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I PANORAMA

• The mathematical principle of the Voronoi tessellation is widely used as a simple

idealization of many complex “real” partitions of the plane (cells in cellular

communication, Gupta & Kumar protocol model of ad-hoc networks; it takes into

account only locations of antennas and ignores all other physical aspects of the

communication technology as a.g. additive interference)

• The dual Delaunay graph can be used as a “protocol model” of neighbuorhood in

networks⇒ topology for routing
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PANORAMA...

• Boolean model is a first model of coverage of wireless network (it does not take

into account interference). As the underlying model for the study of continuum

percolation it can be used to address the questions of connectivity of ad-hoc

networks in the absence of interference.

• Mathematical representation of interferences based on (Poisson) shot noise

processes⇒ a variety of results on coverage, connectivity and capacity of large

interference-limited networks.
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II BASIC GEOMETRIC MODELS

• Poisson point process,

• Voronoi tessellation and Delaunay graph,

• Boolean model,

• Shot-Noise model,

• References.
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BASIC MODELS...

Poisson Point Process

Planar Poisson point process (p.p.) Φ of intensity λ:

• Number of Points Φ(B) of Φ in subsetB of the plane is Poisson random variable

with parameter λ|B|, where | · | is the Lebesgue measure on the plane; i.e.,

P{Φ(B) = k } = e−λ|B| (λ|B|)k

k!
,

• Numbers of points of Φ in disjoint sets are independent.

Laplace transform of the Poisson p.p.

LΦ(h) = E[e
R

h(x)Φ(dx)] = e−λ
R

(1−eh(x)),dx ,

where h(·) is a real function on the plane and
∫
h(x) Φ(dx) =

∑

Xi∈Φ h(Xi).
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BASIC MODELS/Poisson p.p. ...

Poisson p.p. is the basis of the stochastic-geometry modeling of communication

networks.

This modeling consist in treating the given architecture of the network as a snapshot

of a (homogeneous) random model, and analyzing it in a statistical way. In this

approach the physical meaning of the network elements is preserved and reflected in

the model, but their geographical locations are no longer fixed but modeled by

random points of, typically, homogeneous planar Poisson point processes.

Consequently, any particular detailed pattern of locations is no longer of interest.

Instead, the method allows for catching the essential spatial characteristics of the

network performance basically through the densities of these point processes (i.e.,

the densities of the network devices).
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BASIC MODELS ...

Voronoi Tessellation (VT) and Delaunay graph

Given a collection of points Φ = {Xi} on the plane and a given point x, we define

the Voronoi cell of this point Cx = Cx(Φ) as the subset of the plane of all locations

that are closer to x than to any point of Φ; i.e.,

Cx(Φ) = {y ∈ R
2 : |y − x| ≤ |y −Xi| ∀Xi ∈ Φ} .

When Φ = {Xi} is a Poisson p.p. we call

the (random) collection of cells {CXi
(Φ)}

the Poisson-Voronoi tessellation (PVT).

Edges of the Delaunay graph connect nu-

clei of the adjacent cells.

Borders of Voronoi Cells

Stochastic geometry and communication networks,
B. Błaszczyszyn;
tutorial lecture, Performance’05, Juan-les-Pins, France, October 3-7, 2005

8



BASIC MODELS/VT ...

VT is a frequently used generic model of tessellation of the plane.

Points denote locations of various structural elements (devices) of the network (base

station antennas and/or network controllers in cellular networks, concentrators in

fixed telephony, access nodes in ad hoc networks, etc.).

Cells denote mutually disjoint regions of the plane served in some sense by these

devices.
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BASIC MODELS...

Boolean Model (BM)

Let Φ̃ = {(Xi, Gi)} be a marked Poisson p.p., where {Xi} are points and {Gi}
are iid random closed stets (grains). We define the Boolean Model (BM) as the union

Ξ =
⋃

i

Xi ⊕Gi where x⊕G = {x+ y : y ∈ G}.

Known:
• Poisson distribution of the

number of grains intersecting

any given set.

• Asymptotic results (λ → ∞)

for the probability of complete

covering of a given set. 0
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BASIC MODELS/BM ...

BM is a generic coverage model.

Points denote locations of various structural elements (devices) of the network.

Granis denote independent regions of the plane served these devices .

In wireless networks it is a simplified model (it does not take into account

interference) for the study of coverage and connectivity.
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BASIC MODELS...

Shot-Noise (SN) model

Let Φ̃ = {(Xi, Si)} be a marked p.p., where {Xi} are points and {Si} are iid

random variables. Given a real response function L(·) of the distance on the plane

we define the Shot-Noise field

IΦ̃(y) =
∑

i

SiL(y −Xi) .

When Φ̃ is a marked Poisson p.p. then we call IΦ̃ the Poisson SN.

For the Poisson SN, the Laplace transform of the vector (IΦ(y1), . . . , IΦ(yn)) is

known for any y1, . . . , yn ∈ R
2 (via Laplace transform of the Poisson p.p.).
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BASIC MODELS/SN ...

SN is a good model for interference in wireless networks.

Marks Si correspond to emitted powers.

Response function correspond to attenuation function.
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BASIC MODELS ...
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III SINR COVERAGE MODEL

Φ = {Xi, (Si, Ti)} marked point process (Poisson)

{Xi} points of the p.p. on R
2 — antenna locations,

(Si, Ti) ∈ (R+)2 possibly random mark of point Xi — (power,threshold)

cell attached to point Xi: Ci(Φ,W ) =

{

y :
Sil(y −Xi)

W + κIΦ(y)
≥ Ti

}

where Iφ(y) =
∑

i6=0 Sil(y −Xi) shot noise process, κ interference

factor,W ≥ 0 external noise, l(·) attenuation (response) function.

Ci is the region where the SINR from Xi is bigger than the threshold Ti.

Coverage PROCESS: Ξ(Φ;W ) =
⋃

i∈N

Ci(Φ,W ).
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SINR COVERAGE MODEL ...

• Motivations,

• Snapshots and qualitative results,

• Typical cell study

(coverage probability for the point is some distance to the antenna, simultaneous

coverage of several points, mean area of the cell),

• Handoff study

(overlapping of cells, coverage probability for a typical point, distance to different

handoff states),

• Macroeconomic optimization example,

• References.
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SINR COVERAGE MODEL ...

Motivation I: CDMA handoff cells

x0 — a point in R
2 (location of an antenna),

s0 ≥ 0 and t0 ≥ 0 — (pilot signal power of

the antenna and SINR threshold (bit energy-to-

noise spectral power density Eb/NO) for the

pilot signal),

φ = {xi, (si, ti)} — pattern of antennas,

w ≥ 0 — external noise,

0 ≥ κ ≤ 1 — orthogonality factor,

l(·) — attenuation function

w

(x  , (s  , t  ))2 2 2
(x  , (s  , t  ))1 1 1

(x  , (s  , t  ))3 3 3 (x  , (s  , t  ))4 4 4

0y 00(x  , (s  , t  ))

s0l(y − x0)

w + Iφ(y)
≥ t0
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SINR COVERAGE MODEL / CDMA motivation ...

Parameter values

Intensity of Poisson process of base stations

λBS ∼ 0.2 BS/km2.

Pilot signal power s0 ∼ 30 mW

SINR threshold (bit energy-to-noise spectral

power density Eb/NO) for the pilot t0 ∼
−14 dB

External noisew ∼ −105 dB

Interference factor for pilots from different BS’s

κ = 1
Attenuation function

l(x) = Amax(|x|, r0)
−α or

l(x) = (1 + A|x|)−α with α ∼ 3 − 6.
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SINR COVERAGE MODEL / CDMA motivation ...

This is a relatively simple model, which takes into account only locations of the Base

Stations, their pilot signal powers and SIR’s for the pilots.

In particular there is no any pattern of mobiles assumed yet and it does not take into

account power control issues.
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SINR COVERAGE MODEL / Motivations II

Gupta & Kummar physical model for ad-hoc networks

(see Modeling of ad-hoc networks)
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SINR COVERAGE MODEL ...

Snapshots and qualitative results
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κ = 0.5 κ = 0.1 κ = 0.01 κ = 0
Constant emitted powers Si, ei ≡ 1, T = 0.4 and

interference factor κ→ 0.

Small interference factor allows one to approximate SINR cells by a Boolean model

(via perturbation methods)
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SINR COVERAGE MODEL / Snapshots ...
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Constant emitted powers Si, ei ≡ 1, T = 0.4, W = 0, l(r) = (Ar)−β and

attenuation exponent β →∞.

SIR cells tend to Voronoi cells whenever attenuation is stronger, e.g. in urban areas.
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SINR COVERAGE MODEL / Typical cell study ...

Probability for a typical cell to cover a point

Given: Φ — marked Poisson point process representing antennas in R
2,

(0, (S, T )) — additional antenna located at fixed point 0 with random (S, T )

distributed as any mark of Φ, independent of it (thus Φ ∪ {(0, (S, T )} has

Poisson Palm distribution), y — location (of a mobile) in R
2.

Probability for C0 to cover a given point y located at the distanceR to the origin:

pR = P
(

y ∈ C0

)

= P
(

S(1/T − 1)l(R) −W − IΦ(y) > 0
)

.
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SINR COVERAGE MODEL / Typical cell study ...

Res. For M/G case (general distribution of (S, T )) the coverage probability pR can

be given via Laplace transforms of S(1/T − 1),W and the Laplace transform of

IΦ(y) that is

E[exp(−ξIΦ(y))] = exp

[

−
∫

Rd

(

1 − LS(ξl(y − z))
)

µ(dz)
]

,

where LS(ξ) = E[e−ξS] is the Laplace transform of S .

Cor. Fourier transform of the Poisson shot-noise variable Iφ(y)→
Rieman Boundary Problem → probability of coverage by the typical cell.
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SINR COVERAGE MODEL / Typical cell study ...

Example

Fourier transform FIΦ
(ξ) of the homogeneous Poisson (intensity λ) shot noise with

exponential S (parameterm) and attenuation l(x) = Amax(|x|, r0)
−4

FIΦ
(ξ) = E

[
e−iξIΦ

]

= exp

[

λπ

√

iAξ

m
arctan

(

r2
0

√
m

iAξ

)

− λ

2
π2

√

iAξ

m

+ λπr2
0

r4
0 − iAξ − r4

0m

iAξ + r4
0m

]

,

for ξ ∈ R, where the branch of the complex square root function is chosen with

positive real part.
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SINR COVERAGE MODEL / Typical cell study ...

Special M/M case

Res. [Baccelli&BB&Muhlethaler (2004)]: Assume that {Si} are exponential r.vs. with

par. µ and Ti = T are constant. Then the probability for C0 to cover a given point

located at the distanceR:

is equal
pR = exp

{

− 2πλ

∫ ∞

0

u

1 + l(R)/(T l(u))
du
}

.

proof: Say the emitter is at the origin and consider the corresp. Palm distribution P;

pR = P(S ≥ TIΦ1/l(R))

=

∫ ∞

0

e−µsT/l(R) dP(IΦ ≤ s)

= ψIΦ
(µT/l(R)) ,

where LIΦ(·) is the Laplace transform of the value of the hom. Poisson SN IΦ.
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SINR COVERAGE MODEL / Typical cell study / M/M case ...

Cor. For the attenuation function l(u) = (Au)−β

pR(λ) = e−λR2T 2/βC ,

where C = C(β) =
(

2πΓ(2/β)Γ(1− 2/β)
)

/β.
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SINR COVERAGE MODEL / Typical cell study / M/M case ...

Some optimizations

One can study the following optimization problems for the expected effective

transmission range r × pr:

• given the density of stations λ find the targeted range r that optimizes the

expected effective transmission range

ρ = ρ(p) = max
r≥0

{rpr(p)} =
1

T 1/β
√

2λpC

rmax = rmax(p) = argmaxr≥0{rpr(λ)} =
1

T 1/β
√

2λC
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SINR COVERAGE MODEL / Typical cell study / M/M case optimization

• given the targeted range R find the density of emitters λ that optimize the

expected effective transmission range R× pR:

λmax = λmax(R) =argmaxλ≥0{RpR(λ)} =
1

R2T 2/βC

max
λ≥0

{RpR(λ)} =
1

R2T 2/βeC
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SINR COVERAGE MODEL / Typical cell study ...

Probability for a typical cell to cover two points

(y1, y2) — two point to be covered by a given cellC0(Φ,W ) under Palm

distribution of Φ ∪ {(0, (S, T )}
We need the joint Laplace transform of

(IΦ(y1), IΦ(y2)) that is given by

E
[

exp
(

−ξ1IΦ(y1) − ξ2IΦ(y2)
)]

= exp

[

−
∫

Rd

(

1 − LS(ξ1l(y1 − z) + ξ2l(y2 − z))
)

µ(dz)
]

.
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SINR COVERAGE MODEL / Typical cell study ...

Coverage probability via perturbation of Boolean model

valid for small interference factor κ

Denote p
(κ)
R = P(x ∈ C

(κ)
0 ), where |x| = R and

C
(κ)
0 =

{

y ∈ R
2 : Sl(y) ≥ κIΦ(y) +W

}

.

AssumeF∗(u) = P((Sl(x) −W ) ≤ u) admits Taylor approximation at 0:

F∗(u) = F∗(0) +
h∑

k=1

F
(k)
∗ (0)

k!
uk + R∗(u)

and R∗(u) = o(uh) u↘ 0.
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SINR COVERAGE MODEL / Typical cell study / Perturbation of Boolean model ...

Res.

p
(κ)
R =

value for the Boolean model
︷ ︸︸ ︷

P
(

Sl(x) ≥ W
)

−

correcting terms
︷ ︸︸ ︷

h∑

k=1

κkF
(k)
∗ (0)

k!
E
[
(IΦ(y))k

]
+

error
︷ ︸︸ ︷

o(κh) ,

provided E[(IΦ(x))2h] <∞.
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SINR COVERAGE MODEL / Typical cell study ...

Mean cell area formula

Denote the mean area of the cell of the BS located at 0 by v0 = E[|C0|].
Recall that pR is the coverage probability for location at distanceR.

Then

v0 =

∫

Rd

p|y| dy.
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SINR COVERAGE MODEL / Typical cell study ...

Numerical examples
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SINR COVERAGE MODEL / Handoff study ...

Overlapping of cells

Deterministic scenario: given n cellsC(xi, si, ti;φ,w), i = 1, . . . , n

Res. The inequality
∑n

i=1 ti/(1 + ti) < 1 is a necessary condition for
⋂n

i=1C(xi, si, ti;φ,w) 6= ∅
Random scenario:

Cor. If the distribution of the ratio T is such that T ≥ τ for some τ > 0, then the

numberKy of cells of the coverage process Ξ covering any given point y is a.s.

bounded

Ky <
1 + τ

τ
.

(Given point cannot be covered by (1 + τ)/τ or more cells, no matter how close

they are located and how their signal is strong — “pole handoff number”.)
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SINR COVERAGE MODEL / Handoff study / Overlapping of cells...

Example: For the maximal pilot’s bit energy-to-noise spectral power density

τ = Eb/NO = −14 dB the pole handoff number (theoretical maximal handoff

number)K ≤ 26.
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SINR COVERAGE MODEL / Handoff study ...

Moment expansion of the number of cells Ky covering y

Res. The factorial moment ofKy is given by

E[K(n)
y ] = E[Ky(Ky − 1) . . . (Ky − n+ 1)+]

=

∫

(Rd)n

P

(

y ∈
n⋂

k=1

C
(

xk, Sk, Tk; Φ +
n∑

i=1
i6=k

ε(xi,(Si,Ti)),W
))

×µ(dx1) . . . µ(dxn).
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SINR COVERAGE MODEL / Handoff study ...

Little law

In particular, for a homogeneous Poisson point process with intensity λ

E[K0] = λE[|C0|] ,

where |C0| is the area of the typical cell. Moreover, in this case the volume fraction

p (fraction of the space covered by Ξ) is given by

p =
∞∑

k=1

(−1)k+1

k!
E[(K0)

(k)] .
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SINR COVERAGE MODEL / Handoff study ...

Contact distribution functions

Example of contact d.f.’s estimation
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SINR COVERAGE MODEL / Handoff study / Contact distribution functions ...

Conditional distribution of the model

Two finite sets of points: z1, . . . , zn and z′1, . . . , z
′
p.

Condition:
points zi are covered by at least ni cells

and

points z′i are covered by at most n′
i cells,

for some given numbers n1, . . . , nn and n′1, . . . , n
′
p.

This type of conditions allows one to consider cases where the exact number of cells

covering a point is specified.
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SINR COVERAGE MODEL / Handoff study / Contact distribution functions ...

Almost exact simulation of the shot-noise

For a given size of observation window (ra-

diusR) one selects a larger influence win-

dow (radius R′) in order to get good es-

timate of the shot-noise term Iφ in the

smaller observation window.

Th. If the attenuation functions is of the form l(x, y) < C/|x− y|β for some

constantsC > 0, β > 0 and if the distribution of S has finite moment

E[S1/(β/2−δ)] <∞ for some δ ∈ [1, β/2], then one can show that for any

R, ε, α > 0, there existsR′ > 0 such that

P
(

sup|y|<R

∑

|Xi|>R′ Sil(y,Xi) < ε
)

> 1 − α .
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Perfect simulation in the observation window

One constructs a Markov process (Z̃t) of patterns of points that has for its

stationary distribution the conditional distribution.

Points are generated at exponential periods and located in the window but only

if their presence does not violate conditions of maximal coverage of the points

z′i. Points located in the window stay there for exponential times and are

removed, but only if their absence does not violate the conditions of maximal

coverage of the points z′i. If a particular removal would lead to the violation,

then the point are exponentially perpetuated.

The exact stationary distribution of the Markov process (Z̃t) is obtained using

backward simulation (coupling from the past) similar to that proposed by Kendall.
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Macroeconomic optimization example: densification / magnification

Increase the mean power m of existing antennas or

increase the density λ of antennas?

C total budget of an operator per km2,

Cλ cost of one antenna,

Cm cost of increasing the power of one antenna by 1W.

constraint: λCλ + Cmλ/m = C.

Plots of mean handoff as a functions of mean antenna power 1/m

under budget constraint with C = 1000, Cλ = 500 and from the

top: Cm = 1, 2, 5.

Solution: Plot maximum = Optimal configuration.

mean handoff level EN0

0

2
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IV MODELING AD-HOC NETWORKS

• Ad-hoc networks,

• A few sg “interference aware” models for ad-hoc networks,

• Some optimization problem in capacity and medium access control,

• References.
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• A random set of users distributed in

space and sharing a common Hertzian

medium.

• Users constitute ad-hoc network that is

in charge of transmitting information far

away via several hops.

• Users switch between emitter and re-

ceiver modes.

receiver
emitter
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Multi-hop transmissions

• Emitter sends a packet in some given di-

rection far away via several hops.

• The packet is received by some number

(possibly 0) of neigbouring receivers.

• An optimal receiver among them is in

charge of forwarding this packet in (one

of) his next emission time-slots.

• In the case of no reception, emitter re-

emits the packet next authorized time.

optimal receiver

towards destination

receiver

emitter
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Interference and successful reception

• Emitter sends a packet emitting some

power.

• Transmission distance attenuates the

emitted power.

• Emitted power causes interference at all

receivers.

• Reception is successful if the Signal to In-

terference Ratio (SIR) at the receiver is

large enough.

used signal interference

emitter

receiver
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AD-HOC NETWORKS ...

A few sg interference aware models

General settings

• Nodes distributed in (a subset of) the plane according to a Poisson p.p.

Φ = {Xi},

• Nodes Xi are marked in some way (not necessarily independently) by ei = 1

when node is emitting or 0 when not (it is a potential receiver);

• Call

– Φ1 = {Xi ∈ Φ : ei = 1}— emitters and

– Φ0 = {Xi ∈ Φ : ei = 0}— potential receivers.
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A way of choosing marks ei for nodes is called medium access control. Two

possibilities can be considered:

• Some “central authority” assigns marks ei (in some optimal way) for each given

configuration of nodes

⇒ {ei} are dependent in some way.

• Each node independently switches between modes ei = 1 and ei = 0

⇒ {ei} are independent, given configuration of nodes.
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Voronoi tessellation principle: Protocol Model [Gupta & Kumar (2000)]

• When the node Xi ∈ Φ1 transmits it can be successfully received by node

Xj ∈ Φ0 if

|Xj −Xi| ≤ (1 + ∆)|Xj −Xk| ∀Xk ∈ Φ1 ,

where ∆ ≥ 0 is some constant.

⇔ Xj ∈ modified Voronoi Cell CXi
(Φ1)

Stochastic geometry and communication networks,
B. Błaszczyszyn;
tutorial lecture, Performance’05, Juan-les-Pins, France, October 3-7, 2005

51

AD-HOC NETWORKS / A few models / Protocol model ...

Examples of medium access

centralized independent

The Protocol Model with centralized medium access was studied asymptotically

(when number of nodes goes to∞) by G & K (2000); to be commented.
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AD-HOC NETWORKS / A few models ...

Hard-core principle: Carrier-Sense Model

Close to some currently used protocols implemented e.g. in IEEE 802.11

• When the node Xi ∈ Φ1 transmits it can be successfully received by node

Xj ∈ Φ0 if

|Xj −Xi| ≤ R and |Xk −Xi| > Rcs ∀Xk ∈ Φ1 ,

where Rcs > R ≥ 0 are some constants.

⇔ Each communication within the transmission range R is protected by the

exclusion disc centered at the transmitter with radius Rcs > R. (One can also

think of the models with exclusion discs centered at the receiver and at both

transmitter and receiver.)
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Examples of medium access

• Matérn hard-core model:

⇒ Nodes are first independently marked by some auxiliary marks in [0, 1]. A

node Xi is selected as emitter (ei = 1) if its auxiliary mark is larger than all

auxiliary marks within its neighbourhood of range Rcs. Otherwise the node is

marked receiver.

• Gibbs hard-core model:

⇒ The steady state distribution of a spatial birth-and-death process of nodes.

When a node is born it is marked as emitter if in its neighbourhood of range Rcs

there is no any other emitter. Otherwise it is marked receiver.

The Carrier Sense Model, has not been studied yet by means of stochastic geometry

tools (to the best of our knowledge).
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SINR principle: Physical model

• Points Xi are independently identically marked by some Si ≥ 0 representing

powers used when emitting signals.

• l(r) = (Ar)−β signal attenuation function,

• T signal-to-interference ratio threshold,

• W > 0 constant external noise, κ > 0 interference factor.

• When the node Xi ∈ Φ1 transmits it can be successfully received by node

Xj ∈ Φ0 if Sil(|Xj −Xi|)
W + κIΦ1\Xi

(Xj)
≥ T ,

where IΦ1 is the shot-noise process of Φ1 IΦ1(y) =
∑

Xk∈Φ1 Skl(|y −Xk|).

⇔ Communication is successful if the signal-to-interference ratio at the receiver

is bigger than the threshold T .
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Connectivity for the physical model

See Performance’05 tutorial by P. Thiran.

Stochastic geometry and communication networks,
B. Błaszczyszyn;
tutorial lecture, Performance’05, Juan-les-Pins, France, October 3-7, 2005

56



AD-HOC NETWORKS ...

Some optimization problem in capacity and medium access for the physical model

Suppose emitterX0 = 0 has to send information to infinity along the real axis.

Define effective distance traversed in one hop, called also progress

D = max
Xj∈Φ0

(successful rec. ind.
︷ ︸︸ ︷

δ(Xj, 0,Φ
1)

effective distance
︷ ︸︸ ︷

|Xj|
(

cos(arg(Xj))
)+
)

,

optimal receiver

effective distance
emitter
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Define also a modified progress

D̃ = max
Xj∈Φ0

(
probab. of
successful rec.
︷ ︸︸ ︷

p|Xj |(λp)

effective distance
︷ ︸︸ ︷

|Xj|
(

cos(arg(Xj))
)+
)

.

Denote d(λ, p) = E[D], d̃(λ, p) = E[D̃].

Search for receivers that realize the progresses,D and D̃ can be implemented.
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Fact The mean total distance traversed in one hop by all transmissions initialized in

some unit area (called density of (modified) progress) is equal to λp d(λ, p) (resp.

λp d̃(λ, p)).

proof: ForB ⊂ R
2 of unit area, by the Campbell’s formula

E

[
∑

Xi∈Φ1∩B

Di

]

= λp

∫

R2

1(x ∈ B)E[D0] dx

= λp d(λ, p) .

Fact For all λ, p > 0 we have d(λ, p) ≥ d̃(λ, p).

proof follows from Jensen’s inequality.
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For z ∈ [0, 1], define an auxiliary function

G(z) = 2

∫

{t:et/
√

2et≤1/z}
arccos

( zet

√
2et

)

dt .

Res. For the M/M model with W = 0 The distribution function of the modified

progress is given by

FD̃(z) = P(D̃ ≤ z) = e−λ(1−p)(rmax(λp))2G(z/ρ(λp)) .
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AD-HOC NETWORKS / Some optimization problem ...

proof: D̃ is an extremal shot-noise maxXi∈Φ0 g(Xi) with the response function

g(x) = |x|p|x|(cos(arg(x)))+. Its distribution function can be expressed by

the Laplace transform of the (additive) shot noise

P(max
Xi∈Φ0

g(Xi) ≤ z) = E

[

exp

[
∑

Xi∈Φ0

ln(1(g(Xi) ≤ z))

]]

and thus, for Poisson p.p. Φ0 with intensity λ(1 − p)

P(D̃ ≤ z) = exp

[

−λ(1 − p)

∫

R2

1(g(x) > z) dx

]

.

Passing to polar coordinates in the integral
∫

R2 . . . dx completes the proof.
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Cor. For the M/M model with W = 0 the expectation of D̃ is equal to

d̃(λ, p) = E[D̃]

=
1

T 1/β
√

2λpeC

∫ 1

0

1 − exp
[(

1 − 1

p

) G(z)

2T 2/βC

]

dz ,
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The optimization

Goal: optimize the density of progress λp d(λ, p) in MAP p, for fixed λ.

Note that replacing d by d̃ in the optimization problem will result in conservative

bound on the density of progress.
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Res. The maximal density of modified progress λp d̃(λ, p) is attained for p

satisfying∫ 1

0

(

1 +
G(z)

pT 2/βC

)

exp
[(

1 − 1

p

) G(z)

2T 2/βC

]

dz = 1 .

Example: Modified transport capacities for

the special case with T = {13, 15, 17}dB

(curves from top to bottom).

λpd̃(λ, p)
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AD-HOC NETWORKS / Some optimization problem ...

Relation to Gupta & Kumar’s (2000) result

• The transport capacity of a bounded network with Protocol and SIR (Physical)

Model with centralized medium access is proportional to
√
λ (as λ→ ∞).

This law holds true even if the network architecture and operation is optimally

organized in a centralized manner.

• Our density of progress can be seen as an instantaneous transport capacity.

• We show that the independent medium access gives an instantaneous transport

capacity ofK(p)
√
λ.

• Closed form ofK(p) allows for optimization ofK(p) in p.

• Question: Is this performance implementable and stable in the strong sense

(existence of positive recurrent Markov process describing the system)?
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V POWER CONTROL IN CDMA:

FROM STATIC TO DYNAMIC MODELING

• CDMA Power allocation algebra,

• Decentralized Power Allocation Principle DPAP,

• Network architecture models,

• Maximal load estimates,

• Feasibility probabilites,

• Blocking rates via a spatial Erlang formula,

• References.
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CDMA: Interference limited radio channel

X

W

(Y  , S  )22

3 3(Y  ,S  ) (Y  ,S  )44

(Y  ,S  )

55(Y  , S  )

11

S1l(X − Y1)

W + I(X)
≥ C
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POWER CONTROL ...

CDMA Power allocation algebra

NBS = {Yj}j : locations of base-stations (BS’s) in R
2,

NM = {Xj
i }i: locations of mobiles served by BS No. j,

Cj
i : SINR required for mobileX j

i ,

W j
i : total non-traffic noise atX j

i (from common overhead channels, thermal noise),

κj, γ: orthogonality factors,

l(x, y): path-loss from y to x.

Power allocation feasible if exist antenna powers 0 ≤ Sj
i <∞ such that

Sj
i l(Yj −Xj

i )

W j
i + κjl(Yj, X

j
i )
∑

i′ 6=i

Sj
i′

︸ ︷︷ ︸
own-cell interference

+ γ
∑

k 6=j

l(Yk, X
j
i )
∑

i′

Sk
i′

︸ ︷︷ ︸
other-cell interference

≥ Cj
i all i, j .
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Local and global problem

Power allocation feasible

m
Local power allocation feasible

for each BS
and Global power allocation feasible
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Local problem

Fix BS j.

Fix total powers emitted on traffic channels by other BS’s: Sk =
∑

i′ S
k
i′ (k 6= j).

Power allocation is locally feasible in cell j if exist powers 0 ≤ Sj
i <∞ s.t.

Sj
i l(Yj −Xj

i )

W j
i + κjl(Yj, X

j
i )
∑

i′ 6=i S
j
i′ + γ

∑

k 6=j

l(Yk, X
j
i )
∑

i′

Sk
i′

︸ ︷︷ ︸

fixed=γ
∑

k 6=j l(Yk,Xj
i )Sk

≥ Cj
i all i.

Res. Local power allocation is feasible iff κj

∑

i

Cj
i

1 + κjC
j
i

< 1.

(local) pole capacity condition
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Global problem

Suppose for each BS local power allocation is feasible.

Define:

ajk = γ
∑

i

Hj
i l(Yk, X

j
i )

l(Yj, X
j
i )

for j 6= k and ajj =
∑

i

κjH
j
i ,

bj =
∑

i

Hj
iW

j
i

l(Yj, X
j
i )

, whereHj
i =

Cj
i

1 + κjC
j
i

.

Denote the matrix (ajk) = A, the vector (bj) = b and (Sj) = S.

Global power allocation is feasible if exist antenna powers 0 ≤ Sj <∞ (total

powers emitted on traffic channels) such that

S ≥ b + AS
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POWER CONTROL / Power allocation algebra...

Res.

• Global power allocation feasible iff the spectral radius of the matrix A is less

than 1.

• The minimal solution S is equal to
∑

n

A
n
b.

• The minimal solution can be obtained as the limit of the iteration

Ab,A2
b, . . .

• A sufficient condition for the spectral radius to be less than one is that A is

substochastic (has row-sums less then 1). ⇒ Decentralized Power Allocation

Principle
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Decentralized Power Allocation Principle (DPAP)

Each BS j verifies for the pattern N j
M of the mobiles it controls if

κj

∑

Xj
i ∈N j

M

Hj
i

︸ ︷︷ ︸
pole capacity term

+ γ
∑

k 6=j

∑

Xj
i ∈N j

M

Hj
i

l(Yk, X
j
i )

l(Yj, X
j
i )

︸ ︷︷ ︸
other-cell-interference correcting term

< 1 ,

equivalently
∑

Xj
i ∈N j

M

Hj
i

total path loss of user i

own-BS path loss of user i
︸ ︷︷ ︸

user’s i weight

< 1 .
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Network architecture models

Hexagonal (Hex) model (“too regular”)

• BS’s {Yj} located according to hexagonal

grid, p.p, with spatial density λBS .

• All antenna parameters are i.i.d. marks.

• All mobiles form independent Poisson p.p.

NM with spatial density λM .

• Each mobile is served by the nearest BS.
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Poisson-Voronoi (P-V) model (“too random”)

• BS’s {Yj} located according to Poisson p.p,

with intensity λBS .

• All antenna parameters are i.i.d. marks.

• All mobiles form independent Poisson p.p.

NM with intensity λM .

• Each mobile is served by the nearest BS.

(Equivalently: Each BS j serves mobiles N j
M

in its Voronoi cell.)
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POWER CONTROL ...

Maximal load estimations of P-V and Hex model

(Wrong) Idea: Given density of BS’s λBS find maximal density of mobiles λM ,

such that power allocation is feasible with probability 1.

Res. Given density of BS’s λBS , for any λM > 0 in both P-V and Hex model, the

spectral radius of A is equal∞ with probability 1, and thus power allocation in not

feasible!

Conclusion: A reduction of mobiles (admission control) is necessary for any

λM > 0. Calculate blocking probabilities.
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Explicit mean formulas

M̄ – mean number of users per cell,R ∼ – mean distance between BS’s;

λBS = 1/(πR2), L(r) = (Kr)α – path-loss, α – path-loss exponent,

κ – (downlink) orthogonality factor, H̄ ∼ – bit rate (SINR threshold)

Pmax – power limit

downlink:

M̄ ≤ 1 − Pcch/Pmax

H̄(κ+ f̄ + L(R)g(M̄, α)/Pmax)

f̄H = 1/(α− 2), f̄PV = 2/(α− 2), ḡH() ≈ . . . , ḡPV () = . . .

uplink:

M̄ ≤ 1

H̄(1 + f̄ + L(R)h(M̄, α)/Pmax)

h̄H() ≈ . . . , h̄PV () = . . .

Stochastic geometry and communication networks,
B. Błaszczyszyn;
tutorial lecture, Performance’05, Juan-les-Pins, France, October 3-7, 2005

78

POWER CONTROL / Maximal load estimations ...

M̄

Hexagonal model
Poisson-Voronoi model
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Mean maximal load for downlink with power constraints;

number of users in cell as a function of the distance between BS’s.
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Feasibility probabilities for DPAP

P
( ∑

Xj
i ∈N j

M

Hj
i

total path loss of user i

own-BS path loss of user i
< 1

︸ ︷︷ ︸

DPAP satisfied

)

.

It says says how often an non-constrained Poisson configuration of users in a given

cell cannot be entirely accepted by the admission scheme DPAP.
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Pr. of

DPAP
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Simulated DPAP failure probability for P-V model (more flat

curve) and Hex model (more steep) curve. The straight line

corresponds to the explicit “mean capacity” of the P-V model.

λBS =0.18 BS/km2

C = 0.011797
γ = 1
κ = 0.2
α = 3
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Blocking rates under DPAP — spatial dymamic modeling

• Fix one BS, say Y 0 = 0. Denote its cell, considered as a subset of R
2, by C0.

• Spatial Birth-and-Death (SBD) process of call arrivals to C0:

– for a given subset A ⊂ C0, call inter-arrival times to A are independent

exponential random variables with mean 1/λ(A), where λ(·) is some given

intensity measure of arrivals to C0 unit of time,

– call holding times are independent exponential random variables with mean τ .

• Call acceptance/rejection: given some configuration of calls in progress

{Xm inC0}, accept a new call at x if f(x) +
∑

m f(Xm) < 1, where f(·) is

the call weight function defined on C0, and reject otherwise.
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Define blocking rate associated with a given location in the cell is the fraction of users

arriving according to the SBD process at this location that are rejected.

Res.

• The stationary distribution (time-limit) of the (non-constrained) SBD process of

call arrivals is the distribution of a (spatial) Poisson process Π with density λ(·).

• The stationary distribution of calls accepted is the distribution of a Poisson

process truncated to the state space {∑m f(Xm) < 1}.

• Blocking rate bx at x ∈ C0 is given by the spatial Erlang formula

bx =
Π{1− f(x) ≤∑m f(Xm) < 1}

Π{∑m f(Xm) < 1} .

Rem. Note that
∑

m f(Xm) is a compound Poisson r.v., whose distribution can be

effectively approximated by Gaussian distribution.
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Numerical results (assumptions correspond to UMTS)

Blocking rate
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Approximations of the blocking probability as functions of the distance to BS for the

mean number M̄ = 27 of users per cell.
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Blocking rate
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Blocking probability at the cell edge, average blocking probability, and feasibility

probability as functions of the mean number of users in hexagonal cell.
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Blocking rate
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Blocking probability at the cell edge, average blocking probability, and feasibility

probability as functions of the mean number of users in hexagonal cell; comparison

for various cell radii R.
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