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Wind and solar energy make
the grid less predictable
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Storage can mitigate volatility

B Batteries, Pump-hydro B Demand Response = Virtual

Storage
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Voltalis Bluepod switches off
thermal load for 60 mn

Projects: artificial islands (north sea)

/ \
Belgium Copenhagen
lz N
_ A Manmade Island to Store
A g;::[;ob\;;!rlsland Could Power Copenhagen Wil]d Energy
s=— [ [TERES Belgium has plans for an artificial ‘energy atoll” to store excess

wind power in the North Sea.




Questions addressed in this talk

1. How to manage one piece of storage
2. Impact of storage on market and prices

3. Impact of demand response on market
and prices



2.
MANAGING STORAGE

N. G. Gast, D.-C. Tomozei and J.-Y. Le Boudec. Optimal Generation and Storage

Scheduling in the Presence of Renewable Forecast Uncertainties, IEEE Transactions on
Smart Grid, 2014.
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Storage

4\ load

renewables

renewables + storage

B Stationary batteries,
pump hydro

Cycle efficiency
~ 70 —85%




Operating a Grid with Storage

la. Forecast load D[(t +n)
and renewable suppy

W/ (t +n)
1b. Schedule dispatchable
production Ptf(t +n)

4\/\/\/'<d e AMd o
-7
renewables P renewables / At +n)
P VaN FF+n) | "~ )ZPf(t+n)
L

4\» = ,er(t+n% 4\» — NIATESALS
4\ T+ N C+n

stored energy stored energy

2. Compensate
deviations from
forecast by
charging /
discharging A
from storage
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Full compensation of fluctuations by storage may
not be possible due to power / energy capacity

constraints 5
N load gt + n)

} fast ramping

B Fast ramping energy source (€0, / A( )
t+n

rich) is used when storage is not renewables

enough to compensate fluctuation NN P/ (t +n)

i Wt +n );
B Energy may be wasted when R
» Storage is full D(t + )
» Unnecessary storage (cycling N load
efficiency < 100%)
renewables

NN Pl (¢ +n)

B Control problem: compute soilled energl?”
dispatched power schedule 4\» - W (L tn)s,
Ptf (t + n) to minimize energy Lo

waste and use of fast ramping
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Example: The Fixed Reserve Policy

B Set Ptf(t +n) to D[(t +n) — Wtf(t + n) + r* where r*is fixed
(positive or negative)
B Metric: Fast-ramping energy used (x-axis)
Lost energy (y-axis) = wind spill + storage inefficiencies
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Aggregate data from UK  (BMRA data archive https://www.elexonportal.co.uk/)
scaled wind production to 20% (max 26GW)
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A lower bound

Theorem. Assume that the error e(t+n) =W (t+n)-W/ (t+n)
conditioned to F; is distributed as €. Then for any

control policy:

(i) G >E[(s+a)~]

L >E[(e+u)™]

— ramp(u)

— ramp(u)

where ramp(u) := E[min(n(e+u)™, nCmax, (6+4) ", Diax )]

(ii) The lower bound is achieved by the Fixed Reserve
when storage capacity is infinite.

» Assumption valid if prediction is best possible
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Lower bound is attained for B...=100GWh
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5GWh, Cmax =Dmax =2GW

Bnmx

S0GWh, Chisx =Dmax =6GW

max =

B

lost energy (in % of wind production)

lost energy (in % of wind production)

Small storage Y-
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[Bejan et al, 2012] Bejan, Gibbens, Kelly, Statistical Aspects of Storage Systems Modelling in Energy Networks. 46th
Annual Conference on Information Sciences and Systems, 2012, Princeton University, USA.
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What this suggests about Storage

B A lower bound exists for any type of policy
» Tight for large capacity (>50GWh)
» Open issue: bridge gap for small capacity

B (BGK policy: ) Maintain storage at fixed level: not optimal
» Worse for low capacity
» There exist better heuristics, which use error statistics

B Can be used for sizing
UK 2020: 50GWh and 6GW is enough for 26GW of wind

16



3

IMPACT OF STORAGE ON MARKETS
AND PRICES

[Gast et al 2013] N. G. Gast, J.-Y. Le Boudec, A. Prouticre and D.-C. Tomozei. Impact of
Storage on the Efficiency and Prices in Real-Time Electricity Markets. e-Energy '13,
Fourth international conference on Future energy systems, UC Berkeley, 2013.

17



We focus on the real-time market

B Most electricity markets are organized in two stages

Dav-ahead P Planned E Deal_time R . ALI’M’I
S o roduction : eal-time reserve production
market_ ) ,’ \\! Bt market R(t) = G%(t) — D*(t) Ga(b)
P ~ i . ,//
// \\ --" g i Q
............. Actual
............... < : el
: i Forecast De(t)
! demand N S
Day-ahead price process (p@*(t)) ‘ Real-time price process P(t)
-~ — — Real-time market ~.
/ . L.
I Generation | | Compensate for deviations from forecast
| I : '
|| Inelastic - I Inelastic demand satisfied using:
Demand l ) . .
d . ot » Thermal generation (ramping constraints)
| N/ I rice I _i . .
I 'I'::> ot | !  Storage (capacity constraints)
\| -dmlie - = )/I
R e ——— -
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Real-time Market exhibit highly volatile prices

Power Prices in Texas
go | M January 31,2011

» =500

B Efficiency or Market manipulation?

A $/MWh

3000+

1000

r%

Vv February 2,2011
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The first welfare theorem

B Impact of volatility on prices in real time market is studied by
Meyn and co-authors: price volatility is expected

Theorem (Cho and Meyn 2010). When generation

constraints (ramping capabilities) are taken into account:
* Markets are efficient

* Prices are never equal to marginal production costs.

What happens when we add storage to the picture ?

B Does the market work, i.e. does the invisible hand of the market
control storage in the socially optimal way ?

[Cho and Meyn, 2010] I. Cho and S. Meyn Efficiency and marginal cost pricing in dynamic competitive markets with
friction, Theoretical Economics, 2010
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A Macroscopic Model of Real-time generation and Storage
Randomness (forecast errovs)

Assumption: (D — I') ~ Brownian motion

\ Controllable generation
\de Remping Construint
| —£<Gt)-G(t—-1) <
P Supply §< =
l-%:l‘ ' G(t) = g?*(t) + G(t) + T(t)
Demand
D4(t) = d®(t) + D(t)
/ extracted
(or stored) power

Day-ahead
<« Storage cycle effierency

o — e | (Eg.n=08)
o0 = ~¢O w0t lue<o) Limited capacity

Storage

Macroscopic model
B At each time: generation = consumption

G(t) +u(t) = D(¢t)
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A Macroscopic Model of Real-time generation and Storage

RMW ————
We consider 3 scenarios | .----------------- S T ,_ T
’ N 7 . _,_.‘ 1

ior sStorage oanersflmip: X . ,

. t € [ ! I i I .

R U P - - R S

2. S C 1 1Pan ) supsy TE<G(t) ~ Gt —1) <¢
. Odtorage € Consumer i '_édq I G208 = ga(8) + G(6) + T(®

3. Independent storage Demand

De(t) = d®(t) + D(t]

(ownership does mostly not ~ s---------ffo------- ol

affect the results ) buy E(t)

I extracted

] sell E(t) I (or stored) power
P(t) = stochastic = |
. I SR
prlce_process on : . ﬁ; S}Lm'ag@ cyele
real time market viaad Bpmpe o4  (Eg.n=08)
vl = —u®Quw>otNluw<o) _ _ _ - - I Lunwitfed capacity

B Consumer’s payoft:

= vmin(D*(t), E(t) + gda(t)) — Fbo (D(t) — G(t) — u(t))+, - P‘(t)E(t) — p4a(t) g (t) ’

satisfied demand Frustrated demand Price 'paid
B Supplier’s payoff:
= P()E(t) +p**()g?*(t) — cG(t) — g (t)
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Definition of a competitive equilibrium

|||||

Assumption: agents are price takers
P(t) does not depend on players’ actions

B Both users want to maximize their average expected payoft:
B Consumer: find E such that
E € argmaxg E|[ W, (t)e Ytdt]
B Supplier: find E, G, u such that

B ( and u satisfy generation constraints and
E,G,u € argmaxg IE[f WS(t)e_tht]

™ Question: does there exists a price process Psuch that consumer
and supplier agree on the production ?

(P,E,G,u) is called a dynamic competitive equilibrium

23



Price

Storage level

Dynamic Competitive Equilibria

Theorem. Dynamic competitive equilibria exist and are
essentially independent of who is storage owner [Gast et al, 2013]

For all 3 scenarios, the price and the use of generation and storage is the same.

Prices = marginal value of storage

e Concentrate on marginal
production cost whenn =1

* Oscillateforn <1

Cycle efficiency p
0

. \‘@@—V(R*(t).B*(t)).
P (t) = { v ' «—

No storage Small storage
| [ —— Price ° e Price

Storage level 3 = Storage level Q
T a«
= | T
© )
o] o)
@ s}
) n
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Time

(a) Without storage

Time
(b) Bma.x = Qu.e., n = 1.

Large storage,n = 1

5,

o

Time
(C) Bnlax =10 u.e., n = 1

Overproduction that storage cannot store

Storage compensates
fluctuations

o (B7(t), B™(t)),

bo
\v—i—ck

Underproduction that storage
cannot satisfy

Large storage, n =0.8

oo =
—

o

5 L
e Price Price
Storage level 3 Storage level
x
28, 1 amure_sue s a1 e s s
_ 0r ]
210}
k3
Q
M ) W
o
2
w
0
10 15 20 2t 0 5 10 15 20 25

Time

(d) Bimax = 10u.e., n =08

Parameters based on UK data: 1 u.e. = 360 MWh, 1 u.p .= 600 MW, 6%= 0.6 GW2/h, { = 2GW/h, Cmax=Dmax= 3 u.p.
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The social planner problem

. . - . ém),‘fd“u“o(r) G"@!Fv""(tha(thr(t) .
B The social planner wants to find G and u to maximize total
expected discounted payoff =

max E[ (Ws(t) + Wp(t))e Ydt

vmin(D(t), E(t) + g% (¢t)) — ¢ (D%(t) — G4%(t) — —u(t))+ —cG(t) — c%egda(t)
\ )\ )\ l
| | |
satisfied demand Frustrated demand Cost of generation

B The solution does not depend on storage owner, and depends on the
relation between the reserve R(t) and the storage level B(t)
(where reserve = generation - demand : R(t): = G*(t) + u(t) — D(t))

27 2r— —a e e

- el P 8 e T, e e

5 1\\5‘\‘-**‘-.‘ g 1= :."1.
Theorem [Gast et al 2013] The = o h BRDS-g
optimal controlis s.t.: T I : "";';';:%’;;{;!*‘m
i i £ -- ‘B::x's u.e. ¢ —_— i-rr.1a ;:Jon rol {u.,g
if R(t) < ®(B(t)) increase G (t) A N E
lf R (t) > CI) (B (t)) decrease G (t) Storage level Bit) (inu.e.) ‘ Storage level B(t) (in u.e.)

(a) Function b — @(b) for vari- (b) Sample of a trajectory of

ous values of the storage energy the optimal reserve and storage
capacity Bmax. processes. Bmax = Hu.e. 25



Cycle efficiency

The SOCiaI Welfare Overproduction that
Theorem ,—  storage cannot store

[Gast et al., 2013] P () = <@§’b§@ LB (1), _Storage compensate

fluctuations
7\ | v -+ c

B Any dynamic
competitive
equilibrium for any of
the three scenarios 1

Underproduction that

Prices are dynamic .
storage cannot satisfy

Lagrange multipliers

maximizes social §o.sd §02

welfare . L, -
0 1 2 k=e3 4 5 0 1 2pﬂce3 4 5
(a) Withm?t storage (b) Basx =2we.,n=1.

1

0.4
B the same price process
controls optimally both L II..
0 0 s
the Stor‘age AND the 08 09 pﬁ:ce 11 12 08 09 pnyce 1.1 12
. . (¢) Bmax=10u.e., n=1 (zoom) (d) Bmax=10ue, n=0.8(zoom)
production i.e. the
) oo Figure 6: Steady-state distribution of prices for var-
invisible hand of the ious storage energy capacities Buyax. For Bpax =
10u.e., we zoom on c¢=1 to compare 7 = 0.8 and n = 1.
market works

frequency
=]

(%]
frequency
o
N
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The Invisible Hand & S

e
of the Market may B

not be optimal

B Any dynamic competitive storage 1§t ertracted (o sored) power
equilibrium for any of the 3 = Ol + Moo I
three scenarios maximizes ey
social welfare

B However, this assumes a —a— 08

: : £ 015 Fx =8 “wpil
given storage capacity. g
I3
. . 06 +T]=D.a é
B Is there an incentive to A l=emwr ] F
install storage ? ° % el pwe o o Wl
I Gmax = 3u.p. v — N ‘ _ .
» No, stand alone operators or () P (b) Cimax = Dimax = 3u.p.
consumers have no incentive EXpeCtEd social welfare EXpeCted welfare of
to install the optimal storage stand alone operator

Can lead to market manipulation
(undersize storage and generators)
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Scaling laws and optimal storage sizing

0.0

B (steepness) being close to =y

s 20, &

——3a,

social welfare requires the ., D
optimal storage capacity

social welfare

10" 10° 10" 10°
B {inv.e.) B finue.)

B optimal storage capacity (a) Fixed ¢ (b) Fiked o
4
scales like &1 > proportional to installed renewable capacity

g3
\ ¢ proportional to ramp-up capacity of

B increase volatility and ramp- traditional generators
up capacity by x
= increase storage by x
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What this suggests about storage :

B With a free and honest market, storage can be operated
by prices
B However there may not be enough incentive for storage

operators to install the optimal storage size

» perhaps preferential pricing should be directed towards storage
as much as towards PV

B Storage requirement scales linearly with amount of
renewables

29



4

IMPACT OF DEMAND-RESPONSE
ON MARKETS AND PRICES

[Gast et al 2014] N. Gast, J.-Y. Le Boudec and D.-C. Tomozei. Impact of demand-
response on the efficiency and prices in real-time electricity markets. e-Energy '14,
Cambridge, United Kingdom, 2014.
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Demand Response

B = distribution network
operator may interrupt /
modulate power

= virtual storage

B elastic loads support graceful
degradation

B Thermal load (Voltalis),
washing machines (Romande
Energie«commande
centralisée»)
e-cars

BluePod

-
......
-

Voltalis Bluepod switches off
boilers / heating for <60 mn
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Issue with Demand Response:
Non Observability

B Widespread demand response may make load hard to

predict
4\ N load with demand response

renewables
> >

Intention Real

32



Our Problem Statement

Does it really work as virtual storage ?

Side effect with load prediction ?

To this end we add demand response to the
previous model

33



Our Problem Statement

Does it really work as virtual storage ?
Side effect with load prediction

To analyze this we add demand response to the previous model

We consider 2,3 or 4 jommmm s N - :—I— ___________ \
. . Il \\ ' I . - g J l
actors, involving o Cohtrollable generation
- By - ()
V. U R S Ramping Constraint
1. Demand T : | MO R |
2. Flexible Load i 1 I .1 Supply T{<G)-Gt-1)<(¢
. exi e. 0oads : > — s _| ! I G(t) =gda(t)+G(t)+F(t) 1
3. Production | Demand !
4. Storage ;DB =d%(®) +D()

— R

extracted

“ : (or stored) power
e mmmmmmmmmmmmmmmmemo ‘ ———— Jl —
' Flexible Loads i ,I !
L FrO=rT0+FO | : Storage cycle efficiency
"""""""""""" | Storage \  (Egn=08)
‘- g MOzt uwge) - - I Lumited capacity



M Od eI Of F I exi b I e undesirable states undesirable states
7 /l‘_/ # A ¥ 7 . ./_/ i
'1’ /’ . LR - » . -

Loads -
B Population of N o possible 8L eaible
. — - ‘;':,':‘“";, s Yaction action
On-Off appliances N A '
(fridges, buildings, il 9%

pools)

B Without demand response,
appliance switches on/off based
on internal state (e.g. temperature) driven by a Markov chain

' Yy internal
I = “ = -\ max state

B Demand response action may force an off/off transition but
mini-cycles are avoided

B Consumer game: anticipate or delay power consumption to
reduce cost while avoiding undesirable states
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Results of this model with Demand Response

B Social welfare theorem continues to hold, i.e. demand response
can be controlled by price and this is socially optimal, given an
installed base

B We numerically compute the optimum using

» A mean field approximation for a homogeneous population of
N appliances

» Branching trajectory model for renewable production [Pinson et al 2009]
» ADMM for solution of the optimization problem

» We assume all actors do not know the future but know the stochastic
model

[Pinson et al 2009] P. Pinson, H. Madsen, H. A. Nielsen, G. Papaefthymiou and B.
Klockl. “From probabilistic forecasts to statistical scenarios of short-term wind power
production”. Wind energy, 12(1):51-62, 20009.
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100 f
The Benefit of demand-response

is similar to perfect storage
Social Welfare 907

Storage n=0.7
Storage n=1

- + = Fridge L, Ymax=0

= + = Fridge L, Ymax=20min

0 5 10 15
Installed flexible power (in GW!)

Non-Observability We assume that:

Significantly @ The demand-response operator knows the state of its fridges
. @ The day-ahead forecast does not.
Reduces Benefit of
Demand-Response 100} - === e

80t
60 [F

Social Welfare

- # = Fridges L, Ymax=20min (d-a cannot observ

2
08 | . == Fridges L, Ymax=20min (d.-a. can observe)

-—&— Fridges L, Ymax=0 (d.-a. cannot observe) W 1
e)

Installed flexible power (in GW) 37



The Invisible Hand of 40
the Market may not anl
be optimal

I's - =t Battery n=0.7

\ » v | —+ Battery n=1
» ~ | = ® =Fridges L, Ymax=0
- ® = Fridges L, Ymax=2min| |

20

108 0 N el - _ -

0 5 1l0 15
Installed flexible power (in GW)

Demand Response

stabilizes prices more r /gom
§' 05k
than storage : /
0.7 08 09 1 11 12 | 1/m

price A

Large amount of 100% ef-

ficient storage or demand- Storage with efficiency 1 < 1
response
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What this suggests about Demand Response :

B With a free and honest market, storage and demand
response can be operated by prices

B However there may not be enough incentive for storage
operators to install the optimal storage size / demand
response infrastructure

B Demand Response is similar to an ideal storage that
would have close to perfect efficiency

B However it is essential to be able to estimate the state of
loads subject to demand response (observability)
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Thank You !

B More details on smartgrid.epfl.ch
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