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The long run is a misleading guide . . .
The long run is a
misleading guide to current
affairs. In the long run we
are all dead. Economists
set themselves too easy,
too useless a task if in
tempestuous seasons they
can only tell us that when
the storm is past the ocean
is flat again.

John Maynard Keynes

I Keynes was a Probabilist: Keynes, John Maynard (1921),
Treatise on Probability, London: Macmillan & Co.

I Rather than insinuating that Keynes didn’t care about the
long run, probabilists might interpret Keynes as advocating
the study of evanescent stochastic process:
Px{Xn = y | Xn ∈ S}.



An evanescent process–Gambler’s ruin

I Suppose a gambler is pitted against an infinitely wealthy
casino.

I The gambler enters the casino with x > 0 dollars.
I With each play, the gambler either wins a dollar with

probability b where 0 < b < 1/2 . . .
I . . . or loses a dollar with probability a where a+ b = 1.
I The gambler continues to play for as long as possible.
I In the long run the gambler is certainly broke.
I What can be said about her fortune after playing many

times given that she still has at least one dollar?



A quasi-stationary distribution

I Seneta and Vere-Jones (1966) answered this question with
the following probability distribution π∗:

π∗(y) =
1− ρ
a

y

(√
b

a

)y−1
for y = 1, 2, . . . (1)

I where a = 1− b and ρ = 2
√
ab.



Limiting conditional distributions

I Let Xn be her fortune after n plays.
I Notice that her fortune alternates between being odd and

even.
I For n large, Seneta and Vere-Jones proved that

Px{Xn = y | Xn ≥ 1} ≈

{
π∗(y)
π∗(2N) for y even, x+ n even,
π∗(y)

π∗(2N−1) for y odd, x+ n odd.

I The subscript x means that X0 = x, N := {1, 2, . . .}.
I The probability π assigns to the even and odd natural

numbers is denoted by π∗(2N) and π∗(2N−1), respectively.



Gambler’s ruin as a Markov chain

I The Seneta–Vere-Jones example has a state space
N0 := {0} ∪ N where 0 is absorbing.

I The transition matrix between states in N is

P =


0 b 0 0 0 · · ·
a 0 b 0 0 · · ·
0 a 0 b 0 · · ·
...

 .
I P is irreducible, strictly substochastic, and periodic with

period 2.



Graphic of Gambler’s ruin
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Figure: P restricted to N.



Facts from Seneta and Vere-Jones
I The z-transform of the return time to 1 is given in Seneta

and Vere-Jones:

F11(z) =

(
1−
√
1− 4abz2

2

)
.

I Hence the convergence parameter of P is R = 1/ρ where
ρ = 2

√
ab.

I Moreover F11(R) = 1/2 so P is R-transient.
I Using Stirling’s formula as n→∞: for y − x even

P 2n(x, y) ∼ xy
√
πn3/2

(
2
√
ab
)n(√a

b

)x−1(√
b

a

)y−1
.

I Denote the time until absorption by τ so Px(τ = n) = f
(n)
x0 .

I If n− x is even then from Feller Vol. 1

f
(n)
x0 ∼ x · 2n+1

(2π)1/2(n)3/2
b
1
2
(n−x)a

1
2
(n+x).



Define the kernel Q

I It will be convenient to introduce a chain with kernel Q on
N0 with absorption at δ

I defined for x ≥ 0 by Q(x, y) = P (x+ 1, y + 1)
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Figure: Q is P relabelled to N0.



Our example
I The kernel K of our example has state space Z.
I For x > 0, K(x, y) = Q(x, y),K(−x,−y) = Q(x, y),
I K(0, 1) = K(0,−1) = b/2,K(0, δ) = a.
I Folding over the two spoke chain gives the chain with

kernel Q.
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Figure: K restricted to Z.
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Yaglom limit of our example

I Define a family σξ of ρ-invariant qsd’s for K
I indexed by ξ ∈ [−1, 1] and given by

σξ(0) =
1− ρ
a

(2)

σξ(y) = σξ(0)
[1 + |y|+ ξ y]

2

(√
b

a

)|y|
for y ∈ Z (3)

I For x, y ∈ 2Z,

lim
n→∞

K2n(x, y)

K2n(x, 2Z)
=

1 + ρ

ρ
σξ(x)(y) where

ρ

1 + ρ
= σξ(x)(2Z).

I where ξ(x) =
x

1 + |x|
for x ∈ Z.

I Notice the limit depends on x!



Definition of Periodic Yaglom limits

I For periodic chains, define k = k(x, y) ∈ {0, 1, 2, . . . d− 1}
so that Knd+k(x, y) > 0 for n sufficiently large.

I We can partition S into d sets labeled S0, . . . , Sd−1 so that
the starting state x ∈ S0 and that Knd+k(x, y) > 0 for n
sufficiently large if y ∈ Sk.

I Theorem A of Vere-Jones implies that for any y ∈ Sk,
[Knd+k(x, y)]1/(nd+k) → ρ.

I We say that we have a periodic Yaglom limit if for some
k ∈ {0, . . . , d− 1}

Px{Xnd+k = y | Xnd+k ∈ S} =
Knd+k(x, y)

Knd+k(x, S)
→ πkx(y) (4)

where πkx is a probability measure on S with πkx(Sk) = 1.



Asymptotics of Periodic Yaglom limits

Proposition

I If πkx is the periodic Yaglom limit for some
k ∈ {0, 1, . . . , d− 1}, then there are periodic Yaglom limits
for all k ∈ {0, 1, . . . , d− 1}.

I Moreover, there is a ρ invariant qsd πx such that
πkx(y) = πx(y)/πx(Sk) for y ∈ Sk for each
k ∈ {0, 1, . . . , d− 1}.

I We conclude
Knd+k(x, y)

Knd+k(x, S)
→ πx(y)

πx(Sk)
for all

k ∈ {0, 1, . . . , d− 1} where x ∈ S0 by definition and y ∈ Sk.



Periodic ratio limits

I We say that we have a periodic ratio limit if for x, y ∈ S0

lim
n→∞

Knd(y, S0)

Knd(x, S0)
= λ(x, y) =

h(y)

h(x)
.

I Proposition
If we have both periodic Yaglom and ratio limits on S0 then for
any k,m ∈ {0, 1, . . . , d− 1}, u ∈ Sk and y ∈ Sm,

Knd+d−m+k(u, y)/Knd+d−m+k(u, Sk)→ πu(y)/πu(Sm).



Theory applied to our example

I Let S0 = 2Z and let x ∈ S0.
I We check that for y ∈ 2Z,

lim
n→∞

K2n(x, y)

K2n(x, 2Z)
=

1 + ρ

1
σξ(x)(y) where σξ(x)(2Z) =

1

1 + ρ
.

I From Proposition 1 we then get for y ∈ 2Z− 1,

lim
n→∞

K2n+1(x, y)

K2n(x, 2Z− 1)
=

1 + ρ

ρ
σξ(x)(y) where σξ(x)(2Z−1) =

ρ

1 + ρ
.



Checking the periodic Yaglom limit I

I Assume x, y ≥ 1. Similar to the classical ballot problem,
there are two types of paths from x to y: those that visit 0
and those that do not. From the reflection principle, any
path from x to y that visits 0 has a corresponding path from
−x to y with the same probability of occurring.

I Thus, if {0}K
n(x, y) denotes the probability of going from x

to y without visiting zero, we have

Kn(x, y) = {0}K
n(x, y) +Kn(−x, y) = {0}K

n(x, y) +Kn(x,−y).

I From the coupling argument, {0}K
n(x, y) = Pn(x, y).



Checking the periodic Yaglom limit II

I For x, y ≥ 0,

Qn(x, y) =Kn(x, |y|) := Kn(x, y) +Kn(x,−y).

I Hence,

Kn(x, y) = Kn(x, |y|)−Kn(x,−y)
= Kn(x, |y|)− (Kn(x, y)− {0}K

n(x, y))

=
1

2
({0}K

n(x, y) +Kn(x, |y|)).

I Similarly,

Kn(x,−y) = 1

2
(Kn(x, |y|)− {0}K

n(x, y)).



Checking the periodic Yaglom limit III

I For x, y > 0 and both even, from (35) in Vere-Jones and
Seneta

{0}K
2n(x, y) = P 2n(x, y)

∼ xy
√
πn3/2

(
2
√
ab
)2n(√a

b

)x−1(√
b

a

)y−1
.

I Moreover,

K2n(x, |y|)) = Q2n(x, y) +Q2n(x,−y)
= P 2n(x+ 1, y + 1) + P 2n(x+ 1,−(y + 1))

∼ (x+ 1)

(√
a

b

)x
(y + 1)

(√
b

a

)y√
1

π

(4ab)n

n3/2
.



Checking the periodic Yaglom limit IV

I Let τδ be the time to absorption for the chain X. so
Px(τδ = n) = Px+1(τ = n) and

Px(τδ > 2n) =

∞∑
v=n+1

f2v−1x+1,0. (5)

Px(τ > 2n)

∼
∞∑

v=n+1

(x+ 1) · 22v

(2π)1/2(2v − 1)3/2
b
1
2
(2v−1−(x+1))a

1
2
(2v−1+(x+1))

∼ (x+ 1)

(2π)1/2

(√
a

b

)x
(4ab)n

(2n)3/2
4a

1− 4ab
.



Checking the periodic Yaglom limit V

I Hence, for x, y > 0,

K2n(x, y)

Px(τ > 2n)
=

1

2

K2n(x, |y|)) + {0}K2n(x, y)

Px(τ > 2n)

∼

1
2(x+ 1)

(√
a
b

)x
(y + 1)

(√
b
a

)y√
1
π
(4ab)n

n3/2

(x+1)

(2π)1/2

(√
a
b

)x (4ab)n

(2n)3/2
4a

1−4ab

+

1
2

xy√
πn3/2

(√
ab
)2n (

a
b

)x/2 ( b
a

)y/2
(x+1)

(2π)1/2

(√
a
b

)x (4ab)n

(2n)3/2
4a

1−4ab

∼ 1− 4ab

a
(
1 + |y|+ ξy

2
)

(√
b

a

)y
= (1 + ρ)σξ(x)(y).



Checking the periodic Yaglom limit VI

K2n(x,−y)
Px(τ > 2n)

=
1

2

(K2n(x, |y|)− {0}K2n(x, y)

Px(τ > 2n)

∼ (y + 1)

(√
b

a

)y
1− 4ab

2a
− xy

x+ 1

(√
b

a

)y
1− 4ab

2a

=
1− 4ab

a
(
1 + |y| − ξy

2
)

(√
b

a

)y
= (1 + ρ)σξ(x)(−y).

Finally, for y = 0, K2n(x, 0) = P 2n
x+1,1 so

K2n(x, 0)

Px(τ > 2n)
=

P 2n
x+1,1

Px(τ > 2n)
=

(x+ 1)
(√

a
b

)x√ 1
π
(4ab)n

n3/2

(x+1)

(2π)1/2

(√
a
b

)x (4ab)n

(2n)3/2
4a

1−4ab

=
1− 4ab

a
= (1 + ρ)σξ(x)(0).



Checking the periodic Yaglom limit VII

I Therefore starting from x even we have a periodic Yaglom
limit with density (1 + 2

√
ab)σξ(·) on S0 = 2Z with

ξ = x/(|x|+ 1) ∈ [0, 1].
I Similarly, for x, y > 0 even, K2n(−x, y) = K2n(x,−y) and
K2n(−x,−y) = K2n(x, y); hence, starting from −x even
we get a Yaglom limit (1 + 2

√
ab)σξ(·) on 2Z with

ξ = x/(|x|+ 1) so ξ ∈ [−1, 0].



Checking the periodic ratio limit

I Again taking S0 = 2Z,

K2n(y, 2Z)
K2n(x, 2Z)

=
Py(τ > 2n)

Px(τ > 2n)

∼
(|y|+ 1)

(√
a/b
)|y|

(|x|+ 1)
(√

a/b
)|x| = h0(y)

h0(x)

I In fact h0 is the unique ρ-harmonic function for Q
I in the family of ρ-harmonic functions for K

hξ(y) := [1 + |y|+ ξy]

(√
a

b

)|y|
for y ∈ Z. (6)



Checking the periodic Yaglom limit VIII

I Applying Proposition 2, starting from u odd we have a
periodic Yaglom limit on the evens with density
(1 + 2

√
ab)σξ(u)(·) on S0 = 2Z with ξ = u/(|u|+ 1) ∈ [0, 1].

I Similarly, starting from u odd we have a periodic Yaglom

limit on the odds:
1 + 2

√
ab

2
√
ab

σξ(u)(·)



Cone of ρ-invariant probabilities

I The probabilities σξ with ξ ∈ [−1, 1] form a cone.
I The extremal elements are ξ = −1 and ξ = 1 since

σξ(y) =
1 + ξ

2
σ1(y) +

1− ξ
2

σ−1(y).

I Define the potential G(x, y) =
∞∑
n=0

RnKn(x, y) and

I the ρ-Martin kernel M(y, x) = G(y, x)/G(y, 0).
I As a measure in x, M(y, x) ∈ B are the positive excessive

measures of R ·K normalized to be 1 at x = 0;
i.e. µ ≥ RµK if µ ∈ B.

I Each point y ∈ Z is identified with the measure
M(y, ·) ∈ B, which by the Riesz decomposition theorem is
extremal in B.



The ρ-Martin entrance boundary
I As y → +∞, M(y, ·)→M(+∞, ·) = σ1(·)/σ1(0).
I We conclude +∞ is a point in the Martin boundary of Z.
I We have therefore identified +∞ in the Martin boundary

with the ρ-invariant measure σ1(·)/σ1(0), which is identified
with the point +1 in the topological boundary of{

ξ =
x

1 + |x|
: x ∈ Z

}
.

I By a similar argument we see −∞ is also in the Martin
boundary of Z.

I As y → +∞, M(y, ·)→M(−∞, ·) = σ−1(·)/σ−1(0).
I Again we have identified −∞ in the Martin boundary with

the ρ-invariant measure σ−1(·)/σ−1(0) which is identified
with the point −1 in the topological boundary of{
ξ =

x

1 + |x|
: x ∈ Z

}
.



Harry Kesten’s example
I Kesten (1995) constructed an amazing example of a

sub-Markov chain possessing most every nice
property—including having a ρ-invariant qsd—that fails to
have a Yaglom limit.

I Kesten’s example has the same state space and the same
structure as ours.

I The only difference is that at any state x there is a
probability rx of holding in state x and probabilities
a(1− rx) and b(1− rx) of moving one step closer or further
from zero.

I If α = a(1− r0), then our chain is exactly Kesten’s chain
watched at the times his chain changes state.

I It is pretty clear Harry could have derived our example with
a moment’s thought, but he focused on the non-existence
of Yaglom limits. His example is orders of magnitude more
sophisticated and complicated than ours.
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