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Telecommunications Science

Communications Science. XXth Century

Fixed line telephony

@ Scientific language of telecommunications since the start of XX
century has been Queueing Theory (Erlang, Palm, Kleinrock, et
al.)
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Telecommunications Science

Communications Science. XXth Century

Fixed line telephony

@ Scientific language of telecommunications since the start of XX
century has been Queueing Theory (Erlang, Palm, Kleinrock, et
al.)

@ Basic model: Poisson arrivals temporal process (1D point
process).
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Telecommunications Science

Why Poisson?

Poisson limit theorem: If ®, are i.i.d. point processes with
E ®,(B) = u(B) < oo for any bounded B and z o ®;, r € (0, 1] denotes
independent t-thinning of its points, then

1

—o(®+-+@,) =11,

n

where II is a Poisson PP with indensity measure .
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Telecommunications Science

Limitation of Poisson framework

Burstiness!

@ Crucial assumption: E ®;(B) = u(B) < oo roughly means
workload associated with points (duration of calls) is fairy
constant.

Thinning-stable point processes as a model for bursty spatial data



Telecommunications Science

Limitation of Poisson framework

Burstiness!

@ Crucial assumption: E ®;(B) = u(B) < oo roughly means
workload associated with points (duration of calls) is fairy
constant.

@ SMS message ~ 10 bytes of data, video download ~ 10'° bytes:
8-order magnitude difference!

@ Addressing burstiness in time: Heavy-tailed traffic queueing,
Fractional BM, etc.
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Telecommunications Science

Late XXth Century

Performance of modern telecommunications systems is strongly
affected by their spatial structure.

Spatial Poisson PP as a model for structuring elements of telecom
networks: E.N. Gilbert, Salai, Baccelli, Klein, Lebourges & Z
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Telecommunications Science

What is random in stations’ position?

table point processes as a model for bursty s




Telecommunications Science

What is random in stations’ position?
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Telecommunications Science

Challenge: spatial burstiness

Paris
Féte de la Musique /svs

23: 13 21/06/2008
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Stability and discrete stability

Stability

Definition
A random vector £ (generally, a random element on a convex cone) is
called strictly a-stable (notation: StaS) if for any ¢ € [0, 1]

tl/aé-/ + (1 o t)l/ag// E f, (1)

where ¢’ and £’ are independent copies of &.

Stability and CLT

Only StaS vectors ¢ can appear as a weak limit
G+ G) = €
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Stability and discrete stability

DaS point processes

Definition

A point process @ (or its probability distribution) is called discrete
a-stable or a-stable with respect to thinning (notation DaS), if for any
0<t<1

Al o @’ + (1 o Z)l/a o d" D D,

where @’ and ®” are independent copies of ® and 7o ® is
independent thinning of its points with retention probability 7.
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Stability and discrete stability

Discrete stability and limit theorems

Let U, ¥,,... be a sequence of i.i.d. point processes and
S, = >.i_; ¥;. If there exists a PP & such that for some a we have

nV/eos, =& asn-— oo

then @ is DasS.

CLT

When intensity measure of ¥ is o-finite, then o =1and ¢ is a
Poisson processes. Otherwise, ® has infinite intensity measure —
bursty
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Stability and discrete stability

DaS point processes and StaS random measures

Cox process

Let € be a random measure on the space X. A point process ® on X
is a Cox process directed by &, when, conditional on &, realisations of
® are those of a Poisson process with intensity measure &.
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Stability and discrete stability

Characterisation of DaS PP

A PP ® is a (regular) Do.S iff it is a Cox process I1¢ with a StaS
intensity measure &, i.e. a random measure satisfying

tl/ag/_’_( )1/045// D 5
Its p.g.fl. is given by
EH u(x; —exp{ / (1 —u,,u>o‘a(du)}, 1 —ueBM
x; €D

for some locally finite spectral measure o on the set M, of probability
measures.

Da'S PPs exist only for0 < o < 1 and for o = 1 these are Poisson.
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Stability and discrete stability

Sibuya point processes

A r.v. v has Sibuya distribution, Sib(«), if
gy(5)=1—(1—9)% ae(0,1).

It corresponds to the number of trials to get the first success in a
series of Bernoulli trials with probability of success in the kth trial
being a/k.
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Stability and discrete stability

Sibuya point processes

A r.v. v has Sibuya distribution, Sib(«), if
gy(5)=1—(1—9)% ae(0,1).

It corresponds to the number of trials to get the first success in a
series of Bernoulli trials with probability of success in the kth trial
being a/k.

Sibuya point processes

Let i be a probability measure on X. The point process T on X is
called the Sibuya point process with exponent o« and parameter
measure p if T(X) ~ Sib(a) and each point is p-distributed
independently of the other points. Its distribution is denoted by
Sib(a, ).
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Stability and discrete stability

Examples of Sibuya point processes

B . T o
o . w o
a a a

Figure : Sibuya processes: o = 0.4, u ~ N(0,0.3%1)

Thinning-stable point processes as a model for bursty spatial data



Stability and discrete stability

DaS point processes as cluster processes

Let M[; be the set of all probability measures on X. A regular DaS
point process ® can be represented as a cluster process with

@ Poisson centre process on M driven by intensity measure o;

@ Component processes being Sibuya processes Sib(«, 1),
n e M].
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Stability and discrete stability

Statistical Inference for DaS processes

We assume the observed realisation comes from a stationary and
ergodic DaS process without multiple points.
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Stability and discrete stability

Statistical Inference for DaS processes

We assume the observed realisation comes from a stationary and
ergodic DaS process without multiple points.

Such processes are characterised by:

@ )\ —the Poisson parameter: mean number of clusters per unit
volume

@ « — the stability parameter
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Stability and discrete stability

Statistical Inference for DaS processes

We assume the observed realisation comes from a stationary and
ergodic DaS process without multiple points.

Such processes are characterised by:

@ )\ —the Poisson parameter: mean number of clusters per unit
volume

@ « — the stability parameter

@ A probability distribution o((dr) on M; (the distribution of the
Sibuya parameter measure)
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Stability and discrete stability

Construction

@ Generate a homogeneous Poisson PP ), 4, of centres of
intensity A;

@ For each y; generate independently a probability measure y;
from distribution oy;

© Take the union of independent Sibuya clusters Sib(a, p; (¢ — y;)).
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Stability and discrete stability

Example of DaS point process

. e
.
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Figure : A = 0.4, a = 0.6, oy = 8,,, where . ~ N(0,0.3%1)
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Estimation of 1

. Estimation of \ and o
Parameter inference

Parameters to estimate

Consider the case when all the clusters have the same distribution,
so that oy = ¢,, for some p € M.

We always need to estimate \ and «, often also .
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Estimation of 1

. Estimation of \ and o
Parameter inference

Parameters to estimate

Consider the case when all the clusters have the same distribution,
so that oy = ¢,, for some p € M.

We always need to estimate \ and «, often also .

We consider three possible cases for p:
@ . is already known

@ . is unknown but lies in a parametric class (e.g. u ~ N(0,0%I) or
p~ U(B,(0)))
@ 4 is totally unknown
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Estimation of p

. Estimation of \ and o
Parameter inference

Estimation of

Identifying a big cluster in the dataset and using it to estimate .
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Estimation of p
Estimation of \ and o

Parameter inference

Estimation of

Identifying a big cluster in the dataset and using it to estimate .

How to distinguish clusters in the configuration? How to identify at
least the biggest clusters?
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Estimation of p
Estimation of \ and o

Parameter inference

Estimation of

Identifying a big cluster in the dataset and using it to estimate .

How to distinguish clusters in the configuration? How to identify at
least the biggest clusters?

@ Interpreting data as a mixture model
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Estimation of p

. Estimation of \ and o
Parameter inference

Estimation of

Identifying a big cluster in the dataset and using it to estimate .

How to distinguish clusters in the configuration? How to identify at
least the biggest clusters?

@ Interpreting data as a mixture model
@ Expectation-Maximisation algorithm
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Estimation of p

. Estimation of \ and o
Parameter inference

Estimation of

Identifying a big cluster in the dataset and using it to estimate .

How to distinguish clusters in the configuration? How to identify at
least the biggest clusters?

@ Interpreting data as a mixture model
@ Expectation-Maximisation algorithm
@ Bayesian Information Criterion
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Estimation of p

. Estimation of \ and o
Parameter inference

Example: gaussian spherical clusters, 2D case

s - $ -
" .- PR ey v &
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(a) Original process (b) Clustered process

Figure : DaS process with Gaussian clusters: A = 0.5, a = 0.6, covariance
matrix 0.1°I. mclust R-procedure with Poisson noise.
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Estimation of p

. Estimation of \ and o
Parameter inference

Estimation of

After we single out one big cluster:

@ we estimate p using kernel density or we just use the sample
measure
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Estimation of p

. Estimation of \ and o
Parameter inference

Estimation of

After we single out one big cluster:

@ we estimate p using kernel density or we just use the sample
measure

@ if pis in a parametric class we estimate the parameters
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Estimation of p
Estimation of \ and o

Parameter inference

Overlaping clusters - heavy thinning approach

Figure : A = 0.4, a = 0.6, p, ~ N (x,0.5°I)



Estimation of 1

. Estimation of \ and o
Parameter inference

Estimation of A and «

When p is known or have already been estimated, we suggest these

Estimation methods for A and «

@ via void probabilities
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Estimation of 1

. Estimation of \ and o
Parameter inference

Estimation of A and «

When p is known or have already been estimated, we suggest these

Estimation methods for A and «

@ via void probabilities
@ via the p.g.f. of the counts distribution
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Estimation of 1

. Estimation of \ and o
Parameter inference

Void probabilities for DaS point processes

The void probabilities (which characterise the distribution of a simple
point process) are given by

P{®(B) = 0} = exp { )\ / 1(B)® dx}.

A
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Estimation of 1
Estimation of X\ and o

Parameter inference

Estimation of void probabilities

Unbiased estimator for the void probability function
Let {x;}'_, C A a sequence of test points and r; = dist(x;, supp @), then

n

~ 1
G(}’) - = Z ][{r,->r}

i=1

is an unbiased estimator for P{®(B,(0)) = 0}.

Then « and X are estimated by the best fit to this curve.

Thinning-stable point processes as a model for bursty spatial data



Estimation of 1

. Estimation of \ and o
Parameter inference

Example: uniformly distributed clusters, 1D case

Estimation of v.p

Radius

Figure : A =0.3, « = 0.7, u ~ U(B1(0)), |A| = 3000

Estimated values: A = 0.29, & = 0.68. Requires big
data!
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Estimation of 1
Estimation of \ and o

Parameter inference

Void probabilities for thinned processes

p.g.fl. of DaS processes

Golh] = exp{ — [u(1 —h, u)o‘a(du)}, 1 — h € BM(X).

p.g.fl. of a p-thinned point process

Gpmp[h}:exp{—po‘fgﬂ—h,maa(du)}, pel0,1], 1—heBMX).

o{pu(-—x), x€BH) =X |B] = uew = @, Ao = A - p™.
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Estimation of .

. Estimation of \ and o
Parameter inference

Estimation via thinned process

There is no need to simulate p-thinning!
Let r, be the distance from 0 to the k-th closest point in the
configuration.

e
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Estimation of 1

. Estimation of \ and o
Parameter inference

Estimation via thinned process

P{(p o ®)(B:(0)) = 0}
[
= ZP{“the closest survived point is the k-th"}P{r, > r}
k=1

>
p(1=p)~"P{r > r}
k=1
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Estimation of 1

Parameter inference Estimation of \ and o

Estimation via thinned process

P{(p o ®)(B,(0)) = 0}
3]
= ZP{“the closest survived point is the k-th”}P{r; > r}

=> p(1=p)"P{r>r}

Unbiased estimator for the void probability function

Let {x;}’_, C A a sequence of test points and r; x be the distance from
x;toits k closest point of supp ®. Then

ZZP 1 — - ][{i &>r}

i=1 k=0
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Estimation of 1

. Estimation of \ and o
Parameter inference

Example: uniform clusters, 1D case
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Figure : Estimation of v.p. of the thinned process for a process generated
with A = 0.3, « = 0.7, u ~ U(B:(0)), |A| = 1000
Estimated values: A = 0.29, a =.0.72
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Estimation of 1

. Estimation of \ and o
Parameter inference

Counts distribution

Putting u(x) = 1 — (1 — s) Iz(x) with s € [0, 1], in the p.g.fl. expression,
we get the p.g.f. of the counts ®(B) for any set B:

V(o) = B0 = exp{ = (1 =" [ uB)otd}. (@

It is a heavy-tailed distribution with P{®(B) > x} = L(x)x~“, where L
is slowly-varying.
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Estimation of 1

. Estimation of \ and o
Parameter inference

Estimation via counts distribution

The empirical p.g.f. is then

n

~ 1 v
V) (5) = . Zscb(B') Vs € [0, 1],
i=1

where B;, i = 1,...,n, are translates of a fixed referece set B and it is
an unbiased estimator of 15 (5). It is then fitted to (2) for a range of s
estimating A and «.

We also tried the Hill plot from extremal distributions inference to
estimate «, but the results were poor!
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Estimation of 1

. Estimation of \ and o
Parameter inference

Conclusions

Simulation studies looked at the bias and variance in the extimation of
a, X in different situations:

@ Big sample — moderate sample
@ Overlapping clusters (large \) — separate clusters (small \)
@ Heavy clusters (small «) — moderate clusters (« close to 1)
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Estimation of 1

. Estimation of \ and o
Parameter inference

Best methods

@ The simplest void probabilities method is prefered for large
datasets or for moderate datasets with separated clusters. It best
estimates «, but in the latter case A is best estimated by counts

p.g.f. fitting.

Thinning-stable point processes as a model for bursty spatial data



Estimation of 1

. Estimation of \ and o
Parameter inference

Best methods

@ The simplest void probabilities method is prefered for large
datasets or for moderate datasets with separated clusters. It best
estimates «, but in the latter case A is best estimated by counts
p.g.f. fitting.

@ )\ is best estimated by void probabilities with thinning method
which produces best estimates in all the situations apart from
moderate separated clusters. But it is also more computationally
expensive.
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Estimation of 1

. Estimation of \ and o
Parameter inference

Best methods

@ The simplest void probabilities method is prefered for large
datasets or for moderate datasets with separated clusters. It best
estimates «, but in the latter case A is best estimated by counts
p.g.f. fitting.

@ )\ is best estimated by void probabilities with thinning method
which produces best estimates in all the situations apart from
moderate separated clusters. But it is also more computationally
expensive.

@ As common in modern Statistics, all methods should be tried and
consistency in estimated values gives more trust to the model.
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Estimation of 1

. Estimation of \ and «
Parameter inference

Féte de la Musique data

Paris
Féte de la Musique
2313 21/06/2008

Figure : Estimated a = 0.17 — 0.28 depending on the way base stations
records are extrapolated to spatial positions of callers
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Estimation of 1

. Estimation of \ and o
Parameter inference

Generalisations

For the Paris data we observed a bad fit of cluster size to Sibuya
distribution. Possible cure:

F-stable point processes when thinning is replaced by more general
subcritical branching operation. Multiple points are now also allowed. J
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Estimation of 1

. Estimation of \ and o
Parameter inference
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Estimation of 1

. Estimation of X\ and «
Parameter inference

Thank you!

Questions?
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