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Introduction: Energy harvesting (EH)

Harvest ambient energy that would otherwise be lost; e.g., solar,
thermal, electromagnetic

Can use EH for communication:

⊕

⊕

N

N
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EH channel model

+Encoder DecoderW

Ei

Ŵ
Xi Yi

Zi

Figure: EH communication system block diagram

Challenges: New power constraints!

Unpredictability of energy

Presence of a battery
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AWGN channel with a finite battery

+Encoder DecoderW Ŵ
Xi Yi

ρ

}
σ Zi ∼ N (0, N)

Question
What is the channel capacity of a (σ, ρ) energy constrained AWGN
channel?
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No battery, σ = 0

+Encoder DecoderW Ŵ
Xi Yi

×ρ Zi ∼ N (0, N)

Smith shows that

Capacity = sup
p(x) supported on [−√ρ,√ρ]

I (X ;Y )

p∗(x) is discrete!
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Infinite battery, σ =∞

+Encoder DecoderW Ŵ
Xi Yi

ZiEi ∞

Figure: Infinite battery EH transmitter

If E(Ei) = P , capacity is 1
2

log
(
1 + P

N

)
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Xi Yi

ZiEi ∞

Figure: Infinite battery EH transmitter

If E(Ei) = P , capacity is 1
2

log
(
1 + P

N

)

Venkat Anantharam (UC Berkeley) Finite battery AWGN January 14, 2015 8 / 39



(σ, ρ) power constraints

Energy centered view:

∑̀

i=k+1

x2i

︸ ︷︷ ︸
Energy consumed

≤ σ + (`− k)ρ︸ ︷︷ ︸
Battery + Harvested energy

for all 0 ≤ k < ` ≤ n

If st =
∑t

i=1 x
2
i ,

s` ≤ sk +σ+(`−k)ρ

· · ·

{σ

· · ·· · · k k + 1

st

sk

ℓ

sℓ
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(σ, ρ) power constraints
Battery centered view:

Begin with a fully charged battery at time 0, i.e σ0 = σ. Battery
charge at all times must be non-negative, i.e.,

σk+1 = min( σ︸︷︷︸
Battery capacity

, σk + ρ− x2k︸ ︷︷ ︸
Remaining energy

) ≥ 0, ∀k ≥ 0

σ

0 1 2 · · ·

σk

· · ·k

Venkat Anantharam (UC Berkeley) Finite battery AWGN January 14, 2015 10 / 39



(σ, ρ) power constraints

Both views are equivalent,

σk+1 = min(σ, σ + ρ− x2k , · · · , σ + kρ−
k∑

i=1

x2i )

Let Sn(σ, ρ) ⊆ Rn be the set of all (x1, x2, ..., xn) satisfying the
(σ, ρ) power constraints
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Capacity in terms of Sn(σ, ρ)
(2nR , n) code:

M = {1, 2, · · · , 2nR} +Encoder Decoder M

Noise

xn ∈ Sn yn

zn

Capacity C ∗ is supremum of all achievable rates R

Theorem

C ∗ = lim
n→∞

1

n
sup

p(xn) supported on Sn
I (X n;Y n)

︸ ︷︷ ︸
Cn

:= lim
n→∞

Cn

n
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Outline

1 Problem setup

2 The set Sn(σ, ρ)

3 Volume based capacity bounds
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Sn(σ, ρ) : Shape

Constraints
l∑

i=k+1

x2i ≤ σ + (k − l)ρ for all 0 ≤ k < l ≤ n

Ball(
√

σ + nρ)

Sn(σ, ρ)

Cube [−√
ρ,
√

ρ]n
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Sn(σ, ρ) : Size
How fast does the volume of Sn(σ, ρ) grow with n?

lim
n→∞

log Volume(Sn(σ, ρ))

n
= v(σ, ρ)

Simple bounds:

log 2
√
ρ ≤ v(σ, ρ) ≤ 1

2
log 2πeρ

σ = 0
σ → ∞

v = log 2
√

ρ
v =

1

2
log 2πeρ?

ρ != 0
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v(σ, ρ) for 0 < σ <∞

Let νn(b) be “volume density of sequences at state b.” Then

Volume(Sn) =

∫ σ

b=0

νn(b)db

How is νn+1 obtained from νn?

Answer: Via a linear transformation

νn+1(c) =

∫ σ

0

A(b, c)νn(b)db

A(b, c) =





1√
b+1−c if c 6= σ and c ≤ b + 1

δ(c = σ)2
√
b + 1− σ if c = σ and σ ≤ b + 1

0 otherwise.
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Plot of v(σ, 1)
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Figure: Plot of v(σ, 1)
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Outline

1 Problem setup

2 The set Sn(σ, ρ)

3 Volume based capacity bounds
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From volume to capacity

Recall capacity of a (σ, ρ) power constrained AWGN channel:

C ∗ = lim
n→∞

1

n

[
sup

p(xn) supported on Sn
h(Y n)

]
− 1

2
log 2πeN

Recall the Entropy Power Inequality:

e
2
n
h(Y n) ≥ e

2
n
h(X n) + e

2
n
h(Zn)

Now choose X n ∼ Uniform(Sn(σ, ρ)), EPI gives us

1

2
log
(

1 +
ρ

N

)
≥ C ∗ ≥ lim

n→∞

I (X n;Y n)

n
≥ 1

2
log

(
1 +

e2v(σ,ρ)

2πeN

)
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Compare capacity bounds

−4 −2 0 2 4 6 80

1

2

3

4

5
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Upper Bound

log
1

N
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Improving the upper bound

C ≤ lim
ε→0

lim sup
n→∞

1

n
log Vol

(
Sn(σ, ρ)⊕ Bn(

√
n(N + ε))

)
− 1

2
log 2πeN

Let

l(N) := lim sup
n→∞

1

n
log Vol

(
Sn(σ, ρ)⊕ Bn(

√
nN)

)
.

We can show l(N) is continuous for N ≥ 0, and so

C ≤ l(N)− 1

2
log 2πeN
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Better capacity bounds
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Steiner’s formula

Kn ⊂ Rn compact convex set and Bn ⊂ Rn the unit ball, then

Vol (Kn ⊕ tBn) =
n∑

j=0

µn−j(Kn)εjt
j

where (µ0(Kn), . . . , µn(Kn)) are the intrinsic volumes of Kn and εj the
volume of Bj .
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σ = 0

For σ = 0 the role of Kn is played by the cube [−√ρ,√ρ]n, with
intrinsic volumes

(
n
j

)
(2
√
ρ)n−j .

This gives

l(N) = H(θ∗) + (1− θ∗) log 2
√
ρ +

θ∗

2
log

2πeN

θ∗
,

where H(θ∗) := −θ∗ log θ∗ − (1− θ∗) log(1− θ∗), and

(1− θ∗)2
θ∗3

=
2ρ

πN
.

Convolution of intrinsic volume sequences and finding the
dominant term in the convolution.
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σ > 0

Let (µn(0), . . . , µn(n)) denote the intrinsic volumes of Sn(σ, ρ).

gn(t) :=
1

n
log

n∑

j=0

µn(j)e jt

Cumulant generating function of the intrinsic volume sequence

We prove that the pointwise limit of gn(t) as n→∞ exists, call
it Λ(t)

If Λ∗(·) denotes the convex conjugate dual of Λ(·), then

l(N) = sup
θ∈[0,1]

[
−Λ∗(1− θ) +

θ

2
log

2πeN

θ

]
.
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µn(j)e jt

Cumulant generating function of the intrinsic volume sequence

We prove that the pointwise limit of gn(t) as n→∞ exists, call
it Λ(t)
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Summary

(σ, ρ) constraints produce rich geometric structure

Volume of Sn(σ, ρ) + EPI implies neat lower bound on capacity

Even small battery provides considerable gains in capacity

Steiner’s formula in the large deviations regime provides refined
upper bounds to the capacity.

The upper and lower bounds match to the first derivative at low
noise and to the sixth derivative at high noise.
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Figure: Gorges du Verdon, 25 years ago
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Figure: With a different kind of Indian
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Figure: Ten Years Ago
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Figure: Proving a theorem by the Seine
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Figure: The Royal Society of Edinburgh
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Figure: The Royal Society of Edinburgh
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Figure: Freezing in sunny California
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Figure: Yes, it was windy!
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Figure: The pig and the Trabant
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Figure: I dare you to eat it !
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Figure: These are the types of friends I have !!!
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Thank you!
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