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Ad-hoc Network

Network made of nodes “arbitrarily” repartitioned in some
region, exchanging packets either transmitting or receiving
them on a common frequency, use intermediary
retransmissions by nodes lying on the path between the
packet source node and its destination nodes.

– p. 2



Ad-hoc Network

Network made of nodes “arbitrarily” repartitioned in some
region, exchanging packets either transmitting or receiving
them on a common frequency, use intermediary
retransmissions by nodes lying on the path between the
packet source node and its destination nodes.

In contrast to regular
(cellular) networks
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Ad-hoc = Poisson Point Process

Nodes “arbitrarily” repartitioned ≡ given network nodes are
modeled as an instance of a Poisson point process (p.p.).
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Ad-hoc = Poisson Point Process

Nodes “arbitrarily” repartitioned ≡ given network nodes are
modeled as an instance of a Poisson point process (p.p.).

Recall: A random repartition of points
Φ is called a (homogeneous) Poisson
p.p. of intensity λ (points per unit of
surface) if:

number of points of Φ in any set
A, Φ(A), is Poisson random
variable with mean λ times the
surface of A.

numbers of points Φ(Ai) of Φ in
disjoint sets Ai are independent
random variables.
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Why RandomLocation of Nodes?

There is no one particular pattern of nodes common for all
ad-hoc networks.
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Why RandomLocation of Nodes?

There is no one particular pattern of nodes common for all
ad-hoc networks.

The above patterns are different but somehow “similar”.
In fact, they are

different realizations (samples)...

sampled from the same distribution of Poisson p.p. of a
given intensity λ — averaged number of nodes per unit
of surface.
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Why RandomLocation of Nodes?, cont.

Modeling locations of nodes by a (random) point process,
allows one to take into account, in statistical manner, all
possible patterns of nodes within some given class (here
Poisson patterns of a given intensity).
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Why RandomLocation of Nodes?, cont.

Modeling locations of nodes by a (random) point process,
allows one to take into account, in statistical manner, all
possible patterns of nodes within some given class (here
Poisson patterns of a given intensity).

Instead of detailed, description of the location of every node
in a given ad-hoc network, we have one-parameter network
model (intensity λ).
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Why RandomLocation of Nodes?, cont.

Modeling locations of nodes by a (random) point process,
allows one to take into account, in statistical manner, all
possible patterns of nodes within some given class (here
Poisson patterns of a given intensity).

Instead of detailed, description of the location of every node
in a given ad-hoc network, we have one-parameter network
model (intensity λ).

Realizations of Poisson networks of different intensity λ.
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Why PoissonDistribution of Nodes?

In principle could be a different distribution.

Poisson
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Why PoissonDistribution of Nodes?

In principle could be a different distribution.

Poissonmore regular more clustering

However, Poisson distribution is the only one(a) for which the
numbers of nodes in disjoint sets are independent!

The above complete independence characterizing Poisson
p.p. is a natural “neutral” assumption for node locations,
when no other statistical information is available.

ano fixed node locations, no multiple nodes
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Why PoissonDistribution of Nodes? cont.

If one knows (suspects) that the nodes are not distributed
“homogeneously”, e.g. there are some “hot-spots”, (i.e., the
mean number of nodes per unit of surface varies in different
regions), then one can model the network by
non-homogeneous Poisson pp, with location dependent
intensity λ(x); in this case Φ(A) ∼ Poisson(

∫
A λ(x)d)x.
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Why PoissonDistribution of Nodes? cont.

If one knows (suspects) that the nodes are not distributed
“homogeneously”, e.g. there are some “hot-spots”, (i.e., the
mean number of nodes per unit of surface varies in different
regions), then one can model the network by
non-homogeneous Poisson pp, with location dependent
intensity λ(x); in this case Φ(A) ∼ Poisson(

∫
A λ(x)d)x.

Poisson distribution of nodes is preserved by various
“operations” on the nodes:

superposition (addition) of independent Poisson
processes,

random independent deletion of points (thinning),

random independent displacement of points.
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Medium Access Control (MAC)

The Medium Access Control (MAC) layer is a part of the
data communication protocol organizing simultaneous
packet transmissions in the network.
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Aloha MAC = Independent Thinning

In our talk we will consider the, perhaps most simple,
algorithm used in the MAC layer, called Aloha:
at each time slot (we will consider only slotted; i.e., discrete,
time case), each potential transmitter independently tosses
a coin with some bias p; it accesses the medium (transmits)
if the outcome is heads and it delays its transmission
otherwise.
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Aloha MAC = Independent Thinning

In our talk we will consider the, perhaps most simple,
algorithm used in the MAC layer, called Aloha:
at each time slot (we will consider only slotted; i.e., discrete,
time case), each potential transmitter independently tosses
a coin with some bias p; it accesses the medium (transmits)
if the outcome is heads and it delays its transmission
otherwise.

Thus, (slotted) Aloha ≡ (independent) thinning of the pattern
of nodes willing to emit.

Thinning is a nice operation on a p.p.

Fact: Thinning of Poisson p.p. of intensity λ leads to
Poisson p.p. of intensity pλ.
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Tuning Aloha Parameter p

In Aloha algorithm it is important to tune the value of the
Medium Access Probability (MAP) p, so as to realize a
compromise between two contradicting types of wishes:

a "social one" to have as many concurrent transmissions
as possible in the network and

an "individual one" to have high chances that authorized
transmissions be successful and/or efficient.

– p. 10



Tuning Aloha Parameter p

In Aloha algorithm it is important to tune the value of the
Medium Access Probability (MAP) p, so as to realize a
compromise between two contradicting types of wishes:

a "social one" to have as many concurrent transmissions
as possible in the network and

an "individual one" to have high chances that authorized
transmissions be successful and/or efficient.

The contradiction between these two wishes stems from the
fact that the very nature of the "medium" in which the
transmissions take place (Ethernet cable or electromagnetic
field in the case of wireless communications) imposes some
constraints on the maximal number and configuration of
successful concurrent transmissions.
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Signal to Interference Ratio (SIR)

A given transmission is successful if the power of the
received signal is sufficiently large with respect to the
interference, where

interference is the sum of the powers of signals received
from all other concurrent transmissions.
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Signal to Interference Ratio (SIR)

A given transmission is successful if the power of the
received signal is sufficiently large with respect to the
interference, where

interference is the sum of the powers of signals received
from all other concurrent transmissions.

Sometimes we speak about Signal to interference and Noise
Ratio (SINR).
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Interference as Shot-Noise

Interference created at y when all nodes of Φ transmit a unit
power signal can be expressed as the Shot-Noise (SN)

I(y) =
∑

X∈Φ

1

l(|X − y|)
,

where l(r) is the deterministic (mean) power attenuation
(path-loss) function on the distance r.
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Interference as Shot-Noise

Interference created at y when all nodes of Φ transmit a unit
power signal can be expressed as the Shot-Noise (SN)

I(y) =
∑

X∈Φ

1

l(|X − y|)
,

where l(r) is the deterministic (mean) power attenuation
(path-loss) function on the distance r.

An important special case consists in taking
l(u) = (Au)β for A > 0 and β > 2.

β = 2 corresponds to the free-space signal energy
propagation.

– p. 12



Channel Fading

Signal propagation and interference model can be extended
to take into account channel fluctuations due to multi-path
signal propagation — the so called fading

I(y) =
∑

X∈Φ

FX

l(|X − y|)
,

where {FX = F(X,y)} are random variables.
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Channel Fading

Signal propagation and interference model can be extended
to take into account channel fluctuations due to multi-path
signal propagation — the so called fading

I(y) =
∑

X∈Φ

FX

l(|X − y|)
,

where {FX = F(X,y)} are random variables.

One can reasonably assume that F(X,y) are i.i.d. in X, y. A
special case of exponential F is corresponds to the so
called Rayleigh fading.
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Poisson Shot-Noise

Fact: If Φ is homogeneous Poisson p.p. than the Laplace
transform (LT) LI of the SN I(y) with i.i.d. fading is

LI(ξ) := E[e−ξI ] = exp
[
−2λπ

∫ ∞

0
r(1− LF (ξ/l(r))) dr

]
,

where LF (·) is the Laplace transform of the fading
distribution. Can be extended to joint LT of vectors
(I(y1), . . . , I(y2)).
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Poisson Shot-Noise

Fact: If Φ is homogeneous Poisson p.p. than the Laplace
transform (LT) LI of the SN I(y) with i.i.d. fading is

LI(ξ) := E[e−ξI ] = exp
[
−2λπ

∫ ∞

0
r(1− LF (ξ/l(r))) dr

]
,

where LF (·) is the Laplace transform of the fading
distribution. Can be extended to joint LT of vectors
(I(y1), . . . , I(y2)).

Proof. Follows from the known expression of the LT of
(homogeneous) Poisson p.p.

LΦ(f) := E[e−
P

X∈Φ
f(X)] = E[exp{−λ

∫

R2

(1− ef(x)) dx}] .
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Stochastic Geometry for Wireless Networks

Stochastic Geometry (SG) is now a reach branch of applied
probability, which allows to study random phenomena on the
plane or in higher dimension; it is intrinsically related to the
theory of point processes. Initially its development was
stimulated by applications to biology, astronomy and
material sciences. Nowadays, it is also used in image
analysis. See an excellent monograph:
Stoyan, Kendall, Mecke (1995) Stochastic Geometry and its
Applications. Wiley, Chichester.
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Stochastic Geometry for Wireless Networks

Stochastic Geometry (SG) is now a reach branch of applied
probability, which allows to study random phenomena on the
plane or in higher dimension; it is intrinsically related to the
theory of point processes. Initially its development was
stimulated by applications to biology, astronomy and
material sciences. Nowadays, it is also used in image
analysis. See an excellent monograph:
Stoyan, Kendall, Mecke (1995) Stochastic Geometry and its
Applications. Wiley, Chichester.

In communications context, SG allows to capture the
non-regular and variable geometry of the network and
variability of radio channel conditions in probabilistic manner
primarily offering various averaging methods.
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A pioneer...

... in using SG for modeling of communication networks
Edgar N. Gilbert (1961) Random plane networks, SIAM-J

Edgar N. Gilbert (1962) Random subdivisions of space into
crystals, Ann. Math. Stat.

Gilbert (1961) proposes con-
tinuum percolation model
(percolation of the Boolean
model) to analyze the con-
nectivity of large wireless
networks.
Gilbert (1962) is on Poisson-
Voronoi tessellations.
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Recent Works

The are now quite many works on various wireless
communications problems using the stochastic geometry
setting.
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setting.
Among them, most related to what I will be talking about are
by: J. Andrews, O. Dousse, M. Franceschetti, M. Haenggi,
Ph. Jacquet, M. Kountouris, P. Thiran, E. Yeh, and many
others ...
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Recent Works

The are now quite many works on various wireless
communications problems using the stochastic geometry
setting.
Among them, most related to what I will be talking about are
by: J. Andrews, O. Dousse, M. Franceschetti, M. Haenggi,
Ph. Jacquet, M. Kountouris, P. Thiran, E. Yeh, and many
others ...

In a broader sense, many outstanding theoreticians of
stochastic geometry, random graphs, percolation theory
were and are also interested in communication technology
problems ...

I will not be able to pay tribute to the work they have done ...
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Outline of the talk

RANDOM GEOMETRIC GRAPH

SINR GRAPH

SPACE-TIME SINR GRAPH

– p. 18



Continuum percolation

Boolean model C(Φ, r):
germs in Φ,
spherical grains of given
radius r.

r
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Continuum percolation
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germs in Φ,
spherical grains of given
radius r.

r

Joining germs whose
grains intersect one
gets Random Geo-
metric Graph (RGG).
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Continuum percolation

Boolean model C(Φ, r):
germs in Φ,
spherical grains of given
radius r.

r

Joining germs whose
grains intersect one
gets Random Geo-
metric Graph (RGG).

percolation ≡ existence of an infinite connected subset
(component).
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Critical radius for percolation

Critical radius for the percolation in the Boolean Model with
germs in Φ

rc(Φ) = inf{r > 0 : P(C(Φ, r)percolates) > 0}
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Critical radius for percolation

Critical radius for the percolation in the Boolean Model with
germs in Φ

rc(Φ) = inf{r > 0 : P(C(Φ, r)percolates) > 0}

0

1

r
grain radius r

?

probability of percolation

c
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Phase transition in ergodic case

In the case when Φ is stationary and ergodic

0

1

c
grain radius r

r

probability of percolation
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Phase transition in ergodic case

In the case when Φ is stationary and ergodic

0

1

c
grain radius r

r

probability of percolation

If 0 < rc <∞ we say that the phase transition is non-trivial.
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Phase transition in Poisson RGG

Proposition 1 (Gilbert 1961) For Poisson RGG we have
0 < rc(Φ) <∞.
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Phase transition in Poisson RGG

Proposition 1 (Gilbert 1961) For Poisson RGG we have
0 < rc(Φ) <∞.

communication range r ≤ rc r > rc

network disconnected well connected network
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SINR MODEL

Φ = {Xi, (Si, Ti)} marked point process

{Xi} points of the p.p. on R
2

(Si, Ti) ∈ (R+)2 possibly random mark of point Xi —
(emitted power,SINR threshold)
Cell attached to point Xi:

Ci(Φ, W ) =
{

y :
Si/l(y −Xi)

W + κIΦ(y)
≥ Ti

}

where Iφ(y) =
∑

i 6=0 Si/l(y −Xi) (interference) κ ≥ 0

(interference cancellation factor), W ≥ 0 (external noise).
We call Ci SINR cell and Ξ(Φ; W ) =

⋃
i∈N

Ci(Φ, W ) the
SINR coverage process.
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SINR COVERAGE MODEL

Coverage properties of the SINR Model studied in [BB,
Baccelli 2001].
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interference cancellation factor κ→ 0

Small interference factor allows one to approximate SINR
cells by a Boolean model (quantitative results via
perturbation methods)
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SINR COVERAGE MODEL cont’d
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noise W = 0 and attenuation exponent β →∞

SIR cells tend to Voronoi cells whenever attenuation is
stronger, e.g. in urban areas.
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SINR Graph

Connect nodes Xi and Xj by an edge when Xi ∈ Cj and
Xj ∈ Ci, i.e.; when Xi is in the SINR cell of Xj and
vice-versa.
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Phase transition in SINR Graph

Proposition 2 (Dousse etal 2006) In Poisson SINR graph
we observe a non-trivial phase transition for the percolation.
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no percolation

In contrast to the Boolean model an increase of the node
density (or signal power) can disconnect the network.

– p. 27



Beyond Poisson assumption

We say that Φ is sub(super)-Poisson if it is dcx smaller
(larger) than Poisson pp (of the same mean measure).

We say that Φ is weakly sub(super)-Poisson if it has void
probabilities and moment measures smaller than Poisson pp
of the same mean measure.

Sub-Poisson pp cluster their points less than Poisson.
Super-Poisson pp cluster their points more.

Conjecture: Clustering worsens percolation.
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Conjecture for perturbed lattices

Φ1 ≤dcx Φ2

⇓
rc(Φ1) ≤ rc(Φ2)

Bin(1,1) =

const

Bin(1,1/n)րcx

Poi(1)

NBin(n,1/(1 +

n))ցcxPoi(1)

NBin(1,1/2) =

Geo(1/2)
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Phase transitions for sub-Poisson pp

Proposition 3 (BB. Yogeshwaran 2011) Let Φ be a
stationary pp on R

d, weakly sub-Poisson (void probabilities
and moment measures smaller than for the Poisson pp of
some intensity λ). Then

0 <
1

(2dλ(3d − 1))1/d
≤ rc(Φ) ≤

√
d(log(3d − 2))1/d

λ1/d
<∞.
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Phase transitions for sub-Poisson pp

Proposition 3 (BB. Yogeshwaran 2011) Let Φ be a
stationary pp on R

d, weakly sub-Poisson (void probabilities
and moment measures smaller than for the Poisson pp of
some intensity λ). Then

0 <
1

(2dλ(3d − 1))1/d
≤ rc(Φ) ≤

√
d(log(3d − 2))1/d

λ1/d
<∞.

Similar results for SINR-graph percolation.
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SPACE-TIME SINR GRAPH
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Previous Model, Time Dimension Added
Static Poisson network of density λ nodes/km2.
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denotes MAC decision, E[e] = p.
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Previous Model, Time Dimension Added
Static Poisson network of density λ nodes/km2.

Synchronous slotted Aloha MAC: each node
independently, with probability p, in each time slot
n = 1, 2, . . . decides to emit one packet; e = 1, 0

denotes MAC decision, E[e] = p.

I.i.d. point-to-point fading F , constant in a given time
slot, may or may-not vary across times slots:

slow fading (shadowing): channel conditions do not
change in time,

fast fading : channel conditions independently
re-sampled for each channel in each slot.←node mobility

External noise power W , may or may-not vary in time
( slow or fast noise scenario, respectively).
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Space-Time Network Model, cont’d

We restrict ourselves to Poisson p.p. and to the fast fading
and fast noise scenario (most favorable for reducing local
delays).

As before, we consider SINR condition for the successful
transmission.
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Successful Transmission

We will say that transmitter {Xi} covers its receiver yi in the
reference time slot if

SINRi =
F i

i /l(|Xi − yi|)
W + I1

i

≥ T ,(1)

where

I1
i =

∑
Xj∈eΦ1, j 6=i

F i
j /l(|Xj − yi|) is the SN of

Φ̃1 = {Xi : ei = 1} and models the interference,

W > 0 is the external (thermal) noise — a r. v.
independent of everything else.

and where T is some SINR threshold.

We say equivalently that xi is successfully received by yi.
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Broadcast Receiver Model

Next-hop receivers should be designated by a particular
routing scheme.
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Broadcast Receiver Model

Next-hop receivers should be designated by a particular
routing scheme.
In order to be able to study various routing schemes, we do
not prescribe any receives to emitters.

Instead, for any given emitter and any time slot we identify
all nodes in the network, which can successfully receive the
packet.

This is usually called broadcast (or multicast) model (used
when a given node wants to transmit its packet to many
nodes in the network), but here we will use it to “trace” in
space and time all possible paths (routs) of packets.

• Broadcast model allows us to consider and compare
different routing schemes and show some universal bounds
on the performance (end-to-end delay) of these schemes.
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Space-Time SINR Random Graph

Assuming the broadcast receiver model we define a graph
that allows us to “trace” in space and timer all possible paths
(routs) of packets send in the model.
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(routs) of packets send in the model.

Nodes of this SINR graph G are all pairs
(
a point Xi ∈ Φ of the network , a time slot n

)
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all pairs (Xi, n)→ (Xj, n + 1) whenever Xi can
successfully send packet to Xj at slot n,

and all pairs (Xi, n)→ (Xi, n + 1),
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Space-Time SINR Random Graph

Assuming the broadcast receiver model we define a graph
that allows us to “trace” in space and timer all possible paths
(routs) of packets send in the model.

Nodes of this SINR graph G are all pairs
(
a point Xi ∈ Φ of the network , a time slot n

)
.

Directed edges of this oriented graph connect

all pairs (Xi, n)→ (Xj, n + 1) whenever Xi can
successfully send packet to Xj at slot n,

and all pairs (Xi, n)→ (Xi, n + 1),

i.e. all possible moves of a tagged packet from Xi at time n.
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SINR Graph G
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i ←space→
↓

time

• emitting nodes, ◦ non-emitting nodes (receives)
ցւ successful packet transmissions
↓ packet stays at the given node.
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Node Degree

Trivial observation: G has no isolated nodes.
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Node Degree

Trivial observation: G has no isolated nodes. Denote:
Hout,k

i (n) the number of paths of length k (with k edges)
originating from (Xi, n),

Hin,k
i (n) the number of such path terminating at (Xi, n),

In particular: Hout
i (n) = Hout,1

i (n) out-degree of the node
(Xi, n) and Hin

i (n) = Hin,1
i (n) in-degree.
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Node Degree

Trivial observation: G has no isolated nodes. Denote:
Hout,k

i (n) the number of paths of length k (with k edges)
originating from (Xi, n),

Hin,k
i (n) the number of such path terminating at (Xi, n),

In particular: Hout
i (n) = Hout,1

i (n) out-degree of the node
(Xi, n) and Hin

i (n) = Hin,1
i (n) in-degree.

Fact 1 For any p.p. Φ (not-necessarily Poisson) and any
distribution of fading F , the in-degree Hin

i of any node of G
is bounded from above by the constant ξ = 1/T + 2.
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Node Degree

Trivial observation: G has no isolated nodes. Denote:
Hout,k

i (n) the number of paths of length k (with k edges)
originating from (Xi, n),

Hin,k
i (n) the number of such path terminating at (Xi, n),

In particular: Hout
i (n) = Hout,1

i (n) out-degree of the node
(Xi, n) and Hin

i (n) = Hin,1
i (n) in-degree.

Fact 1 For any p.p. Φ (not-necessarily Poisson) and any
distribution of fading F , the in-degree Hin

i of any node of G
is bounded from above by the constant ξ = 1/T + 2.

Proof: Simple SINR algebra shows that no node can
simultaneously, successfully receive more than 1/T + 1

transmissions. ←so called “pole capacity” of down-link channel
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Node Degree, cont.

Denote:
hout,k = E0[Hout,k

0 (n)] the expected numbers of paths of
(graph) length k originating or from the typical node,

hin,k = E0[Hin,k
0 (n)] the expected numbers of such paths

terminating at the typical node.

In particular: hout = hout,1 mean out-degree of the typical
node and hin = hin,1 mean in-degree of the typical node.
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Node Degree, cont.

Denote:
hout,k = E0[Hout,k

0 (n)] the expected numbers of paths of
(graph) length k originating or from the typical node,

hin,k = E0[Hin,k
0 (n)] the expected numbers of such paths

terminating at the typical node.

In particular: hout = hout,1 mean out-degree of the typical
node and hin = hin,1 mean in-degree of the typical node.

Fact 2 For any p.p. Φ (not-necessarily Poisson) and any
distribution of fading F , hin,k = hout,k.
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Node Degree, cont.

Denote:
hout,k = E0[Hout,k

0 (n)] the expected numbers of paths of
(graph) length k originating or from the typical node,

hin,k = E0[Hin,k
0 (n)] the expected numbers of such paths

terminating at the typical node.

In particular: hout = hout,1 mean out-degree of the typical
node and hin = hin,1 mean in-degree of the typical node.

Fact 2 For any p.p. Φ (not-necessarily Poisson) and any
distribution of fading F , hin,k = hout,k.

Proof: In a stationary graph (with shift invariant distribution)
on average “what flows in” to a given region is equal to “what
flows out” from it. ←so called “mass-transport principle”
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Node Degree, cont.

Corollary 1 Under the assumptions of Facts 1 and 2

G is locally finite (both on in- and out-degrees of all
nodes are P-a.s. finite).

Hin,k
i (n) ≤ ξk P-a.s for all i, n, k.

hin,k = hout,k ≤ ξk for all k.

In particular

In-degrees are a.s. bounded by a constant ξ <∞.

Out-degrees are bounded by ξ in mean.
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Connectivity

Denote Li,j(n) = inf{k ≥ n : eiδi,j(k) = 1} number of time
slots (hops on the graph G) after time n, necessary to go
from Xi directly to Xj ; i.e., local delay from Xi to Xj at
time n.
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Denote Li,j(n) = inf{k ≥ n : eiδi,j(k) = 1} number of time
slots (hops on the graph G) after time n, necessary to go
from Xi directly to Xj ; i.e., local delay from Xi to Xj at
time n.

Fact 3 Assume a general p.p. Φ and a general fading F

having unbounded support. Then, given Φ, all local delays
Li,j(n) are P-a.s. finite geometric random variables.
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Connectivity

Denote Li,j(n) = inf{k ≥ n : eiδi,j(k) = 1} number of time
slots (hops on the graph G) after time n, necessary to go
from Xi directly to Xj ; i.e., local delay from Xi to Xj at
time n.

Fact 3 Assume a general p.p. Φ and a general fading F

having unbounded support. Then, given Φ, all local delays
Li,j(n) are P-a.s. finite geometric random variables.

Corollary 2 Under the assumptions of Fact 3, G is P-a.s.
connected in the following weak sense: for all Xi, Xj ∈ Φ

and all n, there exists a path from (Xi, n) to the set
{(Xj, n + l) : l ≥ 1}.
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Mean Exit Time from the Typical Point of Φ

Denote Li(n) = infj 6=i Li,j the length of a shortest path
from (Xi, n) to ({Φ \Xi})× {n + 1, n + 2, . . .}; i.e., exit
time from point Xi ∈ Φ after time slot n. Denote by
ℓ = E0[L0(n)] = E0[L0(0)] the mean exit time from the
typical point of Φ.
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Mean Exit Time from the Typical Point of Φ

Denote Li(n) = infj 6=i Li,j the length of a shortest path
from (Xi, n) to ({Φ \Xi})× {n + 1, n + 2, . . .}; i.e., exit
time from point Xi ∈ Φ after time slot n. Denote by
ℓ = E0[L0(n)] = E0[L0(0)] the mean exit time from the
typical point of Φ.

Fact 4 Assume Poisson p.p. Φ, F to be exponential and the
noise W to be bounded away from 0, the path-loss
l(r) = (Ar)β Then P0{L0(0) ≥ q } ≥ 1/q for q large
enough.
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Mean Exit Time from the Typical Point of Φ

Denote Li(n) = infj 6=i Li,j the length of a shortest path
from (Xi, n) to ({Φ \Xi})× {n + 1, n + 2, . . .}; i.e., exit
time from point Xi ∈ Φ after time slot n. Denote by
ℓ = E0[L0(n)] = E0[L0(0)] the mean exit time from the
typical point of Φ.

Fact 4 Assume Poisson p.p. Φ, F to be exponential and the
noise W to be bounded away from 0, the path-loss
l(r) = (Ar)β Then P0{L0(0) ≥ q } ≥ 1/q for q large
enough.

Corollary 3 Under the assumptions of Fact 4 the mean exit
time from the typical node is infinite; ℓ =∞. Moreover, the
fraction of points of Φ which have exit delays larger than q

decreases not faster than 1/q asymptotically for large q

(heavy tailed distribution!).
– p. 42



Optimal Paths

Denote by Pi,j(n) the (graph) length of a shortest path on G
from (Xi, n) to {Xj} × {n + 1, n + 2, . . .}; i.e., the least
possible end-to-end delay from Xi to Xj starting at time n.
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Denote by Pi,j(n) the (graph) length of a shortest path on G
from (Xi, n) to {Xj} × {n + 1, n + 2, . . .}; i.e., the least
possible end-to-end delay from Xi to Xj starting at time n.
Note that this delay is achieved only by optimal (least-hop)
routing, which cannot be implemented as it requires full
information about the system, including future MAC
decisions of all nodes. Thus, this is only an upper bound on
the delay for any feasible routing algorithm.
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Denote by Pi,j(n) the (graph) length of a shortest path on G
from (Xi, n) to {Xj} × {n + 1, n + 2, . . .}; i.e., the least
possible end-to-end delay from Xi to Xj starting at time n.
Note that this delay is achieved only by optimal (least-hop)
routing, which cannot be implemented as it requires full
information about the system, including future MAC
decisions of all nodes. Thus, this is only an upper bound on
the delay for any feasible routing algorithm.
For i 6= j we have

exit delay→ Li(n) ≤ Pi,j(n) ≤ Li,j(n) ←delay for the direct hop

and thus it follows immediately from Fact 3 that all the three
collections of delays are finite r.v.s P-a.s.
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Optimal Paths

Denote by Pi,j(n) the (graph) length of a shortest path on G
from (Xi, n) to {Xj} × {n + 1, n + 2, . . .}; i.e., the least
possible end-to-end delay from Xi to Xj starting at time n.
Note that this delay is achieved only by optimal (least-hop)
routing, which cannot be implemented as it requires full
information about the system, including future MAC
decisions of all nodes. Thus, this is only an upper bound on
the delay for any feasible routing algorithm.
For i 6= j we have

exit delay→ Li(n) ≤ Pi,j(n) ≤ Li,j(n) ←delay for the direct hop

and thus it follows immediately from Fact 3 that all the three
collections of delays are finite r.v.s P-a.s.
Use upper or lower bound to prove, “positive” or “negative”
result for the asymptotic end-to-end delay. – p. 43



Optimal Paths—Poisson Case;Negative Result

Proposition 4 Assume Φ to be a Poisson p.p., F to be
exponential and the noise W to have a general distribution.
Then for all X, Y ∈ R

2, the mean local delay from X to Y is
finite given the existence of these two points in Φ. More
precisely,

EX,Y [LX,Y (0)] <∞ ,

where EX,Y is two-point Palm expectation.
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Optimal Paths—Poisson Case;Negative Result

Proposition 4 Assume Φ to be a Poisson p.p., F to be
exponential and the noise W to have a general distribution.
Then for all X, Y ∈ R

2, the mean local delay from X to Y is
finite given the existence of these two points in Φ. More
precisely,

EX,Y [LX,Y (0)] <∞ ,

where EX,Y is two-point Palm expectation.
Proposition 5 [BB. Baccelli, Mirsadeghi (2011)] Under the
assumptions of Proposition 4

lim
|X−Y |→∞

EX,Y [PX,Y (0)]

|X − Y |
=∞ ;

i.e., the mean least end-to-end delay in Poisson network
grows faster than the distance! (Because of Poisson voids.)
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Filling-in Poisson Voids; Toward a Positive Result

We will assume now p.p. Φ modeling the location o network
nodes to be

Poisson p.p. + (“stationarized”, arbitrarily sparse) Grid
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We will assume now p.p. Φ modeling the location o network
nodes to be

Poisson p.p. + (“stationarized”, arbitrarily sparse) Grid

For x ∈ R
2, let X(x) be the point of Φ which is closest to x.
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We will assume now p.p. Φ modeling the location o network
nodes to be

Poisson p.p. + (“stationarized”, arbitrarily sparse) Grid

For x ∈ R
2, let X(x) be the point of Φ which is closest to x.

Extend the definition of the shortest path on G: for all
x, y ∈ R

2, define P (x, y, n) = PX(x),X(y)(n).
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Filling-in Poisson Voids; Toward a Positive Result

We will assume now p.p. Φ modeling the location o network
nodes to be

Poisson p.p. + (“stationarized”, arbitrarily sparse) Grid

For x ∈ R
2, let X(x) be the point of Φ which is closest to x.

Extend the definition of the shortest path on G: for all
x, y ∈ R

2, define P (x, y, n) = PX(x),X(y)(n).

Let p(x, y, Φ) = E[P (x, y, 0) |Φ] be expected conditional
shortest end-to-end delay from x to y given locations of
network nodes Φ.

– p. 45



Filling-in Poisson Voids; a Positive Result

Proposition 6 Consider Poisson+Grid p.p., with remaining
assumptions as in Prop. 4. Then, for all unit vectors d ∈ R

2,
the non-negative limit

κd = lim
t→∞

p(0, td, Φ)

t
exists and is P-a.s. finite. The convergence also holds in L1.
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Filling-in Poisson Voids; a Positive Result

Proposition 6 Consider Poisson+Grid p.p., with remaining
assumptions as in Prop. 4. Then, for all unit vectors d ∈ R

2,
the non-negative limit

κd = lim
t→∞

p(0, td, Φ)

t
exists and is P-a.s. finite. The convergence also holds in L1.

Proposition 7 [BB. Baccelli, Mirsadeghi (2011)] Under the
assumptions of Proposition 6, suppose that W is constant
and strictly positive. Then E[κd] > 0.

– p. 46



Filling-in Poisson Voids; a Positive Result

Proposition 6 Consider Poisson+Grid p.p., with remaining
assumptions as in Prop. 4. Then, for all unit vectors d ∈ R

2,
the non-negative limit

κd = lim
t→∞

p(0, td, Φ)

t
exists and is P-a.s. finite. The convergence also holds in L1.

Proposition 7 [BB. Baccelli, Mirsadeghi (2011)] Under the
assumptions of Proposition 6, suppose that W is constant
and strictly positive. Then E[κd] > 0.

Superposing an arbitrarily sparse, periodic infrastructure of
nodes with Poisson p.p. makes the least end-to-end delay
scale linearly with the distance.
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The Positive Result — Proof Idea

Note that
P (x, z, n) ≤ P (x, y, n) + P

(
y, z, n + P (x, y, n)

)
.
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Note that
P (x, z, n) ≤ P (x, y, n) + P

(
y, z, n + P (x, y, n)

)
.

Taking conditional expectations given Φ we obtain
p(x, z, Φ) ≤ p(x, y, Φ) + p(y, z, Φ) ,

i.e., the sub-additivity property.
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)
.

Taking conditional expectations given Φ we obtain
p(x, z, Φ) ≤ p(x, y, Φ) + p(y, z, Φ) ,

i.e., the sub-additivity property.

By (a continuous version) of the Kingman’s sub-additive
ergodic theorem the limit κd (called sometimes
time-constant; in our case it is “not quite” constant) exists.
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The Positive Result — Proof Idea

Note that
P (x, z, n) ≤ P (x, y, n) + P

(
y, z, n + P (x, y, n)

)
.

Taking conditional expectations given Φ we obtain
p(x, z, Φ) ≤ p(x, y, Φ) + p(y, z, Φ) ,

i.e., the sub-additivity property.

By (a continuous version) of the Kingman’s sub-additive
ergodic theorem the limit κd (called sometimes
time-constant; in our case it is “not quite” constant) exists.

One has to work (rather hard) to prove that this limit is
positive and finite. For this we use our previously developed
machinery to analyze mean local delays, this time in the
broadcast receiver model. This completes the proof.
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Summary

Asymptotic end-to-end delay as a First-Passage Percolation
Problem.
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Summary

Asymptotic end-to-end delay as a First-Passage Percolation
Problem.
Our main performance characteristic is the limit of the ratio

minimal number of hops on G from node O to node D

Euclidean distance |O −D|

when |O −D| → ∞, called time constant.
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Summary

Asymptotic end-to-end delay as a First-Passage Percolation
Problem.
Our main performance characteristic is the limit of the ratio

minimal number of hops on G from node O to node D

Euclidean distance |O −D|

when |O −D| → ∞, called time constant.

The number of hops on G in the numerator above,
corresponds to the end-to-end delay (from O to D); it is the
sum of the local delays at all nodes visited on the
shortest-time path by some tagged packet, which does not
experience any queuing at nodes before being scheduled for
transmission.

– p. 48



Summary...; Two Main Results

1. In Poisson network the end-to-end delay grows faster
than the distance |O −D| (time constant is infinite)
(principally due to large voids in the repartition of nodes).
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Summary...; Two Main Results

1. In Poisson network the end-to-end delay grows faster
than the distance |O −D| (time constant is infinite)
(principally due to large voids in the repartition of nodes).

2. Adding an arbitrarily sparse, periodic infrastructure of
nodes (superposing it with Poisson p.p.) makes
end-to-end delay scale linearly with |O −D| (time
constant positive and finite).
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THANK YOU
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