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An End-to-End Approach to the Resequencing Problem

FRANQOIS BACCELLI

INRIA, Le Chesnay, France

AND

EROL GELENBE AND BRIGITTE PLATEAU

Universiié de Paris-Sud, Orsay, France

Abstract, The quencing or ization problem is of basic mterest in distributed systems and
computer communication systems. This is because a flow of packets, messages, or updates entering a
communication system in chronological order from the same port or from different ports may be
disordered. The receiving port must then ensure that these objects are resequenced in the appropriate
order before they are fed to the output of the system. In this paper we analyze the end-to-end delay
ncurred by objects traversing such a system, including the disordering delay, the delay introduced by
the resequencing algorithm, and the delay due to the output server al the receiving port, The analysis is
carried out via factorization methods.

C. ies and Subject Descri : D.4.8 [Operating Systems]: P quening theory
General Terms: Performance, Theory
Additional Key Words and Phrases: Consistency control, pack itching ks, performance

1. Introduction

The resequencing problem is a fundamental issue in networks and in distributed
systems. Let us first give an abstract statement and then provide examples of some
practical occurrences of the problem.

Consider a sequence of objects {¢x}mn where R denotes the set of all nonnegative
integers. They enter 2 communciation system at instants {a,).en Where a, corre-
sponds to ¢,

Each ¢, is then delayed by some time D,,, # € M. Thus at the output point of the
system, the objects appear at instants [a, + D,].en, but these instants are not
necessarily in chronological order any more (i.e., it is possible that a, + D, > a, +
Dy for > n).

These objects are then processed by the resequencing algorithm (RA); ¢, will
receive some service of duration S, and depart at time d,. However this service can
only be given in the same order as that of the external arrival instants; that is, ¢

Authors addresses: F, Bacceelli, INRIA, Domaine de Voluceau, BP 105-Rocquencourt, 78153 Le Chesnay
Cedex, France; E. Gelenbe and B. Plateaw, ISEM-Béat. 508, Université de Paris-Sud, 91405 Orsay,

France.
Permission 10 copy without fee all or part of this material is granted provided that the copics are not
made or distri for direct ial ad the ACM ight notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0004-5411/84/0700-0474300.75
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Discrete-Time Analysis of Adaptive Rate Control Mechanisms

Fitan Altman!, Francois Baccelli', and Jean-Chrysostome Bolot

INRIA, B.P. 93, 06902 Sophia Antipolis Cedex, France

Abstract

We analyze the performance of a generic feedback flow control mechanism which
captures the properties of several such mechanisms recently proposed in the literature.
These mechanisms dynamically regulate the rate of data flow into a network based on
feedback information about the network state. They are used in a variety of networks and
they have been advocated for upcoming high-speed networks. However, they are difficult
to model realistically. In this paper, we present a stochastic discrete-time approach that
yields models which are realistic and yet tractable and computationally easy to solve.

For our generic mechanism, the feedback consists of an exponentially averaged estimate
of the bottleneck service rate and queue size. We obtain a model described by non-linear
stochastic difference equations. We find the conditions under which these equations con-
verge to a steady-state and we characterize the speed of convergence to steady-state. We
then consider a linearized version of the model for which we can derive closed-form so-
lutions. These solutions bring out a tradeoff between efficient steady-state behavior and
rapid adaptability to varying network conditions. We indicate how a dynamic averaging
technique of the feedback information can overcome this disadvantage. We also identify
the cases when the linear model is a good approximation to the non-linear model.

Keyword Codes: C.2.0; C.2.1; C.4
Keywords: Computer-Communication Networks, General; Network Architecture and De-
sign; Performance of Systems

1 Introduction

In a packet-switched network, packets generated by source nodes are routed via a sequence
of intermediate nodes to destination nodes. A flow control mechanism limits source rates
in order to avoid congestion in the intermediate nodes. The goal of the flow control
mechanism is to match the source rate on a connection to the capacity available on this

'Supported by the European Grant BRA-QMIPS of CEC DG XIIL
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Modeling the Economic Value of Location and
Preference Data of Mobile Users

F. Baccelli (ENS/INRIA, francois.baccelli@ens.fr) and J. Bolot (Sprint Labs, jeanbolot® gmail.com})

Absract—The defining characteristic of wireless and maobile
networking is user mobility, and related to it s the ability for the
metwork to capture (at least partial) information on where users
are located and how vsers change location over time. Information
about location is hecoming critical, and therefore valuable, for an
increasingly larger number of location-based or location-aw are
services. One Key open question, however, is how valuable exactly
thiz information is

Our goal in this paper 15 to develop an analytic framework,
namely models and the techniques to sobve them, to help quantify
the economics of location information. Our aim is to derive
maodels which can be used as decision making tools for entities
interested in or vobved in the location data economics chain,
such as mobik operators or providers of location aware services
imohilke advertising, etel. We consider in particular the funda-
mental problem of quantifying the value of different granularities
of location information, for example how much more valuable
is it to know the GPS location of a mobik wser compared to
only knowing the sccess point, or the cell tower, that the user
is associated with. We illustrate our approach by considering
what 15 arguably the quintessential location-based service, namely
proximity-hased advertising.

‘We make three main contributions. First, we develop several
niwel models, based on stochastic geometry, which capture the
lecation-based economic activity of mobile users with diverse sets
of preferences or interests, Second, we derive closed-form analytic
solutions for the economic value generated by those users, Third,
we augment the models to consider uncertainty about the users’
lecation, and derive expressions for the economic value generated
with different granularities of lecation information.

To our knowledge, this paper iz the first one to present
and analyze economic models which can help understand the
economic value mnerated by mobile users with location based
serviees, for different granulanties of location information in
wireless networks.

I. INTRODUCTION

dial up and broadband access fees. Furthermore, the number
of users of the mobile Internet (measured by the number of
users accessing browser-based services on cell phones only)
is estimated at between 500 million and 1 billion. almost on
par with the total number of PCs connecied to the Internet [1].
[2].

A key charackeristic of mobile networks and devices is their
ability to capture and analyze (at least partial) information
on the location of mobile users. For example, cellular op-
erators have routinely captured large scale location data for
billing purposas, but also to improve location managemeant or
satisfy legal requirements such as E911. Mo recently. they
have started exposing (ofien for a fee) large scale location
information to application developers. In parallel. a significant
fraction of mobile devices is now GPS-enabled and captures
and (sometimes for a fee) provides access to real-time GPS
data MWote that the capture and availability of location data
is part of a larger trend, where data of various kinds such
as location data but also social network data or spectrum
usage data is seen as an extremely valuable. even sirategically
important, asset by the carriers in particular, but also by the
generdl mobile industry.

In any case, the capture and availability of location data
enables the development of a wide rangs of location-based
or location-aware services, and indesd an rapidly increasing
number of such services is now available, ranging from
navigation to location-aware advertising, friend findzr, etc, and
many morz are announced or launched on a daily basis. As
noted above, this location data, since it enables new services
and new economic activities, is also seen as economically
viluahle. This raises the question then of how valuable it is,




Most used paper

Bayesian Inference for Localization in Cellular
Networks

Hui Zang
Sprint, USA

Absiraci—In his paper, we presenl & meneral kechnique based
on BEmesian Inkremce o ok moblies i ozllulsr neiworks

can ke fariher iImproved by o inisg the @ priori ser disirbolion
In w BEmeslan echnlgue.

L INTRODUCTION

Muobile phones hne become 2 fndarental component of
medern Bves and economizs, and have hecome ohi L
macking mn estimaied 4.1 hillion by end of 2008 - over Ealf
of the plnet’s population - with several couniries having
peneimation raes maxch higher than 100 [, As 2 result, soent
[ i ile phones = 2 powerfal and exciting
mew ool o trck and analyre beman behavior, in imalar
bemman social interactions and activity paierns [J], &.m

Undersianding besman mohility pattemns & of maor impar-
tance im a numhet of ae . inchsding of course celllar network
design and engineering, bul also wban planning, transpodation
gnul;;phy.ﬂmgobih} rljsi.ng.n'uwd.?;.nd cvﬂs;l mangeTe L,
or epidemics monitoring and control. Untill nelatne by recently,
Ew tools and little lange scale dala wee available b monitor the
spatial dvnamics of lape populations of users (For example,
wier o B for a study of humen mobility and travel paterns
b{nnud;'hégj_lr}n circulztion of bank notes m the United States).
The call moonds (CORs) collecied by wineless operaions
for billing and imubleshooting purposes mow provide one ssch
somee of dala, amd they make it possible to sindy hwman
mebility patiems of popabiioss o previously impossible-io-
achieve scales. The main challenpe with CIDRs has heen
availability. [t mmains |imiled, in particular because of priv
ooncens i comesponding challenges with anomymir aim 5],
bt still availshility bos become gmeaier in the past comple of
vezrs We amnlicipaie thal thes will b mom work on CDORs
and human mekiliy modeling can henefit from the
mcreasing wa:inlxli-ulyly DECD'I'TE'. Ly

Our work s motivaied by the meed to comvert bage sets
of (s o locatiom woords. CTJEs conimin onby coamse-
grained location information shout the ile weer @ azll
and secior 1D and round-mip-time (KTT) and signal £o-moise-
and-inierference raiio (SINE) meememenis. We woald ke io
obtain mom fine-graimed |ocation information. A though there

:
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ENE, Framce

Jean Bolot
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bas heen a lob of work om localicing mobiles im 2 cellalar
network, most of them ae based on the operation mode in
which a mobile could e 2 few surmounding hase siations A,
). El. including the ones with very wesk signals Hosever,
omly basr siafions with sirong encugh signals can camy a
mobile’s communication and only the base siations dal weme
actually canryimg the mobiles” communication wes logged inio
CDEs Although during hamdoffs, would o or mom hase
stalions camy 2 call simulianeousty, in all other mses, 5065
of oumr CIMKs, the mobile is sred by oely ome base siation
In onder to ocomwert CDEs o location moonds, we need in

jority cases whew there is only cme hase
stalion mmm popular localivation I.nd:z.qrs mach
as TOA, ADN [, 1. or signal-stengeh fingerprinting [0 an:
mot applicable becanse mquie o or mom distindg base
stations. Thenefone, we need o sohve e problem of localizagion
for these single-legped calks.

Wb develop 2 Havesian-hased method io localive wers in ool
halar ne with omly ome call-irg imformation. We oomsider
miormation mach as the distance io the base sisfion, loecation
aof neighboring base staiions, and kvels of inerfexne and’or
moke. W demomstraie the hene fits of owr echmigee with CORs
of 911 calls with matchimg (iP% coondinates. We can improve
e localivation ac 20% comparing bo a blind zch
m which a Io-ca:i:nT::.l!'nde -:rrnmrl %Jnng an '?'P;_“h
sector and the arc is determized beed on distobuwtion of KTT
measurements.

Aloagh our work is molivated by offiies call data process-
e, ithe fechnique developed in this work also bemefiis Iocation-
based mobile applications which do nol have dimct aoess 1o
miormation from several celifsedors o perform localizagion
wsing the aliemative methods (TOW, AN, fingetprintimgl. Our
approach is ve mwral and spplicable mol just o cellalar
metwroris, but I.l?nﬁrwin:lﬁ: networks in 'pi.l:.ll.'l.'u.l.l:l"ﬂ'irl:l:ﬂ
LANs

The mest of the paper is orgamied as follows. !"H:d.iunlg
provides background information abow the network amd
dain sef under sindy and mview mlsied work We dewld
the Hayesian-based method in steps in Section !g. Szd.iunﬁ
pesenis measuremenl resules that #@d ws in selecting pammeters
for the Bayesian method. The method is evaluaied in Section [7]
and Sectiom [V concludes the paper

1. BACKGROUND

A Nerwork [mformation

W consider 2 commercial CDMA 20K network which car-
mes voia, data and SMS maffic. We obin a neteork map
with lcations of base sations as (latinde, longinede) pairs.
In the metworic, all base stations ane equipped with dineclional
aniennas and each cell has two or thme sciom. We now the
mrimuth (direction) of each antesma, which comesponds 1o e
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TEESUACM TRANSACTIONS ON NETWOREING, WO, 17, MO 4, AUCUST 2009

The Role of PASTA in Network Measurement

Francois Baccelli, Sndhar Machiraju, Member, IEEE,

Abstroci—Poisson Arrivals See Time Averages (PASTA) i a well-
known property applicable to many stochastic systems. In active
prihing, PASTA is invoked io justifly the sending of probe packets
(or trains) at Peisson times in a variety of contexts. However, due to
the diversity of aims and analysis technigques used inactive probing.
the benefits of Poisson-based measurement. and the utility and role
of PASTA, are unclear. Using a combination of rigorous results and
carefully constructed examples and counterexamples, we map out
the issues imvelved and argue that PASTA is of very limited wuse
in active probing. In particular, Peisson probes are not unigque in
their ahility to sample without biss. Furthermore, PASTA ignores
the issue of estimation variance and the ceniral need for an in-
version phase to estimate the quantity of interest based om what
is directly observahle. We give concrete examples of when Poisson
prohes shiould not be nsed, explain why, and offer initial guidelines
on suitable aliernative sending processes,

Tadex Terms—Active probing, network measurement, Nonintru-
sive Mixing Arrivals See Time Averapes (NIMASTA), Poisson Ar-
rivals See Time Averages (PASTA)L

I INTRODUCTION

OISS0N Amvals See Time Averages, or “PASTA is
a property applicable to many stochastic svstems. In
essence, it states that observations made of a system at time
instants obeying a Poisson process, when averaged, converge to
give the ‘true’ value, that is, to the average that an ideal observer
would make when monitoring the system continuously over
time. PASTA was first formalized by probabilists, notably in
the 1970s. Wolff, in his classic 1982 paper [24], unified and
extended the then-existing PASTA results. The generality of his
formulation, based on the “Lack of Anticipation Assumption™
(LAA), which requires simply that the past history of the
system does not influence the arrival times of future chservers,
did away with the need to prove ergodic theorems for each new
application and led to PASTA being widely used.
PASTA has been used [15], [16], [22]. [25] to justifv the
sending of probes {or probe trains) at Poisson epochs in an ef-
fort to obtain unbiased estimates of quantities of interest, for

Mlanuscript received November 20, 2006 revised Sepiember 08, 1008: ap-
proved by IEFEACM TRANSACTIONS ON NETWOREING Editor M. Roughan,
First published Faly 14, 20'%; omment version published August 19, 2006

F Baceslll iz with INBIA FNS Fesls Nermale Supémeur= Pares 7574010

Darryl Veitch, Senior Member, IEEE, and Jean Bolot

example, end-to-end delay. However, despite the generality of
the PASTA result of Wolff, in many respects the role and wtility
of PASTA for active probing has become unclear both in the
theoretical and practical senses. This paper aims to clarfy what
Poisson probing, and PASTA itself, can and cannot provide for
active probing. In this context, key questions include:

* When is PASTA valid in the strict sense?

* When and in what sense is PASTA useful when it holds?

1= Poisson probing necessarily optimal?

+ Are there cases when Poisson probes should moef be used?

+ What role is played by PASTA within the inference prob-

lems of active probing?
Related to this last point. there is an important, prior question:
What does PASTA apply to? In other words, Poisson arrivals
see ime averages, but of what? Does PASTA hold for amy quan-
tity that may form the object of active probing?

Cwr main focus in this paper is on end-to-end delay over a
tandem gueneing network, to which PASTA can in fact apply.
Delay is a simple, yet important target of active probing mea-
surement in its own right. A natural aim in this context would
be to accurately detenmine any desired statistic of the delay that
would be experienced by a single packet of any given size sent
into the network in its steady state regime, for example, the dis-
tribution of such a delay. A particular case is the virtual work
of queweing theory, which comasponds to the delay a zero-sized
packet would see under FIFO scheduling when sent into the net-
work in steady state. By carefully distinguishing between the
nonintrusive case (virtoal probes of zero size) and the intrusive
case (real probes of finite size), we provide important insights
into the above questions. The simplicity of delay allows rigorous
resulis to be derived, and yet it provides a context rich enough
Lo inform active probing techniques in general.

Owr findings group natorally under three distinct categories
and can be summarized as follows.

Sampling Bias versus Intrusiveness

* PASTA states that Poisson sampling is unbiased. In the
noqintrusive case, we show that this is not unigue to
Poisson, but is shared by a large class of other sampling
PIOCEESES.

* PASTA states that Poisson sampling remains unbiased
even when observers are not virtual but contribute to
evetpm losd Apard from 3 few excentions (T131% thic




Move “Up the Stack”

From networks

To usage




Move “Up the Stack”

Network
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From networks VoD, caching
To usage @"”g PattD

Search, navigation and
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Move “Up the Stack”
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2. Modeling “Up the stack”

Stochastic processes and stochastic geometry
just as important up the stack as they have
been down the stack...

Stochastic geometry for: network design
location data




Quantify value of user location data

Exact

Approximate




Quantify value of user location data




Approach: Location-based services

Today’s preferences:
store
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Coffee
Bookstore

Spicy
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Know location and prefs

Targeted ads
Coffee close




Approach: Location-based services
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Know location and prefs Don’t know location
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Coffee close Bookstore far




Approach: Location-based services

store F; e : store'u .. store'v

-

store
, store F)

® ¢
¢ @ ¢ o
Know location and prefs Don’t know location Don’t know
Targeted ads Semi-targeted ads Non-targeted ads

Coffee close Bookstore far Non-spicy food far




Approach: Location-based services

store store store
, store , store , store
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Value of location data Value of preferences




Building the model

Complex because i
m Spatially distributed users u Store
m Spatially distributed businesses that trigger transactions ——
m Transactions depend on location and user preferences
m User location known accurately or not

Goal: new models that provide insight

m  What is the value created by a knowledge of user location and/or
of user preferences?

m  Which one is more valuable?




Spatial processes

Spatial Poisson model

m  @is a Poisson process of intensity A on A if
m  Number of points N(A) is Poisson with rate A x surface of A

= Number of points in disjoint sets are independent variables
—AA (/” A| )k _ e_MRZ (ﬂﬂRz)k
k! k!

P(N(A)=k)=e

Boolean or germ-grain model

m Germs = points of Poisson process of density A

m  Grain = ball of radius R "
—AmR? (/lﬁRz)

m  Prob of m-coverage p(M,A)=¢€

m!




Model assumptions

store ;-

Businesses o

m Type n (coffee, bookstore, restaurant...) distributed according to
independent spatial Poisson process 4, . Denote 1 =224,

Users ¥

m Spatial Poisson process of density v
m Class (k, i) has random preference list i=(i,,.. i,) with prob z(i,k)
m Vicinity = ball of radius R

Transactions

m Users receive ads that depend on total number of services m in
vicinity that match their list. Propensity for users to stop f(m)

m  Given that user stops, revenue or value prop to number of
different services in R - drink coffee, hang out at bookstore




Model assumptions

store ;v

Businesses [

m  Type n (coffee, bookstore, wonton
to independent spatial Poisson prg

Users X

m Spatial Poisson process of densit

m Class (k, 1) has random preference
m Vicinity = ball of radius R

Transactions

m Users receive ads that depend on total number of services m in
vicinity that match their list. Propensity for users to stop f(m)

m  Given that user stops, revenue or value prop to number of
different services in R - drink coffee, hang out at bookstore

Revenue= v x Prob (m services in R) x f(m) x nb of diff services

pl= v ]y [p(m K D]f(m)g(m,ki)




Case #1 - Perfect user location information

Pick a user. Given that user is of type k, i=(iy,.. I,)

m  Poisson process of i(k,i) = 2i_; \4; of services present in its list
—A(k, i) R? (ﬂ,(k, i)ﬂRz )m
m!

m Location m-covered with p(m,k,i)=e

m  Mean number of different services among the m
= No service of type pamong them (1-4, /A(k, )"
k

" g(mk,i)=> (@4 /Ak,i)™)
Mean revenue g&herated per unit space

= Location + pref [ —VZZ r(k, i)]>‘ p(m, k, )|f(m)g(m,ki)
m  Potential D = vzzn(k |)Z p(m,k,i)g(m,k,)

= Prob of stopping Pop = ZZ”(k |)Z p(m,k,i) f (m)
m  No location or pref PN= pstop x P




Case #2 - Imperfect user location information

User localized at distance r from true location
Caser > 2R Caser < 2R

m Services at real location independent

of services at estimated location

m  Revenue with prefs, but no loc

ppref

ads




Numerical results

Propensity to stop: f(m) =1-a™, O< <l
a =0 high propensity to react to ads or recommendations

Models psychological behavior of user

o NY™
Geometric list of preferences 7#(k.1)=4 (1—ﬂ)£k)

4, = A for all n; 1is the spatial density of services




Numerical results: location vs preferences

Location + preferences

/

A
revenue | , . F———
AN ~ . ™~
p o \ 214 \\
\\\ . .-H'“‘H\ . -
™, ™,
o \k‘\\x x\"x x‘x\
a0t "\\ . by I|
— \\ “::-,____ I|
o als o7 :'; __---u_'s-_-}\ o= s A a
ﬁ - )
/ low /Z medium / high

Key takeaway:
Profile data more important in dense urban cores
Location data more important in sparser areas
Simple but powerful model for location-based ads, Tinder, ...




Takeaway

Stochastic geometry and stochastic processes
just as important up the stack as they have
been down the stack...

Will remain important given emerging trends




3. Guided usage

f(m) propensity function

All interactions will be guided (Google,
Amazon, yelp,..): choice, like




Rich area of research

Recommendation systems (performance, bias,..)
Impact of recommender systems on population

Ri(t) = sign[P; + Ci(t) + Y  NyRj(t —1)]

JEN;

User feedaback & analysis

MY TOP CHARACTERS Y TOP QUOTES

WE LLWING '15\‘351 i
TTHATSA %
BAT PUN"

MY REAL-TIME RESPONSES

Impact on platform and bottom
of the stack?
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