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The long run is a misleading guide ...

The long runis a
misleading guide to current
affairs. In the long run we
are all dead. Economists
set themselves too easy,
too useless a task if in
tempestuous seasons they
can only tell us that when
the storm is past the ocean
is flat again.

John Maynard Keynes

» Keynes was a Probabilist: Keynes, John Maynard (1921),
Treatise on Probability, London: Macmillan & Co.

» Rather than insinuating that Keynes didn’t care about the
long run, probabilists might interpret Keynes as advocating
the study of evanescent stochastic process:

PAX, =y | X, €S}



An evanescent process—Gambler’s ruin

» Suppose a gambler is pitted against an infinitely wealthy
casino.

» The gambler enters the casino with z > 0 dollars.

» With each play, the gambler either wins a dollar with
probability b where 0 < b < 1/2 ...

» ...or loses a dollar with probability a where a + b = 1.
» The gambler continues to play for as long as possible.
» In the long run the gambler is certainly broke.

» What can be said about her fortune after playing many
times given that she still has at least one dollar?



A quasi-stationary distribution

» Seneta and Vere-Jones (1966) answered this question with
the following probability distribution 7*:

1 \"
() = ;py <\/;> fory =1,2,... (1)

» where a =1 —band p = 2V ab.




Limiting conditional distributions

» Let X,, be her fortune after n plays.

» Notice that her fortune alternates between being odd and
even.

» For n large, Seneta and Vere-Jones proved that

() for y even, z + n even,

PAX, =y | X,>1}~{ ™Y
{ vt {ﬂ*?QI(\Iy)l) for y odd,  + n odd.

» The subscript z means that Xy = =z, N:= {1,2,...}.

» The probability 7 assigns to the even and odd natural
numbers is denoted by 7*(2N) and 7* (2N — 1), respectively.



Gambler’s ruin as a Markov chain

» The Seneta—Vere-Jones example has a state space
Np := {0} UN where 0 is absorbing.

» The transition matrix between states in N is

0O b 0 00
0 00
a b 0

a b
P=1q 0

» P isirreducible, strictly substochastic, and periodic with
period 2.



Graphic of Gambler’s ruin
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Figure: P restricted to N.



Facts from Seneta and Vere-dones

» The z-transform of the return time to 1 is given in Seneta
and Vere-Jones:

Fua(z) = (1 - \/12— 4abz2> |

v

Hence the convergence parameter of P is R = 1/p where
p= 2V ab.

Moreover Fi;(R) = 1/2 so P is R-transient.

Using Stirling’s formula as n — oo: for y — x even

e = o () (1)

Denote the time until absorption by 7 so P,(t =n) = fi,g).
If n — x is even then from Feller Vol. 1
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Define the kernel Q

» It will be convenient to introduce a chain with kernel @) on
Ny with absorption at §

» defined for > 0 by Q(z,y) = P(x + 1,y + 1)

b b b
a a a

C@ o

Figure: Q is P relabelled to Nj.



Our example
The kernel K of our example has state space Z.

v

» Forz >0, K(z,y) = Q(z,y), K(—z,—y) = Q(x,y),
» K(0,1) = K(0,—1) = b/2, K(0,6) = a.
» Folding over the two spoke chain gives the chain with
kernel Q.
b b b/2 b/2 b b
SOSOBOSOMOS
a a a a a a

Figure: K restricted to Z.
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Yaglom limit of our example

» Define a family o¢ of p-invariant gqsd’s for K
» indexed by ¢ € [-1, 1] and given by

oe(0) = -7 @)

lyl
oely) = ag(O)W <\/§> foryczZ (3)

» Forx,y € 27,

o KM(x,y)  14p p
A R 2z) © @ V) Where T = 0 (22).
X
here = for Z.
> W &(x) T+ 7] x €

» Notice the limit depends on z!



Definition of Periodic Yaglom limits

» For periodic chains, define k = k(x,y) € {0,1,2,...d — 1}
so that K™% (z ) > 0 for n sufficiently large.

» We can partition S into d sets labeled Sy, ..., S;_1 so that
the starting state = € Sy and that K" (z,y) > 0 for n
sufficiently large if y € Sk.

» Theorem A of Vere-Jones implies that for any y € Sy,
[Knd+k($7 y)]l/(ndJrk) - p.

» We say that we have a periodic Yaglom limit if for some
ke{0,...,d—1}

Knd+k(x7 y) k

Po{Xnasr =y | Xnarr € S} = o mg) ™

where 7* is a probability measure on S with 7%(S},) = 1.



Asymptotics of Periodic Yaglom limits

Proposition

> If w’; is the periodic Yaglom limit for some
k€ {0,1,...,d— 1}, then there are periodic Yaglom limits
forallk € {0,1,...,d—1}.
» Moreover, there is a p invariant qsd =, such that
7k (y) = 12 (y) /72(Sk) fory € Sy for each
ke{0,1,...,d—1}.

" y) L m(y)

Kndth(z,S)  my(Sk)
ke€{0,1,...,d— 1} where x € Sy by definition and y € S.

for all

» We conclude



Periodic ratio limits

» We say that we have a periodic ratio limit if for x,y € Sy

» Proposition
If we have both periodic Yaglom and ratio limits on Sy then for
anyk,me{0,1,....,d—1},ue S* andy € S,,,

KR ) R (0, S1) = w(y)/m(Sm).



Theory applied to our example

» Let Sop =2Z and let z € 5.
» We check that for y € 2Z,
K*(a,y) _ 14p 1

» From Proposition 1 we then get fory € 2Z — 1,

K (zy) 14 p
nll_{glo KQn(;C, 27 _ 1) = P Uf(x) (y) where U{(x) (2Z—1> = m




Checking the periodic Yaglom limit |

» Assume z,y > 1. Similar to the classical ballot problem,
there are two types of paths from z to y: those that visit 0
and those that do not. From the reflection principle, any
path from x to y that visits 0 has a corresponding path from
—x to y with the same probability of occurring.

> Thus, if (, K" (z, y) denotes the probability of going from «
to y without visiting zero, we have

> From the coupling argument, (, K"(z,y) = P"(z,y).



Checking the periodic Yaglom limit Il

» Forx,y >0,
Q"(z,y) =K"(z,|y|) := K" (z,y) + K" (x, —y).
» Hence,

K"(z,y) = K"(x, ly]) — K" (2, —y)
= K"(z, lyl]) — (K"(z,y) — (0, K" (z,9))

= (oK™ 0) + K" (x, ly).

» Similarly,

K™z, ~9) = 5 (K™, o) — (0 K"(23).



Checking the periodic Yaglom limit Ill

» For x,y > 0 and both even, from (35) in Vere-Jones and

Seneta
{0}K2n(xay) = Pzn(xay)
2y an a z—1 b y—1
s () (V)
» Moreover,
K2n(x7|y|)) = an(aj,y)—l—QQ”(x,—y)

= P"a+Ly+1)+P"(x+1,—(y+1))

e e 3 V2



Checking the periodic Yaglom limit IV

» Let 75 be the time to absorption for the chain X. so
P,(1s =n) = Pyy1(m =n) and

T5 > 2TL Z 23_110.
v=n+1

P,(1T > 2n)

N i ( (x/ (1) . 22v)3/2 b%(2u—17(1+1))a%(2v71+(:1:+1))
2m)1/2(20 — 1
v=n+1

(z+1) ( a)ﬂ” (4ab)™  4a

2m)12\Vb/) (2n)3/21—4ab’




Checking the periodic Yaglom limit V

» Hence, for z,y > 0,

K(x,y) 1K@ |y) + 10 K (2,y)

Py(r>2n) 2 Py(7 > 2n)
1 (4ab)™

Ho ) (v ) (VE) /R

(z+1) ( a)x (4ab)™  4qa

(2ﬂ_)1/2 b (Qn)3/2 1—4ab
- 2n a\T/2 /2
sz (Vab) ™ (8 (1)

e (VB

v
1= 4ab(1 + |?/2’ + fy) <\/§> = (14 p)o¢)(y)-

a




Checking the periodic Yaglom limit VI

K?n(x7 _y)
P,(1 > 2n)
CLEP @) — o K()
2 Po(r > 2n)

y y
b\ 1-—4ab xy b\ 1-—4ab
~Y 1 _ —_
v+ ><\/;> 2a z+1 ( a) 2a

Y
1 —a4ab(1 + |y2! - €y) <\/§> = (1 + p)oga) (—y)-

Finally, for y = 0, K*"(x,0) = P2}, | so

a\T ab)™
K*"(2,0) P B (z+1) (V/$) %(is/)z
Py(r>2n) = @r) [ aye Ga) da
P;E(T > 2”) Pac(T > 2”) (21)1/2 (\/g) (2:)3/2 T—4ab

1 —4ab

= (1 + p)og(x) (0).



Checking the periodic Yaglom limit VII

» Therefore starting from x even we have a periodic Yaglom
limit with density (1 + 2vab)o¢(-) on Sy = 27Z with
E=z/(lz| +1) €[0,1].

» Similarly, for z,y > 0 even, K*"(—z,y) = K*"(x, —y) and
K*(—2,—y) = K*"(x,y); hence, starting from —z even
we get a Yaglom limit (1 + 2vab)o¢(-) on 2Z with
E=ux/(Jz|+1)s0§ e [-1,0].



Checking the periodic ratio limit

» Again taking Sy = 27Z,

K?"(y,27) Py(T > 2n)
K2(2,27)  Py(t > 2n)

(1 + 0 (V)" o)

(1] + 1) (v/a7b) " -~ hofa)

» In fact hg is the unique p-harmonic function for @
» in the family of p-harmonic functions for K

he(y) = [1 + |y| + &yl <ﬁ> ! for y € Z.



Checking the periodic Yaglom limit VIII

» Applying Proposition 2, starting from « odd we have a
periodic Yaglom limit on the evens with density
(1 + 2V ab)og((+) on Sy = 2Z with & = u/(|u| + 1) € [0,1].
» Similarly, starting from « odd we have a periodic Yaglom

L+2vab 0
2ab

limit on the odds:



Cone of p-invariant probabilities

» The probabilities o¢ with £ € [-1, 1] form a cone.
» The extremal elements are £ = —1 and £ = 1 since
1+ 5 —&

5 (y)+T ~1(y)-

oe(y) =

» Define the potential G(z, y) ZR”K” z,y) and
n=0
» the p-Martin kernel M (y, z) = G(y,x)/G(y,0).
» As a measure in x, M (y,z) € B are the positive excessive
measures of R - K normalized to be 1 at x = 0;
i.e. > RuK if p e B.
» Each point y € Z is identified with the measure
M{(y,-) € B, which by the Riesz decomposition theorem is
extremal in 5.



The p-

>

>

>

Martin entrance boundary

As y — +o0, M(y,-) = M(+00,-) = 01(-)/01(0).
We conclude +oo is a point in the Martin boundary of Z.

We have therefore identified oo in the Martin boundary
with the p-invariant measure o1 (-)/01(0), which is identified
with the point +1 in the topological boundary of

x
{5:1+’x|::z:6Z}.

By a similar argument we see —c is also in the Martin
boundary of Z.

As y — +o0, M(y, ) = M(—oc,-) = o-1(-)/0-1(0).
Again we have identified —oc in the Martin boundary with

the p-invariant measure o_;(-)/o_1(0) which is identified
with the point —1 in the topological boundary of

x
{£:1+‘x| :SEEZ}.




Harry Kesten’s example

>

Kesten (1995) constructed an amazing example of a
sub-Markov chain possessing most every nice
property—including having a p-invariant gsd—that fails to
have a Yaglom limit.

Kesten’s example has the same state space and the same
structure as ours.

The only difference is that at any state « there is a
probability .. of holding in state = and probabilities

a(l —rz;) and b(1 — r,) of moving one step closer or further
from zero.

If o = a(1 — ro), then our chain is exactly Kesten’s chain
watched at the times his chain changes state.

It is pretty clear Harry could have derived our example with
a moment’s thought, but he focused on the non-existence
of Yaglom limits. His example is orders of magnitude more
sophisticated and complicated than ours.
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