;
i.e., its distribution is invariant with respect to any transition.
However, in contrast to the original marks ei, yi, Fi, given the
points of Φ, the random variables {δi} are neither
independent nor identically distributed given Φ.
Indeed, the points of Φ lying in dense clusters have a
smaller probability of coverage than more isolated points
due to interference; in addition, the shot noise variables I1

i

make that δi’s dependent.
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Coverage Indicator as a New Mark

Denote by δi the indicator that transmitter Xi covers its
receiver yi; i.e., that the SINR condition (2) holds. We will
consider δi as a new mark of Xi.

The marked point process Φ̃ enriched by δi is stationary;
i.e., its distribution is invariant with respect to any transition.
However, in contrast to the original marks ei, yi, Fi, given the
points of Φ, the random variables {δi} are neither
independent nor identically distributed given Φ.
Indeed, the points of Φ lying in dense clusters have a
smaller probability of coverage than more isolated points
due to interference; in addition, the shot noise variables I1

i

make that δi’s dependent.

Do we have some typical node?
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Coverage Probability for the Typical Node

By probability of coverage of the typical node, given it is a
transmitter, we understand

P0{ δ0 = 1 | e0 = 1} = E0
[δ0 | e0 = 1],

where P0 is the Palm probability associated to the (marked)
stationary point process Φ̃ and where δ0 is the mark of the
point X0 = 0 a.s. located at the origin 0 under P0.
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Palm Probability — a Reminder

This Palm probability P0 is derived from the original
(stationary) probability P by the following relation

P0{ δ0 = 1 | e0 = 1} =
1

λ1|B|
E

[ ∑

Xi∈Φ1

δi1(Xi ∈ B)
]
;

B is an arbitrary subset of the plane and |B| is its surface.
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Palm Probability — a Reminder

This Palm probability P0 is derived from the original
(stationary) probability P by the following relation

P0{ δ0 = 1 | e0 = 1} =
1

λ1|B|
E

[ ∑

Xi∈Φ1

δi1(Xi ∈ B)
]
;

B is an arbitrary subset of the plane and |B| is its surface.

Knowing that λ1|B| is the expected number of transmitters
in B, the typical node coverage probability is the mean
number of transmitters which cover their receivers in any
given window B in which we observe our network. Note that
this mean is based on a double averaging: a mathematical
expectation – over all possible realizations of the network
and, for each realization, a spatial averaging – over all
nodes in B.
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Palm Probability — Ergodic Interpretation

If the underlying point process is ergodic (as it is the cased
for our i.m. Poisson p.p. Φ̃) the typical node coverage
probability can also be interpreted as a spatial average of
the number of transmitters which cover their receiver in
almost every given realization of the network and large B

(tending to the whole plane).
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Palm Probability — Poisson p.p. Case

For a stationary i.m. Poisson p.p. the probability P0 can
easily be constructed due to Slivnyak’s theorem:
under P0, the nodes of our Poisson network and their marks
follow the distribution

Φ̃ ∪ {(X0 = 0, e0, y0, F0)} ,

where Φ̃ is the original stationary i.m. Poisson p.p. (i.e. that
seen under the original probability P) and (e0, y0, F0) is a
new copy of the mark independent of everything else and
distributed like all other i.i.d. marks (ei, yi, Fi) of Φ̃ under P.
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Palm Probability — Poisson p.p. Case

For a stationary i.m. Poisson p.p. the probability P0 can
easily be constructed due to Slivnyak’s theorem:
under P0, the nodes of our Poisson network and their marks
follow the distribution

Φ̃ ∪ {(X0 = 0, e0, y0, F0)} ,

where Φ̃ is the original stationary i.m. Poisson p.p. (i.e. that
seen under the original probability P) and (e0, y0, F0) is a
new copy of the mark independent of everything else and
distributed like all other i.i.d. marks (ei, yi, Fi) of Φ̃ under P.

Under P0, the node at the origin X0 = 0 is called the the
typical node. Note that the typical node, is not necessarily a
transmitter; e0 is equal to 1 or 0 with probability p and 1− p

respectively. – p. 23



Back to the Coverage Probability

Denote by pc(r, λ1, T ) = E0
[δ0 | e0 = 1] the probability of

coverage of the typical node given it is a transmitter.
It follows from the above construction (Slivnyak’s theorem)
that this probability only depends on the density of effective
transmitters λ1 = λp, on the distance r and on the SINR
threshold T ; it can be expressed using three independent
generic random variables F, I1, W by the following formula:

pc(r, λ1, T ) = P0{F 0
0 > l(r)T (W + I1

0) | e0 = 1 }
= P{F ≥ T l(r)(I1 + W ) } .(3)
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Back to the Coverage Probability

Denote by pc(r, λ1, T ) = E0
[δ0 | e0 = 1] the probability of

coverage of the typical node given it is a transmitter.
It follows from the above construction (Slivnyak’s theorem)
that this probability only depends on the density of effective
transmitters λ1 = λp, on the distance r and on the SINR
threshold T ; it can be expressed using three independent
generic random variables F, I1, W by the following formula:

pc(r, λ1, T ) = P0{F 0
0 > l(r)T (W + I1

0) | e0 = 1 }
= P{F ≥ T l(r)(I1 + W ) } .(3)

First goal: evaluate pc(r, λ1, T ).
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Coverage Probability with Rayleigh Fading

Proposition 1 In Poisson bipolar network model with
exponential F

pc(r, λ1, T ) = exp
{
−µWTl(r)−2πλ1

∫ ∞

0

u

1 + l(u)/(T l(r))
du

}
.

(4)
In particular if W ≡ 0 and that the path-loss model (1) is
used then

pc(r, λ1, T ) = exp(−λ1r
2T 2/βK(β)) ,(5)

where K(β), called spatial contention parameter is equal

K(β) =
2πΓ(2/β)Γ(1− 2/β)

β
=

2π2

β sin(2π/β)
.(6)
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Proof of Proposition 1

From (3) with exponential F (of parameter µ) by
independence we obtain

pc(r, λ1, T ) = E
[
exp[−µT l(r)(I1 + W )]

]

= e−µW T l(r)E[e−µT l(r)I1

] .

The second factor in the above expression is just the
Laplace transform of the Poisson Shot-noise LI1(s)

evaluated at s = µT l(r). It admits the following closed form
expression

LI1(s) = E[e−I1s] = exp
{
−λ12π

∫ ∞

0
t
(
1−LF (s/l(t))

)
dt

}
,

(7)
where LF is the Laplace transform of F (here exponential).
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Tuning Aloha to Guarantee Coverage Prob.

Example 1 Assume one wants to operate a network with
Aloha MAC where each transmitter-receiver distance is r

and a successful transmission is guaranteed with a
probability at least 1− ε, where ε is a predefined QoS.
Then, the MAP p parameter of Aloha should be such that
pc(r, λp, T ) = 1− ε. In particular, assuming the path-loss
setting (1), one should take

p = min

(
1,
− ln(1− ε)

λr2T 2/βK(β)

)
≈ min

(
1,

ε

λr2T 2/βK(β)

)
.

For example, for T = 10dB a and OPL 3 model with β = 4,
r = 1, one should take p ≈ min (1, 0.064 ε/λ) .

aA positive real number x is 10 log10(x) dB.
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Coverage Probability with General Fading

The results of Proposition 1 can be extended to a general
case of F using Plancherel-Parseval theorem.
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Coverage Probability with General Fading

The results of Proposition 1 can be extended to a general
case of F using Plancherel-Parseval theorem.

Proposition 2 Consider the Poisson bipolar network model
with fading variables F such that

F has a finite first moment and admits a square
integrable density;

Either I1 or W admit a density which is square
integrable.

Then the probability of a successful transmission is equal to

pc(r, λ1, T )

=

∫ ∞

s=−∞
LI1 (2iπl(r)Ts)LW (2iπl(r)Ts)

LF (−2iπs)− 1

2iπs
ds .
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Impact of Fading on Coverage Probability

Proposition 2 allows to compare analytically the impact of
fading on coverage probability. A general observation is of
this sort:

Stronger fading is beneficial in for larger transmission
distances and detrimental for smaller ones.

We skip the details.

– p. 29



Mean Packet Progress

In view of multi-hop routing one might be interested in
finding the transmission distance r which maximizes the
mean packet progress

prog(r, λ1, T ) = rE0
[δ0] = rpc(r, λ1, T )(8)

given all other parameters (including λ, p) fixed in our simple
model.
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Mean Packet Progress

In view of multi-hop routing one might be interested in
finding the transmission distance r which maximizes the
mean packet progress

prog(r, λ1, T ) = rE0
[δ0] = rpc(r, λ1, T )(8)

given all other parameters (including λ, p) fixed in our simple
model.

Obviously small r makes the transmissions more sure but
involves more relaying nodes to communicate on some
given (large) distance. On the other hand large r reduces
the number of hops but might increase the number faults
and retransmissions on a given hop.
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Optimizing the Mean Packet Progress

Simple analysis (that we skip here) shows that in the case of
the power-law path loss function (OPL 3) the optimal
transmission distance r for the mean packet progress is of
the following order

rmax(λp) =
const

T 1/β
√

λp

and in the case of Rayleigh fading

const =
1

2K(β)
,

where K(β) is the spatial contention parameter.
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Optimizing the Mean Packet Progress

Simple analysis (that we skip here) shows that in the case of
the power-law path loss function (OPL 3) the optimal
transmission distance r for the mean packet progress is of
the following order

rmax(λp) =
const

T 1/β
√

λp

and in the case of Rayleigh fading

const =
1

2K(β)
,

where K(β) is the spatial contention parameter.

Further optimization, in p, degenerates: pmax = 0.
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Density of Successful Transmissions

In contrast to prog this is a network (social) performance
metric defined as

dsuc(r, λ1.T ) =
1

|B|E
[∑

i

eiδi1(Xi ∈ B)
]
.
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Density of Successful Transmissions

In contrast to prog this is a network (social) performance
metric defined as

dsuc(r, λ1.T ) =
1

|B|E
[∑

i

eiδi1(Xi ∈ B)
]
.

By stationarity of the model, does not depend on the
particular choice of set B and by Campbell’s formula it can
be expressed in therms of coverage probability

dsuc(r, λ1.T ) = λ1pc(r, λ1, T ) = λp pc(r, λp, T ).(9)
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Optimizing Density dsuc in p

Density of successful transmissions dsuc can be explicitly
optimized in p.
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Optimizing Density dsuc in p

Density of successful transmissions dsuc can be explicitly
optimized in p.
Simple analysis (that we skip here) shows that in the case of
the power-law path loss function (OPL 3) and Rayleigh
fading the optimal MAP p for the mean packet progress is

pmax(λ, r) = min(1, λmax/λ)
where

λmax(λ, r) =
1

K(β)r2T 2/β

and K(β) is the spatial contention parameter.
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fading the optimal MAP p for the mean packet progress is

pmax(λ, r) = min(1, λmax/λ)
where

λmax(λ, r) =
1

K(β)r2T 2/β

and K(β) is the spatial contention parameter.

Note: for small density of nodes (λ < λmax) no MAC in
needed (pmax = 1)!
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Optimizing Density dsuc in p

Density of successful transmissions dsuc can be explicitly
optimized in p.
Simple analysis (that we skip here) shows that in the case of
the power-law path loss function (OPL 3) and Rayleigh
fading the optimal MAP p for the mean packet progress is

pmax(λ, r) = min(1, λmax/λ)
where

λmax(λ, r) =
1

K(β)r2T 2/β

and K(β) is the spatial contention parameter.

Note: for small density of nodes (λ < λmax) no MAC in
needed (pmax = 1)!

Further optimization, in r, again degenerates: rmax = 0.
– p. 33



Other Spatial/Social Performance Metrics

The following characteristics can also be expressed in terms
of the coverage probability pc(r, λ1, T ).

spatial density of progress, dprog, the mean number of
meters progressed by all transmissions taking place per
unit surface unit;

spatial density of Shannon throughput, dthrou, the mean
throughput per unit surface unit;

spatial density of transport, dtrans, the mean number of
bit-meters transported per second and per unit of
surface.

We skip the details.
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Bipolar Model — Conclusions

Simple yet not simplistic model. Allows for

closed form expression for the successful transmission
probability.
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Bipolar Model — Conclusions

Simple yet not simplistic model. Allows for

closed form expression for the successful transmission
probability.

pertinent optimization of many network performance
metrics in Aloha parameter p and transmission
distance r.

A better receiver model is needed to avoid degenerate joint
optimization in r and p. We will propose such models in
what follows.

Before changing the receiver model, let us briefly visit some
two other extensions of the Bipolar model.
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EXTENSION 1:
OPPORTUNISTIC ALOHA
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The Idea

In the basic Aloha scheme, each node tosses a coin to
access the medium independently of the channel conditions.
It is clear that something more clever can be done by
combining the random selection of transmitters with the
occurrence of good channel conditions.
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The Idea

In the basic Aloha scheme, each node tosses a coin to
access the medium independently of the channel conditions.
It is clear that something more clever can be done by
combining the random selection of transmitters with the
occurrence of good channel conditions.

The general idea of Opportunistic Aloha is to select the
nodes with the channel fading larger than a certain threshold
as transmitters in the reference time slot.

This is a kind of ad-hoc MAC version of the HDR (HSDPA)
protocol implemented in cellular networks.
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Model Modification

Opportunistic Aloha can be described by
Φ̃ = {(Xi, θi, yi, Fi)}, where {(Xi, yi, Fi)} is as in the basic
Poisson Bipolar Model (1)–(4), with item (2) replaced by:

(2’) Opportunistic Aloha principle: The MAC indicator ei of
node i (ei = 1 if node i is allowed to transmit and 0
otherwise) is the following function of the channel
condition to its receiver F i

i : ei = 1(F i
i > θi), where {θi}

are new random i.i.d. marks, with a generic mark
denoted by θ.
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Model Modification

Opportunistic Aloha can be described by
Φ̃ = {(Xi, θi, yi, Fi)}, where {(Xi, yi, Fi)} is as in the basic
Poisson Bipolar Model (1)–(4), with item (2) replaced by:

(2’) Opportunistic Aloha principle: The MAC indicator ei of
node i (ei = 1 if node i is allowed to transmit and 0
otherwise) is the following function of the channel
condition to its receiver F i

i : ei = 1(F i
i > θi), where {θi}

are new random i.i.d. marks, with a generic mark
denoted by θ.

Special cases of interest are that where θ is constant, and
that where θ is exponential with parameter ν. (allows for
close-form expression for the coverage probability).
As in Aloha {ei} are again i.i.d. marks of the point process
Φ̃, which now depend on {θi, F i

i }.
– p. 38



Coverage Probability in Opp’c Aloha

Proposition 3 Assume Rayleigh fading (exponential F with
parameter µ), exponential distribution of the threshold θ with
parameter ν, and (for simplicity) W ≡ 0 and the OPL 3
model (1). Then

p̂c(r, λ1, ν)

=
µ + ν

ν
exp{−λ1T

2/βr2K(β)}

−µ

ν
exp

{
−λ1

(
(µ + ν)T

µ

)2/β

r2K(β)
}

,

with λ1 = λν/(µ + ν).
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Opportunistic vs Plain Aloha
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Opportunistic Aloha (constant θ = 1/ν) 

Opportunistic Aloha (exponential θ of rate ν)
Plain Aloha

The density of successful transmissions dsuc of
Opportunistic Aloha for various choices of θ. The
propagation model is (1). We assume Rayleigh fading with
mean 1 and W = 0, λ = 0.001, T = 10dB, r =

√
1/λ and

β = 4. For comparison the constant value λmaxpc(r, λmax) of
plain Aloha is plotted. – p. 40



EXTENSION 2:
NON-SLOTTED ALOHA
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Asynchronous Transmissions

All nodes transmit a packet of length B and back-off for
some random time before the next transmission
asynchronously (no common notion of time slots).
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Asynchronous Transmissions

All nodes transmit a packet of length B and back-off for
some random time before the next transmission
asynchronously (no common notion of time slots).

We have proposed two models of this protocol, all require
space-time modeling. Here we present the simpler one.

The objective is to revisit the “classical” result saying that the
slotted Aloha outperforms the non-slotted one by the factor
of 2 with respect to the fraction of successful transmissions,
when both are optimally tuned. This classical result being
obtained in for a geometry-less collision model which
assumes that simultaneous transmissions are never
successful.
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Poisson Rain Model for Non-slotted Aloha

Ψ = {(Xi, Ti)} time-space Poisson point process with
density λs transmission initiations per km2 and par unit
time. (Indexing by i is arbitrary and in particular does not
mean successive emissions over time).

ei(t) = 1(Ti ≤ t < Ti + B) on-off process of the MAC
state of the node Xi at (real) time t.
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Poisson Rain Model for Non-slotted Aloha

Ψ = {(Xi, Ti)} time-space Poisson point process with
density λs transmission initiations per km2 and par unit
time. (Indexing by i is arbitrary and in particular does not
mean successive emissions over time).

ei(t) = 1(Ti ≤ t < Ti + B) on-off process of the MAC
state of the node Xi at (real) time t.

We may think of nodes “born” at time Ti at location Xi,
transmitting a packet during time B and “disappearing”
immediately after. This can be naturally motivated by
mobility of nodes.
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All other assumptions are the same as for the slotted Aloha
(including the fixed distance r to the receiver) except that in
the SINR capture condition (2) the interference (that is not
constant) is averaged out over the packet reception time B

Imean
i = 1/B

∫ Ti+B

Ti

I(t).
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All other assumptions are the same as for the slotted Aloha
(including the fixed distance r to the receiver) except that in
the SINR capture condition (2) the interference (that is not
constant) is averaged out over the packet reception time B

Imean
i = 1/B

∫ Ti+B

Ti

I(t).

This is a reasonable assumption if some coding with
repetition and interleaving on the whole packet duration is
used.
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Coverage Prob. in the non-Slotted Model

Proposition 4 Assume Rayleigh fading and SINR condition
with averaged interference. The coverage probability is

pmean
rain =LW (µT l(r))

× exp
{
− 4πλsB

∫ ∞

0
u

(
1− l(u)

l(r)
log

(
1 +

l(r)T

l(u)

))
du

}
.

In particular for W ≡ 0 and power-law path-loss

pmean
rain = exp(−λsBr2T 2/βK′(β)) ,

with spatial contention parameter

K′(β) =
4π

β

∫ ∞

0
u2/β−1(1− u log(1 + u−1)) du .
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Slotted vs Non-slotted Aloha

In the simplest case (power law path loss function, Rayleigh
fading) the expressions for the coverage probability in
slotted and non-slotted Aloha differ only by the spatial
contention parameters K(β), K′(β) with slotted Aloha
having smaller spatial contention parameter
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Slotted vs Non-slotted Aloha

In the simplest case (power law path loss function, Rayleigh
fading) the expressions for the coverage probability in
slotted and non-slotted Aloha differ only by the spatial
contention parameters K(β), K′(β) with slotted Aloha
having smaller spatial contention parameter

Proposition 5 The ratio of the spatial contention
parameters

1 >
K(β)

K′(β)
> 0.5 for 2 < β <∞

is equals the ratio of the density of successful transmissions
optimized respectively in both models.
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K(β)/K′(β)
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The Classical Comparison Result Revisited

For small values of path-loss exponent β (close to 2)
the performances of optimized slotted and non-slotted
Aloha are similar.

For large β (approaching∞) the good-put ratio goes
to 0.5 — the value predicted by the widely used
simplified model with the simplified collision model.

However, e.g. for β = 4 this ratio is still 75% and even
for β = 6 the ratio still remains significantly larger than
50%.
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The Classical Comparison Result Revisited

For small values of path-loss exponent β (close to 2)
the performances of optimized slotted and non-slotted
Aloha are similar.

For large β (approaching∞) the good-put ratio goes
to 0.5 — the value predicted by the widely used
simplified model with the simplified collision model.

However, e.g. for β = 4 this ratio is still 75% and even
for β = 6 the ratio still remains significantly larger than
50%.

When trying to explain the above asymptotic value of 50%,
one may argue that in the presence of a very strong
path-loss only very local interactions exist and the model
becomes “geometryless”.
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Part II

A NEW PHASE TRANSITION
FOR LOCAL DELAYS IN AD-HOC

NETWORKS
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RESUME
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A Spatial (In-)Stability

Communication systems typically have bounded stability
regions: throughput is non-null only if the offered traffic is
small enough.
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A Spatial (In-)Stability

Communication systems typically have bounded stability
regions: throughput is non-null only if the offered traffic is
small enough.

This story is on a spatial stability of wireless networks —

a new notion of stability,

intrinsically related to spatial reuse of wireless spectrum,

observed here in mobile ad-hoc networks (MANETs).
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Setting

Network: Emitters and their (next hop) receivers randomly
located on the plane

MAC: Aloha

Successful transmission:
SINR larger than some threshold

1e=
Emitter

e=0
Silent node  

r
Receiver
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Setting

Network: Emitters and their (next hop) receivers randomly
located on the plane

MAC: Aloha

Successful transmission:
SINR larger than some threshold

1e=
Emitter

e=0
Silent node  

r
Receiver

We analyze the local delays: number of times slots required
for nodes to transmit a packet to their receivers.
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Results

Locally the network works well: for a given realization of
nodes, of each node has a positive probability of
successful transmission (with respect to channel and
MAC variability), finite mean local delay and thus a
positive next hop throughput.

– p. 53



Results

Locally the network works well: for a given realization of
nodes, of each node has a positive probability of
successful transmission (with respect to channel and
MAC variability), finite mean local delay and thus a
positive next hop throughput.

Still macroscopically (spatially) the network might not
be stable: large node-population averaging of the finite
individual mean delays (in several practical cases)
gives infinite values in several practical cases.
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Results

Locally the network works well: for a given realization of
nodes, of each node has a positive probability of
successful transmission (with respect to channel and
MAC variability), finite mean local delay and thus a
positive next hop throughput.

Still macroscopically (spatially) the network might not
be stable: large node-population averaging of the finite
individual mean delays (in several practical cases)
gives infinite values in several practical cases.

Sometimes network exhibits interesting/dangerous
phase transition: a slight change of certain model
parameters (receiver distance, thermal noise power,
medium access probability) may take the network from
spatial stability to instability. – p. 53



What actually means the spatial instability?
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What actually means the spatial instability?

The usual (temporal) instability: even if each individual
packet is eventually transmitted, the average (over a large
number of packets) time required to transmit one packets is
getting infinite.
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What actually means the spatial instability?

The usual (temporal) instability: even if each individual
packet is eventually transmitted, the average (over a large
number of packets) time required to transmit one packets is
getting infinite.

Spatial network instability: even if each individual node in
the network has some finite mean transmission delay, the
average (over a large number of nodes) mean transmission
delay per node is getting infinite.

Spatial instability:
the MAC protocol performance does not scale with the
network size.
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MODEL DESCRIPTION
&

FIRST RESULTS
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Previous Model, Time Dimension Added
Static Poisson MANET of density λ nodes/km2.
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n = 1, 2, . . . decides to emit one packet; e = 1, 0

denotes MAC decision, E[e] = p.
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Previous Model, Time Dimension Added
Static Poisson MANET of density λ nodes/km2.

Synchronous slotted Aloha MAC: each node
independently, with probability p, in each time slot
n = 1, 2, . . . decides to emit one packet; e = 1, 0

denotes MAC decision, E[e] = p.

I.i.d. point-to-point fading F , constant in a given time
slot, may or may-not vary across times slots:

slow fading (shadowing): channel conditions do not
change in time,

fast fading : channel conditions independently
re-sampled for each channel in each slot.

External noise power W , may or may-not vary in time
( slow or fast noise scenario, respectively).
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Receiver Models

1. Bipolar model: each MANET node X has its dedicated
receiver y (not in MANET) at a distance r km from it.
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Receiver Models

1. Bipolar model: each MANET node X has its dedicated
receiver y (not in MANET) at a distance r km from it.

2. Independent Poisson Nearest Receiver (IPNR) model:
each transmitter selects its receiver as close by as
possible in some Poisson set of potential receivers of
density λ0 nodes/km2 (external to MANET).
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Receiver Models

1. Bipolar model: each MANET node X has its dedicated
receiver y (not in MANET) at a distance r km from it.

2. Independent Poisson Nearest Receiver (IPNR) model:
each transmitter selects its receiver as close by as
possible in some Poisson set of potential receivers of
density λ0 nodes/km2 (external to MANET).

3. MANET Nearest Neighbor (MNN) model: each
transmitter selects its receiver as close by as possible in
the MANET.
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SINR Capture

Transmitter X is successfully received at y at a given time
slot n if the following condition

SINR = SINR(n) =
F/l(|X − y|)

W + I
≥ T ,

is satisfied, where F = F (n), W = W (n), I = I(n), are,
respectively, X → y channel fading, external noise power
and interference, and T is the SINR threshold.
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SINR Capture

Transmitter X is successfully received at y at a given time
slot n if the following condition

SINR = SINR(n) =
F/l(|X − y|)

W + I
≥ T ,

is satisfied, where F = F (n), W = W (n), I = I(n), are,
respectively, X → y channel fading, external noise power
and interference, and T is the SINR threshold.

δ = δi(n) indicator of the successful transmission, i.e., that
the above SINR condition holds for the MANET node Xi

with its receiver yi at time n.
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Local Delays

The local delay of the node Xi is the number of time slots it
needs to successfully transmit a tagged packet

Li = inf{n ≥ 1 : ei(n)δi(n) = 1} .
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The local delay of the node Xi is the number of time slots it
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Li = inf{n ≥ 1 : ei(n)δi(n) = 1} .

Let S denote all the static components of the network
model (which do not vary in time n). Node locations
(emitters, receivers) are in S. Fading and noise variables are
in S in the respective “slow” models.
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Local Delays

The local delay of the node Xi is the number of time slots it
needs to successfully transmit a tagged packet

Li = inf{n ≥ 1 : ei(n)δi(n) = 1} .

Let S denote all the static components of the network
model (which do not vary in time n). Node locations
(emitters, receivers) are in S. Fading and noise variables are
in S in the respective “slow” models.
All random elements that not in S vary in an i.i.d. manner in
time. Thus:
Given a realization of S, local delays Li are geometric
random variables as the number of trials until the first
success in some Bernoulli scheme with the probability of
success πc(Xi,S) = E[eiδi | S].
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Hence,

the conditional (given all the static elements S of the
network) mean local delay of node Xi is equal to

E[Li | S] =
1

πc(Xi,S)
.
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Hence,

the conditional (given all the static elements S of the
network) mean local delay of node Xi is equal to

E[Li | S] =
1

πc(Xi,S)
.

One can interpret πc(Xi,S) as the (temporal) rate of
successful packet transmissions (throughput) of node Xi

given all the static elements S of the network.
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Spatial variability of local delays

Obviously, πc(Xi,S) are different for different nodes.
In other words, different MANET nodes have different
throughputs and mean local delays E[Li | S].
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Spatial variability of local delays

Obviously, πc(Xi,S) are different for different nodes.
In other words, different MANET nodes have different
throughputs and mean local delays E[Li | S].

In Poisson MANET one can find nodes which have an
arbitrarily small conditional temporal throughput πc(Xi,S)

and thus arbitrarily large conditional mean local delay
E[Li | S] = 1/πc(Xi,S).
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Typical MANET node

In what follows we are interested in spatial averages of
these conditional mean local delays E[Li | S], i.e., averages
taken over a large population of MANET nodes

limn→∞
∑n

i=1 E[Li | S].
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Typical MANET node

In what follows we are interested in spatial averages of
these conditional mean local delays E[Li | S], i.e., averages
taken over a large population of MANET nodes

limn→∞
∑n

i=1 E[Li | S].
Mathematically, this is equivalent to the analysis of the
averaged (over Poisson pattern of nodes) local delay of the
so-called typical MANET node . In Poisson case the typical
node in just an extra node X0 added to MANET, say at the
origin. The spatial averaging over the pattern of nodes in
this scenario is called also Palm expectation and is
traditionally denoted by E0.
Thus

limn→∞
∑n

i=1 E[Li | S] = E0
[E[L0 | S]] =: E0

[L0]
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Local Delay / Throughput Paradox
Recall, E0

[L0 | S] = 1/πc(X0,S) = 1/E0
[e0δ0 | S] and thus

E0
[L0] = E0

[ 1

E0
[e0δ0 | S]

]
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E0
[e0δ0 | S]

]
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E0
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.

by Jensen’s inequality.
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E0
[L0] = E0

[ 1

E0
[e0δ0 | S]

]
≥ 1

E0
[e0δ0]

.

by Jensen’s inequality.
Note that E0

[e0δ0] = ppc, where pc is the unconditional
probability that the typical nodes successfully transmits
(calculated previously, at least for the Bipolar model). Thus
E0

[e0δ0] = ppc is the mean throughput of the typical node
(average of temporal throughputs over a large population of
nodes).
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Local Delay / Throughput Paradox
Recall, E0

[L0 | S] = 1/πc(X0,S) = 1/E0
[e0δ0 | S] and thus

E0
[L0] = E0

[ 1

E0
[e0δ0 | S]

]
≥ 1

E0
[e0δ0]

.

by Jensen’s inequality.
Note that E0

[e0δ0] = ppc, where pc is the unconditional
probability that the typical nodes successfully transmits
(calculated previously, at least for the Bipolar model). Thus
E0

[e0δ0] = ppc is the mean throughput of the typical node
(average of temporal throughputs over a large population of
nodes).
Thus for the typical node analysis

mean delay ≥ 1

mean throughput
— a consequence of the fact that two-layer averaging.
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Two extremal cases

Fast varying network. No static elements; S = ∅. Fast
fading and noise. Even locations of nodes are
re-sampled independently across the time slots (node
mobility on the time scale of MAC! (DTN).

E0
[L0] = E0

[ 1

E0
[e0δ0 | ∅]

]
=

1

E0
[e0δ0]

=
1

ppc
.

In other words mean delay = 1

mean throughput.

Under very mild assumptions mean throughput is
non-null E0

[e0δ0] > 0 and thus mean local delay is finite
E0

[L0] <∞⇒ spatial stability .
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Completely static scenario. No time variability. Even
MAC decisions of nodes do not change across the time
slots (unrealistic!). Then

E0
[L0] = E0

[ 1

E0
[e0δ0 | S]

]
= E0

[ 1

e0δ0

]

because the conditioning on S determines MAC and
SINR e0δ0 in this case.
Under very mild assumptions (e.g. if p < 1) e0δ0 = 0

with positive probability, making mean local delay of the
typical node E0

[L0] =∞⇒ spatial instability .
The mean throughput of the typical node may be still
positive E0

[e0δ0] > 0.
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First Conclusions

Having seen the above two extremal cases, it is not difficult
to understand that
the mean local delay of the typical node very much
depends on

how much the time-variability
“averages out” in E[... | S]

the spatial irregularities of the distribution of nodes
in the MANET.
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First Conclusions

Having seen the above two extremal cases, it is not difficult
to understand that
the mean local delay of the typical node very much
depends on

how much the time-variability
“averages out” in E[... | S]

the spatial irregularities of the distribution of nodes
in the MANET.

In the remaining part we will give results regarding several
particular receiver and space-time scenarios. The inequality
mean delay ≥ 1/mean throughput is in general strict.

Moreover, we will have in quite natural scenarios
mean delay =∞ while mean throughput > 0.
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DETAILED ANALYSIS
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Slow Noise and Fading, Bipolar Receivers

Only MAC decisions vary in time. Receives are all in fixed
distance r from Poisson MANET nodes.

If p > 0 and the distribution of fading F and noise W is
such that P{WTl(r) > F } > 0, then there are MANET
nodes which have null throughout and infinite local delay.
In particular E0

[L0] =∞.
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Slow Noise and Fading, Bipolar Receivers

Only MAC decisions vary in time. Receives are all in fixed
distance r from Poisson MANET nodes.

If p > 0 and the distribution of fading F and noise W is
such that P{WTl(r) > F } > 0, then there are MANET
nodes which have null throughout and infinite local delay.
In particular E0

[L0] =∞.

proof:

πc(X0,S) = E0
[e0δ0 | S]

= P0{e0F0 ≥ T l(r)(W0 + I0) | S}
≤ p1(F 0

0 ≥ T l(r)W ) .

The last indicator is equal to 0 with non-null probability.
– p. 68



Fast Fading case — Technical Lemma

Denote by LI(ξ |Φ) = E[e−ξI |Φ] the conditional Laplace
transform of the interference I given Poisson pattern of
emitting nodes Φ. Then

E
[ 1

LI(ξ |Φ)

]
= exp

{
−2πα

∫ ∞

0
v
(
1− 1

LeF (ξ/l(v))

)
dv

}
,

where LeF is the Laplace transform of the product of the
MAC indicator and Fading.
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Fast Rayleigh Fading, Bipolar Receivers
The mean local delay of the typical node is equal to

E0
[L0] = 1

pDW (T l(r)) exp
{
2πpλ

∫∞
0

vT l(r)
l(v)+(1−p)T l(r) dv

}
,

where

DW (s) = Dslow
W (s) = LW (−s) for the slow noise case,

DW (s) = Dfast
W (s) = 1/LW (s) for the fast noise case.
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Fast Rayleigh Fading, Bipolar Receivers
The mean local delay of the typical node is equal to

E0
[L0] = 1

pDW (T l(r)) exp
{
2πpλ

∫∞
0

vT l(r)
l(v)+(1−p)T l(r) dv

}
,

where

DW (s) = Dslow
W (s) = LW (−s) for the slow noise case,

DW (s) = Dfast
W (s) = 1/LW (s) for the fast noise case.

Mean local delay of the typical node is always finite in fast
noise scenario.
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Fast Rayleigh Fading, Fast Noise, IPNR

(Receivers are nearest nodes in some external to MANET,
Poisson set of potential receivers of density λ0.)

E0
[L]= 2πλ0

p

∫∞
0 re−πλ0r2DW (µT l(r))DINR

I (µT l(r))dr

where
DINR

I (s) = exp
{
2πλ

∫∞
0

ps
l(v)+(1−p)sv dv

}

and DW (s) is as in Bipolar Model.
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Fast Rayleigh Fading, Fast Noise, IPNR

(Receivers are nearest nodes in some external to MANET,
Poisson set of potential receivers of density λ0.)

E0
[L]= 2πλ0

p

∫∞
0 re−πλ0r2DW (µT l(r))DINR

I (µT l(r))dr

where
DINR

I (s) = exp
{
2πλ

∫∞
0

ps
l(v)+(1−p)sv dv

}

and DW (s) is as in Bipolar Model.

Nose limited case. (When interference is perfectly canceled
out.) E0

[L] <∞ provided the noise W has a sufficient
probability mass in the neighborhood of 0. For instance,
when it has rational Laplace transform.
E0

[L] =∞ e.g. when the noise W > ǫ is bounded away
from 0.
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Interference limited case. (W = 0) Denote
θ(p, T, β) = p

(1−p)
1−

2

β

T
2

β K(β) ,

where K(β) = 2πΓ(2/β)Γ(1−2/β)
β

.

E0
[L] <∞ when p > 0 and λ0π > λθ(p, T, β).

E0
[L] =∞ if either p = 0 or λ0π < λθ(p, T, β).
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If λ0 is too small the transmitters compete for too small
set of receivers making E0

[L] =∞.
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Interference limited case. (W = 0) Denote
θ(p, T, β) = p

(1−p)
1−

2

β

T
2

β K(β) ,

where K(β) = 2πΓ(2/β)Γ(1−2/β)
β

.

E0
[L] <∞ when p > 0 and λ0π > λθ(p, T, β).

E0
[L] =∞ if either p = 0 or λ0π < λθ(p, T, β).

Obviously p = 0 makes E0
[L] <∞.

If λ0 is too small the transmitters compete for too small
set of receivers making E0

[L] =∞.

For T and β fixed, E0
[L] <∞ requires that potential

receivers outnumber MANET nodes by a factor which
grows like p(1− p)2/β−1 when p varies.

– p. 72



Fast Rayleigh Fading, Fast Noise, MNN

(Receivers are nearest nodes in the MANET).

E0
[L] =

2πλ

p(1− p)

×
∫ ∞

0
re−πλr2DW (µT l(r))DMNN

I (r, µT l(r)) dr ,

where

DMNN
I (r, s) = exp

{
λπ

∫ ∞

0

ps

l(v) + (1− p)s
v dv

+λ

∫ π
2

θ=− π
2

∫

v>2r cos θ

ps

l(v) + (1− p)s
v dvdθ

}

and DI(s) is as in Bipolar Model.
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We have the same type of phase transitions as for the IPNR
model.
Nose limited case.
E0

[L] <∞ provided the noise W has a sufficient probability
mass in the neighborhood of 0. For instance, when it has
rational Laplace transform.

E0
[L] =∞ e.g. when the noise W > ǫ is bounded away

from 0.
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We have the same type of phase transitions as for the IPNR
model.
Nose limited case.
E0

[L] <∞ provided the noise W has a sufficient probability
mass in the neighborhood of 0. For instance, when it has
rational Laplace transform.

E0
[L] =∞ e.g. when the noise W > ǫ is bounded away

from 0.

Interference limited case.
E0

[L] <∞ if p > 0 and θ(p, T, β) < π.

E0
[L] =∞ if θ(p, T, β) > 2π .
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LOCAL DELAYS
REMARKS AND CONCLUSIONS
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When Spatial Instability?

The spatial instability is observed

in Bipolar (fixed-distance) receiver model only if the
noise is slow (not varying in time) and the receiver
distance or SINR threshold is tuned too large.
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When Spatial Instability?

The spatial instability is observed

in Bipolar (fixed-distance) receiver model only if the
noise is slow (not varying in time) and the receiver
distance or SINR threshold is tuned too large.

in IPNR and MNN (nearest neighbour receiver models)
even in fast noise and fading scenario when

noise does not take sufficiently often values close to 0
(e.g. for constant non-null noise)
potential receivers do not sufficiently outnumber the
emitter (MAC probability p tuned too large in MNN),
the SINR threshold is tuned too large (in MNN model)
with respect to MAC probability p and path-loss
exponent β.
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Delay in “RESTART” Algorithm

[Jelenkovic et-al 2007:] A file of random size B is to be
transmitted over an error prone channel, with i.i.d.
inter-failure times A1, A2, . . .. If Ai < B the transmission
fails at the i th attempt and needs to restart (with the same
B) until Aj ≥ B. Let N = inf{n ≥ 1 s.t. An > B} be the
transmission delay of a tagged file.
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Delay in “RESTART” Algorithm

[Jelenkovic et-al 2007:] A file of random size B is to be
transmitted over an error prone channel, with i.i.d.
inter-failure times A1, A2, . . .. If Ai < B the transmission
fails at the i th attempt and needs to restart (with the same
B) until Aj ≥ B. Let N = inf{n ≥ 1 s.t. An > B} be the
transmission delay of a tagged file.

[Asmussen et al 2008:] When B has infinite support and An

is light tailed, then N is heavy tailed including finite mean.
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The physical phenomena at hand are quite different in the
above RESTART algorithm and our MANET context.
Nevertheless
The local delays in our MANET can be seen as instances
of RESTART algorithm with variable file size replaced by
spatial variability of channel conditions.

In particular, in MNN model it is the variable distance to the
(nearest) receiver in conjunction with existence of big void
regions in Poisson MANETS which may lead to infinite mean
local delays.
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The physical phenomena at hand are quite different in the
above RESTART algorithm and our MANET context.
Nevertheless
The local delays in our MANET can be seen as instances
of RESTART algorithm with variable file size replaced by
spatial variability of channel conditions.

In particular, in MNN model it is the variable distance to the
(nearest) receiver in conjunction with existence of big void
regions in Poisson MANETS which may lead to infinite mean
local delays.

The heavy tailedness of the local delay interpreted in
terms of the large fraction of MANET nodes experiencing
large mean temporal local delay.
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Finite Mean Local Delays and Diversity

Suggested ways of getting finite mean spatial average of the
mean local delays are based on an increase of diversity:

more variability in fading,

more potential receivers,

more mobility ,

more flexible (adaptive) coding schemes to break the
RESTART algorithm (outage) logic.
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Part III

FIRST PASSAGE PERCOLATION ON
SPACE-TIME SINR RANDOM GRAPHS

OR

END-TO-END
DELAYS ON LONG

SOURCE-
DESTINATION

ROUTES

– p. 80



Setting

In this part we are interested in the performance of multihop
routing schemes.
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The space-time network model is as for local delays in
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We restrict ourselves to the most favorable (from the point of
view local delays) fast fading and fast noise scenario.
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Setting

In this part we are interested in the performance of multihop
routing schemes.

The space-time network model is as for local delays in
Part II (Poisson repartition of nodes, slotted Aloha MAC).
We restrict ourselves to the most favorable (from the point of
view local delays) fast fading and fast noise scenario.

As before we consider SINR condition for the successful
transmission.

In contrast to previously considered receiver models (in
particular to MANET Nearest Neighbor (MNN) receiver
model), we do not prescribe any receives to emitters but
consider all non-emitting at a given time nodes as potential
receivers of any emitting node.
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Space-time SINR Random Graph

Not-specifying particular receivers allows us to “trace” all
possible paths (routs) of packets on the corresponding
space-time SINR random graph.
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space-time SINR random graph.

Nodes of this graphs are all pairs

(a node Xi of the network , a time slot n).

Directed edges of this oriented graph connect

all pairs (Xi, n)→ (Xj, n + 1) whenever Xi can
successfully send packet to Xj at slot n,

and all pairs (Xi, n)→ (Xi, n + 1),

i.e. all possible moves of a tagged packet from Xi at time n.
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Space-time SINR Random Graph

Not-specifying particular receivers allows us to “trace” all
possible paths (routs) of packets on the corresponding
space-time SINR random graph.

Nodes of this graphs are all pairs

(a node Xi of the network , a time slot n).

Directed edges of this oriented graph connect

all pairs (Xi, n)→ (Xj, n + 1) whenever Xi can
successfully send packet to Xj at slot n,

and all pairs (Xi, n)→ (Xi, n + 1),

i.e. all possible moves of a tagged packet from Xi at time n.

Studying shortest paths on the above graph provide intrinsic
performance limitations on all possible routing schemes.
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First-Passage Percolation Problem

Our main performance characteristic is the limit of the ratio

minimal number of hops to go from node O to node D

Euclidean distance |O −D|

when |O −D| → ∞.
(This limit, if exists, is called “time constant” in the classical
first-passage-percolation models.)
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First-Passage Percolation Problem

Our main performance characteristic is the limit of the ratio

minimal number of hops to go from node O to node D

Euclidean distance |O −D|

when |O −D| → ∞.
(This limit, if exists, is called “time constant” in the classical
first-passage-percolation models.)

The number of hops in the numerator above, called
end-to-end delay (from O to D), is the sum of the local
delays at all nodes visited on the shortest-time path by some
tagged packet, which does not experience any queuing at
nodes before being scheduled for transmission.
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Two Results

1. In Poisson MANET the end-to-end delay grows faster
than the distance |O −D| (time constant is infinite)
(principally due to large voids in the repartition of nodes).
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Two Results

1. In Poisson MANET the end-to-end delay grows faster
than the distance |O −D| (time constant is infinite)
(principally due to large voids in the repartition of nodes).

2. Adding an arbitrarily sparse, periodic infrastructure of
nodes (superposing it with Poisson p.p.) makes
end-to-end delay scale linearly with |O −D| (time
constant positive and finite).
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But I’m afraid...,
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But I’m afraid...,
here I do not have enough time

to precisely formulate the above results
and present their elegant proofs...
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But I’m afraid...,
here I do not have enough time

to precisely formulate the above results
and present their elegant proofs...

Please consult Baccelli, B.B, Mirsadeghi (2009) “Optimal
Paths on the Space-Time SINR Random Graph”,
arXiv:0911.3721v1:

– p. 85



THANK YOU
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