On the use of formal tools to improve the security of masked implementations
Symposium European Cyber Week

November 23, 2016

Sonia Belaïd
Cryptanalysis

→ Black-box cryptanalysis
→ Side-channel analysis

Alice $m_i \rightarrow k \rightarrow ENC \rightarrow c_i \rightarrow Bob$ $c_i \rightarrow k \rightarrow DEC \rightarrow m_i$
Cryptanalysis

- Black-box cryptanalysis: $\mathcal{A} \leftarrow (m_i, c_i)$
- Side-Channel Analysis
Cryptanalysis

→ Black-box cryptanalysis

→ Side-Channel Analysis: $A \leftarrow (m_i, c_i, \mathcal{L}_i)$
Cryptanalysis

→ Black-box cryptanalysis

→ Side-Channel Analysis: $\mathcal{A} \leftarrow (m_i, c_i, \mathcal{L}_i)$
Cryptanalysis

→ Black-box cryptanalysis

→ Side-Channel Analysis: $A \leftarrow (m_i, c_i, L_i)$
Cryptanalysis

- Black-box cryptanalysis
- Side-Channel Analysis: $A \leftarrow (m_i, c_i, L_i)$
Cryptanalysis

- Black-box cryptanalysis
- Side-Channel Analysis: $\mathcal{A} \leftarrow (m_i, c_i, L_i)$
A power-analysis attack against AES-128
A power-analysis attack against AES-128
A power-analysis attack against AES-128
Algorithmic Countermeasures

Problem: leakage L is key-dependent

Fresh Re-keying

Idea: regularly change k

- master key k
- session key k^*

Masking

Idea: make leakage L random

- sensitive value: $v = f(m, k)$
- $v_0 \leftarrow v \oplus (\bigoplus_{1 \leq i \leq t} v_i)$
- $v_1 \leftarrow \$
- \ldots
- $v_t \leftarrow \$

\rightarrow each t-uple of v_i is independent from v
Algorithmic Countermeasures

Problem: leakage \mathcal{L} is key-dependent

Masking

Idea: make leakage \mathcal{L} random

Sensitive value: $v = f(m, k)$

- $v_0 \leftarrow v \oplus \left(\bigoplus_{1 \leq i \leq t} v_i \right)$
- $v_1 \leftarrow \$
- \ldots
- $v_t \leftarrow \$

\rightarrow each t-uple of v_i is independent from v
Security of Masked Programs: Leakage Model

- **t-probing model**
 - Ishai, Sahai, Wagner
 - Crypto 03

- **no leak-free gates**

- **reduction**
 - Duc, Dziembowski, Faust
 - Eurocrypt 14

- **noisy leakage model**
 - Prouff, Rivain
 - Eurocrypt 13
Security in the t-probing model

t-probing model assumptions:
- only one variable is leaking at a time
- the attacker can get the exact value of at most t variables

Secure if all the t-uples are independent from the secret.
Security in the t-probing model

- ν: randomly generated variable
- c: known constant
- x: secret variable

function $\text{Ex-t3}(x_1, x_2, x_3, x_4, c)$:

\[
\begin{align*}
(* x_1, x_2, x_3 &= \$ *) \\
(* x_4 &= x + x_1 + x_2 + x_3 *) \\
 r_1 &\leftarrow \$
\end{align*}
\]

\[
\begin{align*}
 r_2 &\leftarrow \$
 y_1 &\leftarrow x_1 + r_1 \\
 y_2 &\leftarrow (x + x_1 + x_2 + x_3) + r_2 \\
 t_1 &\leftarrow x_2 + r_1 \\
 t_2 &\leftarrow (x_2 + r_1) + x_3 \\
 y_3 &\leftarrow (x_2 + r_1 + x_3) + r_2 \\
 y_4 &\leftarrow c + r_2 \\
 \text{return}(y_1, y_2, y_3, y_4)
\end{align*}
\]
Security in the \(t\)-probing model

- \(v\): randomly generated variable
- \(c\): known constant
- \(x\): secret variable

\[
\text{function } \text{Ex-t3}(x_1, x_2, x_3, x_4, c): \\
(* x_1, x_2, x_3 = *) \\
(* x_4 = x + x_1 + x_2 + x_3 *)
\]

\[
\begin{align*}
 r_1 & \leftarrow \$ \\
 r_2 & \leftarrow \$ \\
 y_1 & \leftarrow x_1 + r_1 \\
 y_2 & \leftarrow (x + x_1 + x_2 + x_3) + r_2 \\
 t_1 & \leftarrow x_2 + r_1 \\
 t_2 & \leftarrow (x_2 + r_1) + x_3 \\
 y_3 & \leftarrow (x_2 + r_1 + x_3) + r_2 \\
 y_4 & \leftarrow c + r_2 \\
\end{align*}
\]

1. independent from the secret?
Security in the t-probing model

- v: randomly generated variable
- c: known constant
- x: secret variable

function $\text{Ex-t3}(x_1, x_2, x_3, x_4, c)$:

\[(* x_1, x_2, x_3 = $ *) \]
\[(* x_4 = x + x_1 + x_2 + x_3 *) \]

\[r_1 \leftarrow $ \]
\[r_2 \leftarrow $ \]

1. independent from the secret?

$y_1 \leftarrow x_1 + r_1$

\[y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2 \]

\[t_1 \leftarrow x_2 + r_1 \]

\[t_2 \leftarrow (x_2 + r_1) + x_3 \]

\[y_3 \leftarrow (x_2 + r_1 + x_3) + r_2 \]

\[y_4 \leftarrow c + r_2 \]

return(y_1, y_2, y_3, y_4)
Security in the t-probing model

- v: randomly generated variable
- c: known constant
- x: secret variable

function $\text{Ex-t3}(x_1, x_2, x_3, x_4, c)$:

\[
\begin{align*}
(* x_1, x_2, x_3 &= \$ *) \\
(* x_4 &= x + x_1 + x_2 + x_3 *) \\

r_1 &\leftarrow \$ \\
r_2 &\leftarrow \$ \\
\end{align*}
\]

1. independent from the secret?

\[
\begin{align*}
y_1 &\leftarrow x_1 + r_1 \\
y_2 &\leftarrow (x + x_1 + x_2 + x_3) + r_2 \\
t_1 &\leftarrow x_2 + r_1 \\
t_2 &\leftarrow (x_2 + r_1) + x_3 \\
y_3 &\leftarrow (x_2 + r_1 + x_3) + r_2 \\
y_4 &\leftarrow c + r_2 \\
\end{align*}
\]

return(y_1, y_2, y_3, y_4)
Security in the \(t \)-probing model

- \(v \): randomly generated variable
- \(c \): known constant
- \(x \): secret variable

function \(\text{Ex-t3}(x_1, x_2, x_3, x_4, c) \):

\[
\begin{align*}
(* x_1, x_2, x_3 &= \$ *) \\
(* x_4 &= x + x_1 + x_2 + x_3 *) \\
[r_1 &\leftarrow \$] \\
[r_2 &\leftarrow \$] \\
[y_1 &\leftarrow x_1 + r_1] \\
[y_2 &\leftarrow (x + x_1 + x_2 + x_3) + r_2] \\
[t_1 &\leftarrow x_2 + r_1] \\
[t_2 &\leftarrow (x_2 + r_1) + x_3] \\
[y_3 &\leftarrow (x_2 + r_1 + x_3) + r_2] \\
[y_4 &\leftarrow c + r_2] \\
\text{return}(y_1, y_2, y_3, y_4)
\end{align*}
\]

1. independent from the secret?

- \(\times \) many mistakes

many mistakes
Security in the t-probing model

- v: randomly generated variable
- c: known constant
- x: secret variable

function $\text{Ex-t3}(x_1, x_2, x_3, x_4, c)$:

1. independent from the secret?

2. test 286 3-uples
 - \times missing cases
 - \times inefficient

\[
\begin{align*}
\text{r}_1 &\leftarrow \$_{} \\
\text{r}_2 &\leftarrow \$_{} \\
\text{y}_1 &\leftarrow \text{x}_1 + \text{r}_1 \\
\text{y}_2 &\leftarrow (\text{x} + \text{x}_1 + \text{x}_2 + \text{x}_3) + \text{r}_2 \\
\text{t}_1 &\leftarrow \text{x}_2 + \text{r}_1 \\
\text{t}_2 &\leftarrow (\text{x}_2 + \text{r}_1) + \text{x}_3 \\
\text{y}_3 &\leftarrow (\text{x}_2 + \text{r}_1 + \text{x}_3) + \text{r}_2 \\
\text{y}_4 &\leftarrow c + \text{r}_2 \\
\text{return}(\text{y}_1, \text{y}_2, \text{y}_3, \text{y}_4)
\end{align*}
\]
Security in the t-probing model

Contributions:

1. new algorithm to decide whether a t-uple is independent from the secret
 - no false positive
 - more efficient than existing works

2. new algorithm to enumerate all the t-uples
 - more efficient than existing works

1. Show that a t-uple is independent from the secret

Inputs: t intermediate variables, $b \leftarrow \text{true}$

(Rule 1) secret variables?

yes \rightarrow (Rule 2)
no \rightarrow ✓

(Rule 2) an expression v is invertible in the only occurrence of a random r?

yes \rightarrow $v \leftarrow r$; (Rule 1)
no \rightarrow (Rule 3)

(Rule 3) is flag $b = \text{true}$?

yes \rightarrow simplify; $b \leftarrow \text{false}$; (Rule 1)
no \rightarrow x

✓ \rightarrow distribution independent from the secret
x \rightarrow might be used for an attack

function $\text{Ex-t3}(x_1, x_2, x_3, x_4, c)$:

$r_1 \leftarrow$
$r_2 \leftarrow$
$y_1 \leftarrow x_1 + r_1$
$y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2$
$t_1 \leftarrow x_2 + r_1$
$t_2 \leftarrow (x_2 + r_1) + x_3$
$y_3 \leftarrow (x_2 + r_1 + x_3) + r_2$
$y_4 \leftarrow c + r_2$

return (y_1, y_2, y_3, y_4)
1. Show that a t-uple is independent from the secret inputs: t intermediate variables, $b \leftarrow \text{true}$

(Rule 1) secret variables?
- yes \rightarrow (Rule 2)
- no \rightarrow ✓

(Rule 2) an expression v is invertible in the only occurrence of a random r?
- yes \rightarrow $v \leftarrow r$; (Rule 1)
- no \rightarrow (Rule 3)

(Rule 3) is flag $b = \text{true}$?
- yes \rightarrow simplify; $b \leftarrow \text{false}$; (Rule 1)
- no \rightarrow x

✓ \rightarrow distribution independent from the secret
x \rightarrow might be used for an attack

function Ex-t3(x_1, x_2, x_3, x_4, c):
- $r_1 \leftarrow \$r_2 \leftarrow \$
- $y_1 \leftarrow x_1 + r_1$
- $y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2$
- $t_1 \leftarrow x_2 + r_1$
- $t_2 \leftarrow (x_2 + r_1) + x_3$
- $y_3 \leftarrow (x_2 + r_1 + x_3) + r_2$
- $y_4 \leftarrow c + r_2$

return(y_1, y_2, y_3, y_4)
1. Show that a t-uple is independent from the secret

Inputs: t intermediate variables, $b \leftarrow \text{true}$

(Rule 1) secret variables?
 yes \rightarrow (Rule 2)
 no \rightarrow ✓

(Rule 2) an expression v is invertible in the only occurrence of a random r?
 yes \rightarrow $v \leftarrow r$; (Rule 1)
 no \rightarrow (Rule 3)

(Rule 3) is flag $b = \text{true}$?
 yes \rightarrow simplify; $b \leftarrow \text{false}$; (Rule 1)
 no \rightarrow ✗

✓ \rightarrow distribution independent from the secret
✗ \rightarrow might be used for an attack

function $\text{Ex-t3}(x_1, x_2, x_3, x_4, c)$:

\[
\begin{align*}
 r_1 &\leftarrow $ \\
 r_2 &\leftarrow $ \\
 y_1 &\leftarrow x_1 + r_1 \\
 y_2 &\leftarrow (x + x_1 + x_2 + x_3) + r_2 \\
 t_1 &\leftarrow x_2 + r_1 \\
 t_2 &\leftarrow (x_2 + r_1) + x_3 \\
 y_3 &\leftarrow (x_2 + r_1 + x_3) + r_2 \\
 y_4 &\leftarrow c + r_2
\end{align*}
\]

return (y_1, y_2, y_3, y_4)
1. Show that a \(t \)-uple is independent from the secret

Inputs: \(t \) intermediate variables, \(b \leftarrow \text{true} \)

(Rule 1) secret variables?
 yes \(\rightarrow \) (Rule 2)
 no \(\rightarrow \checkmark \)

(Rule 2) an expression \(v \) is invertible in the only occurrence of a random \(r \)?
 yes \(\rightarrow \) \(v \leftarrow r \); (Rule 1)
 no \(\rightarrow \) (Rule 3)

(Rule 3) is flag \(b = \text{true} \)?
 yes \(\rightarrow \) simplify; \(b \leftarrow \text{false} \); (Rule 1)
 no \(\rightarrow \times \)

\(\checkmark \) \(\rightarrow \) distribution independent from the secret
\(\times \) \(\rightarrow \) might be used for an attack

function Ex-t3\((x_1, x_2, x_3, x_4, c)\):
 \(r_1 \leftarrow x_2 + r_1 \)
 \(r_2 \leftarrow x_3 \)
 \(y_1 \leftarrow r_1 + r_2 \)
 \(y_2 \leftarrow c + r_2 \)
 \(t_1 \leftarrow r_1 + r_2 \)
 \(t_2 \leftarrow (x_2 + r_1) + x_3 \)
 \(y_3 \leftarrow (x_2 + r_1 + x_3) + r_2 \)
 return\((y_1, y_2, y_3, y_4)\)
2. Extension to All Possible Sets

Problem: n intermediate variables $\rightarrow \binom{n}{t}$ proofs
2. Extension to All Possible Sets

Problem: \(n \) intermediate variables \(\mapsto \binom{n}{t} \) proofs

New Idea: proofs for sets of more than \(t \) variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice
2. Extension to All Possible Sets

Problem: \(n \) intermediate variables \(\rightarrow \binom{n}{t} \) proofs

New Idea: proofs for sets of more than \(t \) variables
 - find larger sets which cover all the intermediate variables is a hard problem
 - two algorithms efficient in practice

Algorithm 1:

1. select \(X = (t \text{ variables}) \) and prove its independence
2. extend \(X \) to \(\hat{X} \) with more observations but still independence
3. recursively descend in set \(C(\hat{X}) \)
4. merge \(\hat{X} \) and \(C(\hat{X}) \) once they are processed separately.
2. Extension to All Possible Sets

Problem: \(n \) intermediate variables \(\rightarrow \binom{n}{t} \) proofs

New Idea: proofs for sets of more than \(t \) variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:

1. select \(X = (t \text{ variables}) \) and prove its independence
2. Extension to All Possible Sets

Problem: \(n \) intermediate variables \(\rightarrow \binom{n}{t} \) proofs

New Idea: proofs for sets of more than \(t \) variables
- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:
1. select \(X = (t \text{ variables}) \) and prove its independence
2. extend \(X \) to \(\hat{X} \) with more observations but still independence
2. Extension to All Possible Sets

Problem: n intermediate variables $\Rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables
- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:
1. select $X = (t$ variables$)$ and prove its independence
2. extend X to \hat{X} with more observations but still independence
3. recursively descend in set $\mathcal{C}(\hat{X})$
2. Extension to All Possible Sets

Problem: \(n \) intermediate variables \(\Rightarrow \binom{n}{t} \) proofs

New Idea: proofs for sets of more than \(t \) variables
- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:
1. select \(X = (t \text{ variables}) \) and prove its independence
2. extend \(X \) to \(\hat{X} \) with more observations but still independence
3. recursively descend in set \(\mathcal{C}(\hat{X}) \)
4. merge \(\hat{X} \) and \(\mathcal{C}(\hat{X}) \) once they are processed separately.
Benchmarks

<table>
<thead>
<tr>
<th>Reference</th>
<th>Target</th>
<th># tuples</th>
<th>Security</th>
<th># sets</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSE13</td>
<td>full AES</td>
<td>17,206</td>
<td>✔️</td>
<td>3,342</td>
<td>128</td>
</tr>
<tr>
<td>MAC-SHA3</td>
<td>full Keccak-f</td>
<td>13,466</td>
<td>✔️</td>
<td>5,421</td>
<td>405</td>
</tr>
<tr>
<td>Second-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA06</td>
<td>Sbox</td>
<td>1,188,111</td>
<td>✔️</td>
<td>4,104</td>
<td>1.649</td>
</tr>
<tr>
<td>CHES10</td>
<td>Sbox</td>
<td>7,140</td>
<td>1ˢᵗ-order flaws (2)</td>
<td>866</td>
<td>0.045</td>
</tr>
<tr>
<td>CHES10</td>
<td>AES KS</td>
<td>23,041,866</td>
<td>✔️</td>
<td>771,263</td>
<td>340,745</td>
</tr>
<tr>
<td>FSE13</td>
<td>2 rnds AES</td>
<td>25,429,146</td>
<td>✔️</td>
<td>511,865</td>
<td>1,295</td>
</tr>
<tr>
<td>FSE13</td>
<td>4 rnds AES</td>
<td>109,571,806</td>
<td>✔️</td>
<td>2,317,593</td>
<td>40,169</td>
</tr>
<tr>
<td>Third-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA06</td>
<td>Sbox</td>
<td>2,057,067,320</td>
<td>3ʳᵈ-order flaws (98,176)</td>
<td>2,013,070</td>
<td>695</td>
</tr>
<tr>
<td>FSE13</td>
<td>Sbox(4)</td>
<td>4,499,950</td>
<td>✔️</td>
<td>33,075</td>
<td>3.894</td>
</tr>
<tr>
<td>FSE13</td>
<td>Sbox(5)</td>
<td>4,499,950</td>
<td>✔️</td>
<td>39,613</td>
<td>5.036</td>
</tr>
<tr>
<td>Fourth-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSE13</td>
<td>Sbox (4)</td>
<td>2,277,036,685</td>
<td>✔️</td>
<td>3,343,587</td>
<td>879</td>
</tr>
<tr>
<td>Fifth-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHES10</td>
<td>⊙</td>
<td>216,071,394</td>
<td>✔️</td>
<td>856,147</td>
<td>45</td>
</tr>
</tbody>
</table>

*run on a headless VM with a dual core (only one core is used in the computation) 64-bit processor clocked at 2GHz
Current Issues in Composition

A refresh algorithm takes as input a sharing \((x_i)_{i\geq 0}\) of \(x\) and returns a new sharing \((x'_i)_{i\geq 0}\) of \(x\) such that \((x_i)_{i\geq 0}\) and \((x'_i)_{i\geq 0}\) are mutually independent.
Current Issues in Composition

A refresh algorithm takes as input a sharing \((x_i)_{i \geq 0}\) of \(x\) and returns a new sharing \((x'_i)_{i \geq 0}\) of \(x\) such that \((x_i)_{i \geq 0}\) and \((x'_i)_{i \geq 0}\) are mutually independent.
A refresh algorithm takes as input a sharing \((x_i)_{i \geq 0}\) of \(x\) and returns a new sharing \((x'_i)_{i \geq 0}\) of \(x\) such that \((x_i)_{i \geq 1}\) and \((x'_i)_{i \geq 1}\) are mutually independent.
A refresh algorithm takes as input a sharing \((x_i)_{i \geq 0}\) of \(x\) and returns a new sharing \((x'_i)_{i \geq 0}\) of \(x\) such that \((x_i)_{i \geq 1}\) and \((x'_i)_{i \geq 1}\) are mutually independent.
A refresh algorithm takes as input a sharing \((x_i)_{i \geq 0}\) of \(x\) and returns a new sharing \((x'_i)_{i \geq 0}\) of \(x\) such that \((x_i)_{i \geq 1}\) and \((x'_i)_{i \geq 1}\) are mutually independent.
Composition in the t-probing model

Contributions:

1. new algorithm to verify the security of compositions
 ▶ formal security
 ▶ any order
2. compiler to build a higher-order secure from any C implementation
 ▶ efficient
 ▶ any order

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, and Rebecca Zucchini.

Strong Non-Interference and Type-Directed Higher-Order Masking. CCS 2016.
Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is independent from the secret

straightforward for linear functions
formal proofs with EasyCrypt and pen-and-paper proofs for small non-linear functions
Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is independent from the secret

if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input
Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is independent from the secret

if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input

function Linear-function-$t(a_0,\ldots,a_i,\ldots a_t)$:

for $i = 0$ to t

$c_i \leftarrow f(a_i)$

return $(c_0,\ldots,c_i,\ldots,c_t)$

→ straightforward for linear functions

$\begin{array}{c}
a_0 \quad a_1 \quad a_2 \quad a_3 \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
(= a + a_0 + a_1 + a_2) \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
c_0 \quad c_1 \quad c_2 \quad c_3 \\
\end{array}$

3 observations
Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is independent from the secret

if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input

function $\text{Linear-function-}t(a_0, \ldots, a_i, \ldots, a_t)$:

for $i = 0$ to t

\[
\begin{align*}
 c_i &= f(a_i) \\
\end{align*}
\]

return $(c_0, \ldots, c_i, \ldots, c_t)$

\rightarrow straightforward for linear functions

\[(= a + a_0 + a_1 + a_2) \]

3 observations
Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is independent from the secret

if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input

function $\text{Linear-function-t}(a_0, \ldots, a_i, \ldots, a_t)$:

for $i = 0$ to t

\[c_i = f(a_i) \]

return $(c_0, \ldots, c_i, \ldots, c_t)$

→ straightforward for linear functions

→ formal proofs with EasyCrypt and pen-and-paper proofs for small non-linear functions
Current Issues

Constraint:

\[t_0 + t_1 + t_2 + t_3 \leq t \]
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 \leq t \]
Current Issues

Constraint:

\[t_0 + t_1 + t_2 + t_3 \leq t \]
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 \leq t \]
Current Issues

t_0 observations

Constraint: $t_0 + t_1 + t_2 + t_3 \leq t$

$t_1 + t_3 + t_2 + t_3$ observations
Current Issues

t_0 observations

Constraint:
$t_0 + t_1 + t_2 + t_3 \leq t$

$t_1 + t_2 + 2t_3 \leq t$?

observations
Current Issues

\[t_0 + t_1 + t_2 + t_3 \leq t \]

Constraint:

- \(t_0 \): observations
- \(t_1 + t_2 + 2t_3 \leq t? \) observations
Current Issues

\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]

- \(t_0 \) observations
- \(t_2 + t_3 \) observations
- \(t_1 \) observations
- \(t_r + t_3 \) observations
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]

\(A_0 \) observations

\(A_1 \) observations

\(A_2 \) observations

\(A_3 \) observations

Flow from \(t_0 \) to \(t_1 \) to \(t_r \) to \(t_3 \) to \(t_0 \)

\[t_0 + t_2 + t_3 \] observations

\[t_1 + t_r + t_3 \] observations
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]

\[t_0 \text{ observations} \]
\[t_1 + t_2 + 2t_3 + t_r \leq t? \]

\[t_1 + t_2 + 2t_3 + t_r \leq t? \text{ observations} \]
Stronger security property for Refresh

Strong Non-Interference in the t-probing model:

if t is not fixed: show that any set of t intermediate variables with
- t_1 on internal variables
- $t_2 = t - t_1$ on the outputs
can be simulated with at most t_1 shares of each input
Secure Composition

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]
Secure Composition

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]
Secure Composition

Constraint:
$t_0 + t_1 + t_2 + t_3 + t_r \leq t$

t_0 observations

$t_2 + t_3$ observations

t_1 observations

t_r internal observations
$+ t_3$ output observations
Secure Composition

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]
Secure Composition

t_0 observations

Constraint:
$t_0 + t_1 + t_2 + t_3 + t_r \leq t$

$t_1 + t_2 + t_3 + t_r$ observations

t_3 output observations
Secure Composition

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]

- \(A_0 \) observations:
 - \(t_0 \) observations

- \(A_1 \) observations:
 - \(t_1 + t_2 + t_3 + t_r \) internal observations

- \(A_2 \) observations

- \(A_3 \) observations:
 - \(t_3 \) output observations
Secure Composition

$t_0 + t_1 + t_2 + t_3 + t_r$

Constraint:
$t_0 + t_1 + t_2 + t_3 + t_r \leq t$

t_3 output observations

\[A_0 \]
\[A_1 \]
\[A_2 \]
\[A_3 \]
Secure Composition

$\sum_{i=0}^{3} t_i + t_r \leq t$

Constraint:
$t_0 + t_1 + t_2 + t_3 + t_r \leq t$

t_3 output observations
Secure Composition

Automatic tool for C-based algorithms

- unprotected algorithm → higher-order masked algorithm
- example for AES S-box
Secure Composition

Automatic tool for C-based algorithms

- unprotected algorithm \rightarrow higher-order masked algorithm
- example for AES S-box

\[x \cdot 2 \otimes x \cdot 2 \otimes x \otimes \]
Secure Composition

Automatic tool for C-based algorithms

- unprotected algorithm → higher-order masked algorithm
- example for AES S-box

\[x \cdot 2 \otimes x \cdot 2 \otimes x \]
Secure Composition

Automatic tool for C-based algorithms

- unprotected algorithm ➔ higher-order masked algorithm
- example for AES S-box

\[x \cdot 2 \otimes x \cdot 2 \otimes x \]

\[X \]
Some Results

Resource usage statistics for generating masked algorithms (at any order) from some unmasked implementations\(^1\)

<table>
<thead>
<tr>
<th>Scheme</th>
<th># Refresh</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES (\circ)</td>
<td>2</td>
<td>0.09s</td>
<td>4Mo</td>
</tr>
<tr>
<td>AES ($x \circ g(x)$)</td>
<td>0</td>
<td>0.05s</td>
<td>4Mo</td>
</tr>
<tr>
<td>Keccak with Refresh</td>
<td>0</td>
<td>121.20s</td>
<td>456Mo</td>
</tr>
<tr>
<td>Keccak</td>
<td>600</td>
<td>2728.00s</td>
<td>22870Mo</td>
</tr>
<tr>
<td>Simon</td>
<td>67</td>
<td>0.38s</td>
<td>15Mo</td>
</tr>
<tr>
<td>Speck</td>
<td>61</td>
<td>6.22s</td>
<td>38Mo</td>
</tr>
</tbody>
</table>

\(^1\)On a Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running Linux (Fedora)
Some Results

Resource usage statistics for generating masked algorithms (at any order) from some unmasked implementations\(^1\)

<table>
<thead>
<tr>
<th>Scheme</th>
<th># Refresh</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES ((\odot))</td>
<td>2 per S-box</td>
<td>0.09s</td>
<td>4Mo</td>
</tr>
<tr>
<td>AES ((x \odot g(x)))</td>
<td>0</td>
<td>0.05s</td>
<td>4Mo</td>
</tr>
<tr>
<td>Keccak with Refresh</td>
<td>0</td>
<td>121.20s</td>
<td>456Mo</td>
</tr>
<tr>
<td>Keccak</td>
<td>600</td>
<td>2728.00s</td>
<td>22870Mo</td>
</tr>
<tr>
<td>Simon</td>
<td>67</td>
<td>0.38s</td>
<td>15Mo</td>
</tr>
<tr>
<td>Speck</td>
<td>61</td>
<td>6.22s</td>
<td>38Mo</td>
</tr>
</tbody>
</table>

\(^1\) On a Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running Linux (Fedora)
Conclusion

Summary

✔ verification of higher-order masking schemes
✔ efficient and proven composition
✔ two automatic tools

Further Work

→ extend the verification to higher orders using composition
→ integrate transition/glitch-based model
→ build practical experiments for both attacks and new countermeasures
Conclusion

Cryptanalysis: Power-Analysis Attacks

- investigate the LPN algorithms in the context of power-analysis attacks
- analyze the operation modes

Cryptography: countermeasures against Power-Analysis Attacks

- implement and evaluate our countermeasures on real devices (software and hardware)
- make verifications and compositions as practical as possible
- use the characterization of a device as a leakage model