
Computer-aided analyses of first-order methods

(via semidefinite programming)

Adrien Taylor

Cambridge – February 2020

François Glineur
(UCLouvain)

Julien Hendrickx
(UCLouvain)

Etienne de Klerk
(Tilburg & Delft)

Ernest Ryu
(UCLA)

Francis Bach
(Inria/ENS)

Jérôme Bolte
(TSE)

A. d’Aspremont
(CNRS/ENS)

Yoel Drori
(Google)

Mathieu Barré
(Inria/ENS)

A-R. Dragomir
(ENS/TSE)

B. Van Scoy
(W-Madison)

L. Lessard
(W-Madison)

C. Bergeling
(Lund)

P. Giselsson
(Lund)

1

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

2

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

2

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

2

Toy example

Performance estimation

Further examples

Toward simpler proofs

Conclusions and discussions

3

Toy example

Performance estimation

Further examples

Toward simpler proofs

Conclusions and discussions

4

Analysis of a gradient step

We want to solve

min
x∈Rd

f (x)

under some assumptions on f .

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x∗), ‖f ′(xN)‖, ‖xN − x∗‖?

5

Analysis of a gradient step

We want to solve

min
x∈Rd

f (x)

under some assumptions on f .

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x∗), ‖f ′(xN)‖, ‖xN − x∗‖?

5

Analysis of a gradient step

We want to solve

min
x∈Rd

f (x)

under some assumptions on f .

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x∗), ‖f ′(xN)‖, ‖xN − x∗‖?

5

Analysis of a gradient step

We want to solve

min
x∈Rd

f (x)

under some assumptions on f .

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x∗), ‖f ′(xN)‖, ‖xN − x∗‖?

5

Convergence rate of a gradient step

Toy example: Convergence rate: what is the smallest ρ such that?∥∥f ′(x1)∥∥ ≤ ρ ∥∥f ′(x0)∥∥
for all x0, x1 ∈ Rd , all f , and x1 = x0 − γf ′(x0)?

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0,

assumptions on f ,

which has function f as variable.

6

Convergence rate of a gradient step

Toy example: Convergence rate: what is the smallest ρ such that?∥∥f ′(x1)∥∥ ≤ ρ ∥∥f ′(x0)∥∥
for all x0, x1 ∈ Rd , all f , and x1 = x0 − γf ′(x0)?

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0,

assumptions on f ,

which has function f as variable.

6

Convergence rate of a gradient step

Toy example: Convergence rate: what is the smallest ρ such that?∥∥f ′(x1)∥∥ ≤ ρ ∥∥f ′(x0)∥∥
for all x0, x1 ∈ Rd , all f , and x1 = x0 − γf ′(x0)?

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0,

assumptions on f ,

which has function f as variable.

6

Assumptions

Nontrivial rates only by assuming something on f .

For example: pick assumptions among the following:

� A convex function f is commonly assumed to be (for all x , y ∈ Rd):

� µ-strongly convex f (x) ≥ f (y) + 〈∂f (y), x − y〉+ µ
2 ‖x − y‖2,

� L-smooth f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

Here, we choose: f ∈ Fµ,L: class of µ-strongly convex L-smooth functions.

7

Assumptions

Nontrivial rates only by assuming something on f .

For example: pick assumptions among the following:

� A convex function f is commonly assumed to be (for all x , y ∈ Rd):

� µ-strongly convex f (x) ≥ f (y) + 〈∂f (y), x − y〉+ µ
2 ‖x − y‖2,

� L-smooth f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

Here, we choose: f ∈ Fµ,L: class of µ-strongly convex L-smooth functions.

7

Assumptions

Nontrivial rates only by assuming something on f .

For example: pick assumptions among the following:

� A convex function f is commonly assumed to be (for all x , y ∈ Rd):

� µ-strongly convex f (x) ≥ f (y) + 〈∂f (y), x − y〉+ µ
2 ‖x − y‖2,

� L-smooth f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

Here, we choose: f ∈ Fµ,L: class of µ-strongly convex L-smooth functions.

7

Assumptions

Nontrivial rates only by assuming something on f .

For example: pick assumptions among the following:

� A convex function f is commonly assumed to be (for all x , y ∈ Rd):

� µ-strongly convex f (x) ≥ f (y) + 〈∂f (y), x − y〉+ µ
2 ‖x − y‖2,

� L-smooth f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

Here, we choose: f ∈ Fµ,L: class of µ-strongly convex L-smooth functions.

7

Assumptions

Nontrivial rates only by assuming something on f .

For example: pick assumptions among the following:

� A convex function f is commonly assumed to be (for all x , y ∈ Rd):

� µ-strongly convex f (x) ≥ f (y) + 〈∂f (y), x − y〉+ µ
2 ‖x − y‖2,

� L-smooth f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

Here, we choose: f ∈ Fµ,L: class of µ-strongly convex L-smooth functions.

7

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

Convergence rate of a gradient step

Toy example: Convergence rate: what is the smallest ρ such that?∥∥f ′(x1)∥∥ ≤ ρ ∥∥f ′(x0)∥∥
for all x0, x1 ∈ Rd , all f , and x1 = x0 − γf ′(x0)?

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0,

f is L-smooth and µ-strongly convex.

which has function f as variable.

� Variables: f , x0, x1; parameters: µ, L, γ.

� Optimal value can be found via convex optimization! (3x3 SDP):

max

{
‖f ′(x1)‖2

‖f ′(x0)‖2

}
= max

{
(1− µγ)2, (1− Lγ)2

}

9

Convergence rate of a gradient step
Toy example: Convergence rate: what is the smallest ρ such that?∥∥f ′(x1)∥∥ ≤ ρ ∥∥f ′(x0)∥∥
for all x0, x1 ∈ Rd , all f , and x1 = x0 − γf ′(x0)?

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0,

f is L-smooth and µ-strongly convex.

which has function f as variable.

� Variables: f , x0, x1; parameters: µ, L, γ.

� Optimal value can be found via convex optimization! (3x3 SDP):

max

{
‖f ′(x1)‖2

‖f ′(x0)‖2

}
= max

{
(1− µγ)2, (1− Lγ)2

}

9

Convergence rate of a gradient step
Toy example: Convergence rate: what is the smallest ρ such that?∥∥f ′(x1)∥∥ ≤ ρ ∥∥f ′(x0)∥∥
for all x0, x1 ∈ Rd , all f , and x1 = x0 − γf ′(x0)?

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0,

f is L-smooth and µ-strongly convex.

which has function f as variable.

� Variables: f , x0, x1; parameters: µ, L, γ.

� Optimal value can be found via convex optimization! (3x3 SDP):

max

{
‖f ′(x1)‖2

‖f ′(x0)‖2

}
= max

{
(1− µγ)2, (1− Lγ)2

}

9

Convergence rate of a gradient step
Toy example: Convergence rate: what is the smallest ρ such that?∥∥f ′(x1)∥∥ ≤ ρ ∥∥f ′(x0)∥∥
for all x0, x1 ∈ Rd , all f , and x1 = x0 − γf ′(x0)?

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0,

f is L-smooth and µ-strongly convex.

which has function f as variable.
� Variables: f , x0, x1;

parameters: µ, L, γ.
� Optimal value can be found via convex optimization! (3x3 SDP):

max

{
‖f ′(x1)‖2

‖f ′(x0)‖2

}
= max

{
(1− µγ)2, (1− Lγ)2

}

9

Convergence rate of a gradient step
Toy example: Convergence rate: what is the smallest ρ such that?∥∥f ′(x1)∥∥ ≤ ρ ∥∥f ′(x0)∥∥
for all x0, x1 ∈ Rd , all f , and x1 = x0 − γf ′(x0)?

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0,

f is L-smooth and µ-strongly convex.

which has function f as variable.
� Variables: f , x0, x1; parameters: µ, L, γ.

� Optimal value can be found via convex optimization! (3x3 SDP):

max

{
‖f ′(x1)‖2

‖f ′(x0)‖2

}
= max

{
(1− µγ)2, (1− Lγ)2

}

9

Convergence rate of a gradient step
Toy example: Convergence rate: what is the smallest ρ such that?∥∥f ′(x1)∥∥ ≤ ρ ∥∥f ′(x0)∥∥
for all x0, x1 ∈ Rd , all f , and x1 = x0 − γf ′(x0)?

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0,

f is L-smooth and µ-strongly convex.

which has function f as variable.
� Variables: f , x0, x1; parameters: µ, L, γ.
� Optimal value can be found via convex optimization! (3x3 SDP):

max

{
‖f ′(x1)‖2

‖f ′(x0)‖2

}
= max

{
(1− µγ)2, (1− Lγ)2

}

9

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.
The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

Discrete version

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0

f is L-smooth and µ-strongly convex.

� Variables: f , x0, x1.

� Discrete version:

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0

∃f ∈ Fµ,L such that
{

fi = f (xi) i = 1, 2
gi = f ′(xi) i = 1, 2

� Variables: x0, x1, g0, g1, f0, f1.

11

Discrete version

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0

f is L-smooth and µ-strongly convex.

� Variables: f , x0, x1.

� Discrete version:

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0

∃f ∈ Fµ,L such that
{

fi = f (xi) i = 1, 2
gi = f ′(xi) i = 1, 2

� Variables: x0, x1, g0, g1, f0, f1.

11

Discrete version

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0

f is L-smooth and µ-strongly convex.

� Variables: f , x0, x1.

� Discrete version:

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0

∃f ∈ Fµ,L such that
{

fi = f (xi) i = 1, 2
gi = f ′(xi) i = 1, 2

� Variables: x0, x1, g0, g1, f0, f1.

11

Discrete version

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0

f is L-smooth and µ-strongly convex.

� Variables: f , x0, x1.

� Discrete version:

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0

∃f ∈ Fµ,L such that
{

fi = f (xi) i = 1, 2
gi = f ′(xi) i = 1, 2

� Variables: x0, x1, g0, g1, f0, f1.

11

Discrete version

� Optimization problem to find sharp convergence rate:

max
f ,x0,x1

‖f ′(x1)‖
‖f ′(x0)‖

subject to x1 generated by gradient descent from x0

f is L-smooth and µ-strongly convex.

� Variables: f , x0, x1.

� Discrete version:

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0

∃f ∈ Fµ,L such that
{

fi = f (xi) i = 1, 2
gi = f ′(xi) i = 1, 2

� Variables: x0, x1, g0, g1, f0, f1.

11

Smooth strongly convex interpolation
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0

•
x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj)

∥∥2
.

12

Smooth strongly convex interpolation
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0

•
x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj)

∥∥2
.

12

Smooth strongly convex interpolation
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0

•
x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj)

∥∥2
.

12

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0,

∃f ∈ Fµ,L such that
{

fi = f (xi) i = 1, 2
gi = f ′(xi) i = 1, 2

� replacing them by

f1 ≥ f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥x1 − x0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + 〈g1, x0 − x1〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥x0 − x1 − 1

L
(g0 − g1)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

13

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0,

∃f ∈ Fµ,L such that
{

fi = f (xi) i = 1, 2
gi = f ′(xi) i = 1, 2

� replacing them by

f1 ≥ f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥x1 − x0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + 〈g1, x0 − x1〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥x0 − x1 − 1

L
(g0 − g1)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

13

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0,

∃f ∈ Fµ,L such that
{

fi = f (xi) i = 1, 2
gi = f ′(xi) i = 1, 2

� replacing them by

f1 ≥ f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥x1 − x0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + 〈g1, x0 − x1〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥x0 − x1 − 1

L
(g0 − g1)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

13

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0,

∃f ∈ Fµ,L such that
{

fi = f (xi) i = 1, 2
gi = f ′(xi) i = 1, 2

� replacing them by

f1 ≥ f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥x1 − x0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + 〈g1, x0 − x1〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥x0 − x1 − 1

L
(g0 − g1)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

13

Reformulations (cont’d)

� Equivalent problem: replace red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0,

f1 ≥ f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2

+ µ
2(1−µ/L)

∥∥x1 − x0 − 1
L
(g1 − g0)

∥∥2

f0 ≥ f1 + 〈g1, x0 − x1〉+ 1
2L‖g0 − g1‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(g0 − g1)

∥∥2
.

� by (substitute x1 = x0 − γg0):

f1 ≥ f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥−γg0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + γ〈g1, g0〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥γg0 − 1

L
(g0 − g1)

∥∥2
.

14

Reformulations (cont’d)
� Equivalent problem: replace red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0,

f1 ≥ f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2

+ µ
2(1−µ/L)

∥∥x1 − x0 − 1
L
(g1 − g0)

∥∥2

f0 ≥ f1 + 〈g1, x0 − x1〉+ 1
2L‖g0 − g1‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(g0 − g1)

∥∥2
.

� by (substitute x1 = x0 − γg0):

f1 ≥ f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥−γg0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + γ〈g1, g0〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥γg0 − 1

L
(g0 − g1)

∥∥2
.

14

Reformulations (cont’d)
� Equivalent problem: replace red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to x1 = x0 − γg0,

f1 ≥ f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2

+ µ
2(1−µ/L)

∥∥x1 − x0 − 1
L
(g1 − g0)

∥∥2

f0 ≥ f1 + 〈g1, x0 − x1〉+ 1
2L‖g0 − g1‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(g0 − g1)

∥∥2
.

� by (substitute x1 = x0 − γg0):

f1 ≥ f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥−γg0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + γ〈g1, g0〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥γg0 − 1

L
(g0 − g1)

∥∥2
.

14

Semidefinite lifting

� All elements are quadratic in (x0, g0, g1), and linear in (f0, f1):

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to f1 ≥ f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥−γg0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + γ〈g1, g0〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥γg0 − 1

L
(g0 − g1)

∥∥2
.

� They can therefore be represented with a Gram matrix G and a vector F , with

G =

 ‖x0‖2 〈x0, g0〉 〈x0, g1〉
〈x0, g0〉 ‖g0‖2 〈g0, g1〉
〈x0, g1〉 〈g0, g1〉 ‖g1‖2

 , F =
[
f0 f1

]
,

where G � 0 by construction

, and reformulate to:

max
G , F

b>o F + Tr(AoG)

b>s F + Tr(AsG)

subject to b>1 F + Tr(A1G) ≥ 0

b>2 F + Tr(A2G) ≥ 0

G � 0.

with appropriate Ao ,As ,A1,A2, bo , bs , b1, b2 for picking elements in G and F .

� Note: assuming x0, g0, g1 ∈ Rd with d ≥ 3, same optimal cost!

15

Semidefinite lifting
� All elements are quadratic in (x0, g0, g1), and linear in (f0, f1):

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to f1 ≥ f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥−γg0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + γ〈g1, g0〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥γg0 − 1

L
(g0 − g1)

∥∥2
.

� They can therefore be represented with a Gram matrix G and a vector F , with

G =

 ‖x0‖2 〈x0, g0〉 〈x0, g1〉
〈x0, g0〉 ‖g0‖2 〈g0, g1〉
〈x0, g1〉 〈g0, g1〉 ‖g1‖2

 , F =
[
f0 f1

]
,

where G � 0 by construction

, and reformulate to:

max
G , F

b>o F + Tr(AoG)

b>s F + Tr(AsG)

subject to b>1 F + Tr(A1G) ≥ 0

b>2 F + Tr(A2G) ≥ 0

G � 0.

with appropriate Ao ,As ,A1,A2, bo , bs , b1, b2 for picking elements in G and F .

� Note: assuming x0, g0, g1 ∈ Rd with d ≥ 3, same optimal cost!

15

Semidefinite lifting
� All elements are quadratic in (x0, g0, g1), and linear in (f0, f1):

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to f1 ≥ f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥−γg0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + γ〈g1, g0〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥γg0 − 1

L
(g0 − g1)

∥∥2
.

� They can therefore be represented with a Gram matrix G and a vector F , with

G =

 ‖x0‖2 〈x0, g0〉 〈x0, g1〉
〈x0, g0〉 ‖g0‖2 〈g0, g1〉
〈x0, g1〉 〈g0, g1〉 ‖g1‖2

 , F =
[
f0 f1

]
,

where G � 0 by construction

, and reformulate to:

max
G , F

b>o F + Tr(AoG)

b>s F + Tr(AsG)

subject to b>1 F + Tr(A1G) ≥ 0

b>2 F + Tr(A2G) ≥ 0

G � 0.

with appropriate Ao ,As ,A1,A2, bo , bs , b1, b2 for picking elements in G and F .
� Note: assuming x0, g0, g1 ∈ Rd with d ≥ 3, same optimal cost!

15

Semidefinite lifting
� All elements are quadratic in (x0, g0, g1), and linear in (f0, f1):

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to f1 ≥ f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥−γg0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + γ〈g1, g0〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥γg0 − 1

L
(g0 − g1)

∥∥2
.

� They can therefore be represented with a Gram matrix G and a vector F , with

G =

 ‖x0‖2 〈x0, g0〉 〈x0, g1〉
〈x0, g0〉 ‖g0‖2 〈g0, g1〉
〈x0, g1〉 〈g0, g1〉 ‖g1‖2

 , F =
[
f0 f1

]
,

where G � 0 by construction, and reformulate to:

max
G , F

b>o F + Tr(AoG)

b>s F + Tr(AsG)

subject to b>1 F + Tr(A1G) ≥ 0

b>2 F + Tr(A2G) ≥ 0

G � 0.

with appropriate Ao ,As ,A1,A2, bo , bs , b1, b2 for picking elements in G and F .

� Note: assuming x0, g0, g1 ∈ Rd with d ≥ 3, same optimal cost!

15

Semidefinite lifting
� All elements are quadratic in (x0, g0, g1), and linear in (f0, f1):

max
x0,x1,g0,g1

f0,f1

‖g1‖
‖g0‖

subject to f1 ≥ f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥−γg0 − 1

L
(g1 − g0)

∥∥2

f0 ≥ f1 + γ〈g1, g0〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥γg0 − 1

L
(g0 − g1)

∥∥2
.

� They can therefore be represented with a Gram matrix G and a vector F , with

G =

 ‖x0‖2 〈x0, g0〉 〈x0, g1〉
〈x0, g0〉 ‖g0‖2 〈g0, g1〉
〈x0, g1〉 〈g0, g1〉 ‖g1‖2

 , F =
[
f0 f1

]
,

where G � 0 by construction, and reformulate to:

max
G , F

b>o F + Tr(AoG)

b>s F + Tr(AsG)

subject to b>1 F + Tr(A1G) ≥ 0

b>2 F + Tr(A2G) ≥ 0

G � 0.

with appropriate Ao ,As ,A1,A2, bo , bs , b1, b2 for picking elements in G and F .
� Note: assuming x0, g0, g1 ∈ Rd with d ≥ 3, same optimal cost!

15

Last part in convexification

� Constraints are positively homogeneous of deg. 1 and the cost is constant under
scaling of G and F

max
G , F

b>o F + Tr(AoG)

b>s F + Tr(AsG)

subject to b>1 F + Tr(A1G) ≥ 0

b>2 F + Tr(A2G) ≥ 0

G � 0.

� Therefore an equivalent convex problem is

max
G , F

b>o F + Tr(AoG)

subject to b>1 F + Tr(A1G) ≥ 0

b>2 F + Tr(A2G) ≥ 0

b>s F + Tr(AsG) = 1

G � 0.

which is a 3x3 semidefinite program.

16

Last part in convexification
� Constraints are positively homogeneous of deg. 1 and the cost is constant under

scaling of G and F

max
G , F

b>o F + Tr(AoG)

b>s F + Tr(AsG)

subject to b>1 F + Tr(A1G) ≥ 0

b>2 F + Tr(A2G) ≥ 0

G � 0.

� Therefore an equivalent convex problem is

max
G , F

b>o F + Tr(AoG)

subject to b>1 F + Tr(A1G) ≥ 0

b>2 F + Tr(A2G) ≥ 0

b>s F + Tr(AsG) = 1

G � 0.

which is a 3x3 semidefinite program.

16

Last part in convexification
� Constraints are positively homogeneous of deg. 1 and the cost is constant under

scaling of G and F

max
G , F

b>o F + Tr(AoG)

b>s F + Tr(AsG)

subject to b>1 F + Tr(A1G) ≥ 0

b>2 F + Tr(A2G) ≥ 0

G � 0.

� Therefore an equivalent convex problem is

max
G , F

b>o F + Tr(AoG)

subject to b>1 F + Tr(A1G) ≥ 0

b>2 F + Tr(A2G) ≥ 0

b>s F + Tr(AsG) = 1

G � 0.

which is a 3x3 semidefinite program.

16

Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of γ.

−1 0 1 2 3
0

1

2

3

4

Step size

‖f ′(x1)‖2
‖f ′(x0)‖2

Observation: it matches max{(1− γL)2, (1− γµ)2}—convergence for γ ∈ (0, 2/L).

17

Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of γ.

−1 0 1 2 3
0

1

2

3

4

Step size

‖f ′(x1)‖2
‖f ′(x0)‖2

Observation: it matches max{(1− γL)2, (1− γµ)2}—convergence for γ ∈ (0, 2/L).

17

Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of γ.

−1 0 1 2 3
0

1

2

3

4

Step size

‖f ′(x1)‖2
‖f ′(x0)‖2

Observation: it matches max{(1− γL)2, (1− γµ)2}—convergence for γ ∈ (0, 2/L).

17

Dual problem

� Introduce dual variables τ , λ1 and λ2

max
G , F

b>o F + Tr(AoG)

subject to b>1 F + Tr(A1G) ≥ 0 : λ1
b>2 F + Tr(A2G) ≥ 0 : λ2
b>s F + Tr(AsG) = 1 : τ
G � 0.

� Dual problem becomes

minimize
τ,λ1,λ2

τ

subject to λi ≥ 0
S = Ao +

∑2
i=1 λiAi − τAs � 0

0 = bo +
∑2

i=1 λibi − τbs .

� In this example:

S =

0 0 0
0 −λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

0 −λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ


0 = λ1 − λ2.

� Strong duality holds (existence of a Slater point): rank(G) + rank(S) ≤ 3.

18

Dual problem
� Introduce dual variables τ , λ1 and λ2

max
G , F

b>o F + Tr(AoG)

subject to b>1 F + Tr(A1G) ≥ 0 : λ1
b>2 F + Tr(A2G) ≥ 0 : λ2
b>s F + Tr(AsG) = 1 : τ
G � 0.

� Dual problem becomes

minimize
τ,λ1,λ2

τ

subject to λi ≥ 0
S = Ao +

∑2
i=1 λiAi − τAs � 0

0 = bo +
∑2

i=1 λibi − τbs .

� In this example:

S =

0 0 0
0 −λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

0 −λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ


0 = λ1 − λ2.

� Strong duality holds (existence of a Slater point): rank(G) + rank(S) ≤ 3.

18

Dual problem
� Introduce dual variables τ , λ1 and λ2

max
G , F

b>o F + Tr(AoG)

subject to b>1 F + Tr(A1G) ≥ 0 : λ1
b>2 F + Tr(A2G) ≥ 0 : λ2
b>s F + Tr(AsG) = 1 : τ
G � 0.

� Dual problem becomes

minimize
τ,λ1,λ2

τ

subject to λi ≥ 0
S = Ao +

∑2
i=1 λiAi − τAs � 0

0 = bo +
∑2

i=1 λibi − τbs .

� In this example:

S =

0 0 0
0 −λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

0 −λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ


0 = λ1 − λ2.

� Strong duality holds (existence of a Slater point): rank(G) + rank(S) ≤ 3.

18

Dual problem
� Introduce dual variables τ , λ1 and λ2

max
G , F

b>o F + Tr(AoG)

subject to b>1 F + Tr(A1G) ≥ 0 : λ1
b>2 F + Tr(A2G) ≥ 0 : λ2
b>s F + Tr(AsG) = 1 : τ
G � 0.

� Dual problem becomes

minimize
τ,λ1,λ2

τ

subject to λi ≥ 0
S = Ao +

∑2
i=1 λiAi − τAs � 0

0 = bo +
∑2

i=1 λibi − τbs .

� In this example:

S =

0 0 0
0 −λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

0 −λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ


0 = λ1 − λ2.

� Strong duality holds (existence of a Slater point): rank(G) + rank(S) ≤ 3.

18

Dual problem
� Introduce dual variables τ , λ1 and λ2

max
G , F

b>o F + Tr(AoG)

subject to b>1 F + Tr(A1G) ≥ 0 : λ1
b>2 F + Tr(A2G) ≥ 0 : λ2
b>s F + Tr(AsG) = 1 : τ
G � 0.

� Dual problem becomes

minimize
τ,λ1,λ2

τ

subject to λi ≥ 0
S = Ao +

∑2
i=1 λiAi − τAs � 0

0 = bo +
∑2

i=1 λibi − τbs .

� In this example:

S =

0 0 0
0 −λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

0 −λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ


0 = λ1 − λ2.

� Strong duality holds (existence of a Slater point): rank(G) + rank(S) ≤ 3.

18

Remarks

A few notes:

� Dual interpretation: find smallest convergence rate that can be proved by a
linear combination of interpolation inequalities.

� Consequence of strong duality: in such settings, any (dimension-independent)
convergence rate can be proved by a linear combination of interpolation
inequalities.

� The methodology offers 3 ways to proceed:
− play with primal formulation,
− play with primal-dual saddle-point formulation,
− play with dual formulation.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

� Standard tricks apply, e.g., trace minimization for promoting low-rank solutions.

19

Remarks

A few notes:

� Dual interpretation: find smallest convergence rate that can be proved by a
linear combination of interpolation inequalities.

� Consequence of strong duality: in such settings, any (dimension-independent)
convergence rate can be proved by a linear combination of interpolation
inequalities.

� The methodology offers 3 ways to proceed:
− play with primal formulation,
− play with primal-dual saddle-point formulation,
− play with dual formulation.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

� Standard tricks apply, e.g., trace minimization for promoting low-rank solutions.

19

Remarks

A few notes:

� Dual interpretation: find smallest convergence rate that can be proved by a
linear combination of interpolation inequalities.

� Consequence of strong duality: in such settings, any (dimension-independent)
convergence rate can be proved by a linear combination of interpolation
inequalities.

� The methodology offers 3 ways to proceed:
− play with primal formulation,
− play with primal-dual saddle-point formulation,
− play with dual formulation.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

� Standard tricks apply, e.g., trace minimization for promoting low-rank solutions.

19

Remarks

A few notes:

� Dual interpretation: find smallest convergence rate that can be proved by a
linear combination of interpolation inequalities.

� Consequence of strong duality: in such settings, any (dimension-independent)
convergence rate can be proved by a linear combination of interpolation
inequalities.

� The methodology offers 3 ways to proceed:
− play with primal formulation,
− play with primal-dual saddle-point formulation,
− play with dual formulation.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

� Standard tricks apply, e.g., trace minimization for promoting low-rank solutions.

19

Remarks

A few notes:

� Dual interpretation: find smallest convergence rate that can be proved by a
linear combination of interpolation inequalities.

� Consequence of strong duality: in such settings, any (dimension-independent)
convergence rate can be proved by a linear combination of interpolation
inequalities.

� The methodology offers 3 ways to proceed:
− play with primal formulation,
− play with primal-dual saddle-point formulation,
− play with dual formulation.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

� Standard tricks apply, e.g., trace minimization for promoting low-rank solutions.

19

Remarks

A few notes:

� Dual interpretation: find smallest convergence rate that can be proved by a
linear combination of interpolation inequalities.

� Consequence of strong duality: in such settings, any (dimension-independent)
convergence rate can be proved by a linear combination of interpolation
inequalities.

� The methodology offers 3 ways to proceed:
− play with primal formulation,
− play with primal-dual saddle-point formulation,
− play with dual formulation.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

� Standard tricks apply, e.g., trace minimization for promoting low-rank solutions.

19

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1

= 2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2

= 2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥

∥∥f ′(x1)∥∥2
+

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2

︸ ︷︷ ︸

≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2

,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

20

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1

= 2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2

= 2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥

∥∥f ′(x1)∥∥2
+

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2

︸ ︷︷ ︸

≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2

,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

20

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1

= 2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2

= 2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥

∥∥f ′(x1)∥∥2
+

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2

︸ ︷︷ ︸

≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2

,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

20

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥

∥∥f ′(x1)∥∥2
+

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2

︸ ︷︷ ︸

≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2

,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

20

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥

∥∥f ′(x1)∥∥2
+

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2

︸ ︷︷ ︸

≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2

,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

20

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥

∥∥f ′(x1)∥∥2
+

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2

︸ ︷︷ ︸
≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2

,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

20

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥

∥∥f ′(x1)∥∥2
+

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2

︸ ︷︷ ︸
≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2

,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

20

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥

∥∥f ′(x1)∥∥2
+

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2

︸ ︷︷ ︸
≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2

,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2

(tight).

20

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥

∥∥f ′(x1)∥∥2
+

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2

︸ ︷︷ ︸
≥0, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2

,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2

(tight).

20

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥

∥∥f ′(x1)∥∥2
+

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2

︸ ︷︷ ︸
≥0, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2

,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

20

PEP genealogy (“my humble, biased, view on...”)
Base methodological developments:

’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods
via SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the

certificates. (essentially previous slides)

’17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).

— Other examples randomly picked from different works.

’19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).

21

PEP genealogy (“my humble, biased, view on...”)
Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the

certificates. (essentially previous slides)

’17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).

— Other examples randomly picked from different works.

’19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).

21

PEP genealogy (“my humble, biased, view on...”)
Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the

certificates. (essentially previous slides)

’17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).

— Other examples randomly picked from different works.

’19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).

21

PEP genealogy (“my humble, biased, view on...”)
Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:

’17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the
certificates. (essentially previous slides)

’17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).

— Other examples randomly picked from different works.

’19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).

21

PEP genealogy (“my humble, biased, view on...”)
Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the

certificates. (essentially previous slides)

’17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).

— Other examples randomly picked from different works.

’19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).

21

PEP genealogy (“my humble, biased, view on...”)
Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the

certificates. (essentially previous slides)

’17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).

— Other examples randomly picked from different works.

’19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).

21

PEP genealogy (“my humble, biased, view on...”)
Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the

certificates. (essentially previous slides)

’17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).

— Other examples randomly picked from different works.

’19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).

21

PEP genealogy (“my humble, biased, view on...”)
Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the

certificates. (essentially previous slides)

’17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).

— Other examples randomly picked from different works.

’19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).

21

PEP genealogy (“my humble, biased, view on...”)
Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the

certificates. (essentially previous slides)

’17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).

— Other examples randomly picked from different works.

’19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:

� Fair amount of algorithmic analyses (and design) originated from SDPs (from
different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).

21

PEP genealogy (“my humble, biased, view on...”)
Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the

certificates. (essentially previous slides)

’17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).

— Other examples randomly picked from different works.

’19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).

21

PEP genealogy (“my humble, biased, view on...”)
Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the

certificates. (essentially previous slides)

’17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).

— Other examples randomly picked from different works.

’19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).

21

Toy example

Performance estimation

Further examples

Toward simpler proofs

Conclusions and discussions

22

Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).

23

Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).

23

Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).

23

Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).

23

Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).

23

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- problem classes whose interpolation conditions are SDP-representable:

e.g., monotone inclusions, variational inequalities, fixed-point problems.

24

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- problem classes whose interpolation conditions are SDP-representable:

e.g., monotone inclusions, variational inequalities, fixed-point problems.

24

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- problem classes whose interpolation conditions are SDP-representable:

e.g., monotone inclusions, variational inequalities, fixed-point problems.

24

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- problem classes whose interpolation conditions are SDP-representable:

e.g., monotone inclusions, variational inequalities, fixed-point problems.

24

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- problem classes whose interpolation conditions are SDP-representable:

e.g., monotone inclusions, variational inequalities, fixed-point problems.

24

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- problem classes whose interpolation conditions are SDP-representable:
e.g., monotone inclusions, variational inequalities, fixed-point problems.

24

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- mirror descent,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

SDPs might scale badly, for example in stochastic or distributed settings.

25

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- mirror descent,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

SDPs might scale badly, for example in stochastic or distributed settings.

25

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- mirror descent,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

SDPs might scale badly, for example in stochastic or distributed settings.

25

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- mirror descent,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

SDPs might scale badly, for example in stochastic or distributed settings.

25

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- mirror descent,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

SDPs might scale badly, for example in stochastic or distributed settings.

25

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- mirror descent,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

SDPs might scale badly, for example in stochastic or distributed settings.

25

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- mirror descent,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

SDPs might scale badly, for example in stochastic or distributed settings.

25

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- mirror descent,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

SDPs might scale badly, for example in stochastic or distributed settings.

25

Convergence measures

Different convergence measures can be taken into account.

Among others:

- f (xN)− f (x?), ‖xN − x?‖2, ‖f ′(xN)‖2,

- best iterates on the way:

min
0≤i≤N

f (xi)− f (x?), min
0≤i≤N

‖xi − x?‖2, min
0≤i≤N

∥∥f ′(xi)∥∥2
,

- any concave function of fi ’s,
〈
xi , gj

〉
’s, ‖gi‖2’s and ‖xi‖2’s.

26

Convergence measures

Different convergence measures can be taken into account.

Among others:

- f (xN)− f (x?), ‖xN − x?‖2, ‖f ′(xN)‖2,

- best iterates on the way:

min
0≤i≤N

f (xi)− f (x?), min
0≤i≤N

‖xi − x?‖2, min
0≤i≤N

∥∥f ′(xi)∥∥2
,

- any concave function of fi ’s,
〈
xi , gj

〉
’s, ‖gi‖2’s and ‖xi‖2’s.

26

Convergence measures

Different convergence measures can be taken into account.

Among others:

- f (xN)− f (x?), ‖xN − x?‖2, ‖f ′(xN)‖2,

- best iterates on the way:

min
0≤i≤N

f (xi)− f (x?), min
0≤i≤N

‖xi − x?‖2, min
0≤i≤N

∥∥f ′(xi)∥∥2
,

- any concave function of fi ’s,
〈
xi , gj

〉
’s, ‖gi‖2’s and ‖xi‖2’s.

26

Convergence measures

Different convergence measures can be taken into account.

Among others:

- f (xN)− f (x?), ‖xN − x?‖2, ‖f ′(xN)‖2,

- best iterates on the way:

min
0≤i≤N

f (xi)− f (x?), min
0≤i≤N

‖xi − x?‖2, min
0≤i≤N

∥∥f ′(xi)∥∥2
,

- any concave function of fi ’s,
〈
xi , gj

〉
’s, ‖gi‖2’s and ‖xi‖2’s.

26

Toy example

Performance estimation

Further examples

Toward simpler proofs

Conclusions and discussions

27

Gradient method: final words?

Question: Let xk+1 = xk − 1
L
f ′(xk); what is the smallest τ such that

f (xN)− f∗ ≤ τ‖x0 − x∗‖2

is valid, for all x0 and all L-smooth and convex function f ?

From (Drori and Teboulle, 2014):

max
{

f (xN)−f (x?)

‖x0−x∗‖2

}
=

L

4N + 2
.

Observation: worst-cases achieved on one-dimensional Huber losses:

min
x∈R

f (x) =

{
L

2N+1 x −
L

2(2N+1)2 when ‖x‖ ≥ 1
2N+1

L
2 x

2 otherwise,

Numerically observed from trace norm minimization heuristic.

28

Gradient method: final words?

Question: Let xk+1 = xk − 1
L
f ′(xk); what is the smallest τ such that

f (xN)− f∗ ≤ τ‖x0 − x∗‖2

is valid, for all x0 and all L-smooth and convex function f ?

From (Drori and Teboulle, 2014):

max
{

f (xN)−f (x?)

‖x0−x∗‖2

}
=

L

4N + 2
.

Observation: worst-cases achieved on one-dimensional Huber losses:

min
x∈R

f (x) =

{
L

2N+1 x −
L

2(2N+1)2 when ‖x‖ ≥ 1
2N+1

L
2 x

2 otherwise,

Numerically observed from trace norm minimization heuristic.

28

Gradient method: final words?

Question: Let xk+1 = xk − 1
L
f ′(xk); what is the smallest τ such that

f (xN)− f∗ ≤ τ‖x0 − x∗‖2

is valid, for all x0 and all L-smooth and convex function f ?

From (Drori and Teboulle, 2014):

max
{

f (xN)−f (x?)

‖x0−x∗‖2

}
=

L

4N + 2
.

Observation: worst-cases achieved on one-dimensional Huber losses:

min
x∈R

f (x) =

{
L

2N+1 x −
L

2(2N+1)2 when ‖x‖ ≥ 1
2N+1

L
2 x

2 otherwise,

Numerically observed from trace norm minimization heuristic.

28

Gradient method: final words?

Question: Let xk+1 = xk − 1
L
f ′(xk); what is the smallest τ such that

f (xN)− f∗ ≤ τ‖x0 − x∗‖2

is valid, for all x0 and all L-smooth and convex function f ?

From (Drori and Teboulle, 2014):

max
{

f (xN)−f (x?)

‖x0−x∗‖2

}
=

L

4N + 2
.

Observation: worst-cases achieved on one-dimensional Huber losses:

min
x∈R

f (x) =

{
L

2N+1 x −
L

2(2N+1)2 when ‖x‖ ≥ 1
2N+1

L
2 x

2 otherwise,

Numerically observed from trace norm minimization heuristic.

28

François Glineur
(UCLouvain)

Etienne de Klerk
(Tilburg & Delft)

“On the worst-case complexity of the gradient method with exact line
search for smooth strongly convex functions” (2017, Opt. Letters)

29

Steepest descent with inexact search directions
min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

Relative error model:

‖f ′(xi)− di‖ ≤ ε‖f ′(xi)‖ i = 0, 1, . . . , (1)

Noisy gradient descent method with exact line search
Input: f ∈ Fµ,L(Rn), x0 ∈ Rn, 0 ≤ ε < 1.

for i = 0, 1, . . .

Select any seach direction di that satisfies (1);

γ = argminγ∈Rf (xi − γdi)

xi+1 = xi − γdi

Worst-case behavior:

f (xi+1)− f∗ ≤
(
1− κε
1+ κε

)2
(f (xi)− f∗) i = 0, 1, . . .

where κε = µ
L

(1−ε)
(1+ε) .

30

Steepest descent with inexact search directions
min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

Relative error model:

‖f ′(xi)− di‖ ≤ ε‖f ′(xi)‖ i = 0, 1, . . . , (1)

Noisy gradient descent method with exact line search
Input: f ∈ Fµ,L(Rn), x0 ∈ Rn, 0 ≤ ε < 1.

for i = 0, 1, . . .

Select any seach direction di that satisfies (1);

γ = argminγ∈Rf (xi − γdi)

xi+1 = xi − γdi

Worst-case behavior:

f (xi+1)− f∗ ≤
(
1− κε
1+ κε

)2
(f (xi)− f∗) i = 0, 1, . . .

where κε = µ
L

(1−ε)
(1+ε) .

30

Steepest descent with inexact search directions
min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

Relative error model:

‖f ′(xi)− di‖ ≤ ε‖f ′(xi)‖ i = 0, 1, . . . , (1)

Noisy gradient descent method with exact line search
Input: f ∈ Fµ,L(Rn), x0 ∈ Rn, 0 ≤ ε < 1.

for i = 0, 1, . . .

Select any seach direction di that satisfies (1);

γ = argminγ∈Rf (xi − γdi)

xi+1 = xi − γdi

Worst-case behavior:

f (xi+1)− f∗ ≤
(
1− κε
1+ κε

)2
(f (xi)− f∗) i = 0, 1, . . .

where κε = µ
L

(1−ε)
(1+ε) .

30

Steepest descent with inexact search directions
min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

Relative error model:

‖f ′(xi)− di‖ ≤ ε‖f ′(xi)‖ i = 0, 1, . . . , (1)

Noisy gradient descent method with exact line search
Input: f ∈ Fµ,L(Rn), x0 ∈ Rn, 0 ≤ ε < 1.

for i = 0, 1, . . .

Select any seach direction di that satisfies (1);

γ = argminγ∈Rf (xi − γdi)

xi+1 = xi − γdi

Worst-case behavior:

f (xi+1)− f∗ ≤
(
1− κε
1+ κε

)2
(f (xi)− f∗) i = 0, 1, . . .

where κε = µ
L

(1−ε)
(1+ε) . 30

Steepest descent with inexact search directions
Quadratic worst-case function:

f (x) =
1
2

n∑
i=1

λix
2
i where 0 < µ = λ1 ≤ λ2 ≤ . . . ≤ λn = L.

•
x∗

•

•x1

•
x2

•x3

•
x4

•x5

•
x6

•x7

1√
L

1√
µ

31

Steepest descent with inexact search directions
Quadratic worst-case function:

f (x) =
1
2

n∑
i=1

λix
2
i where 0 < µ = λ1 ≤ λ2 ≤ . . . ≤ λn = L.

•
x∗

•

•x1

•
x2

•x3

•
x4

•x5

•
x6

•x7

1√
L

1√
µ

31

What does the proof look like?

Aggregate constraints:

f0 ≥ f1 + 〈g1, x0 − x1〉+
1
2L
‖g0 − g1‖2 +

µ

2
(
1− µ

L

)‖x0 − x1 − (g0 − g1) /L‖2

f? ≥ f0 + 〈g0, x? − x0〉+
1
2L
‖g? − g0‖2 +

µ

2
(
1− µ

L

)‖x? − x0 − (g? − g0) /L‖2

f? ≥ f1 + 〈g1, x? − x1〉+
1
2L
‖g? − g1‖2 +

µ

2
(
1− µ

L

)‖x? − x1 − (g? − g1) /L‖2

0 = 〈g0, g1〉
0 = 〈g1, x1 − x0〉

with multipliers

y1 =
L− µ
L+ µ

, y2 = 2µ
(L− µ)
(L+ µ)2

, y3 =
2µ

L+ µ
, y4 =

2
L+ µ

, y5 = 1.

32

What does the proof look like?

Aggregate constraints:

f0 ≥ f1 + 〈g1, x0 − x1〉+
1
2L
‖g0 − g1‖2 +

µ

2
(
1− µ

L

)‖x0 − x1 − (g0 − g1) /L‖2

f? ≥ f0 + 〈g0, x? − x0〉+
1
2L
‖g? − g0‖2 +

µ

2
(
1− µ

L

)‖x? − x0 − (g? − g0) /L‖2

f? ≥ f1 + 〈g1, x? − x1〉+
1
2L
‖g? − g1‖2 +

µ

2
(
1− µ

L

)‖x? − x1 − (g? − g1) /L‖2

0 = 〈g0, g1〉
0 = 〈g1, x1 − x0〉

with multipliers

y1 =
L− µ
L+ µ

, y2 = 2µ
(L− µ)
(L+ µ)2

, y3 =
2µ

L+ µ
, y4 =

2
L+ µ

, y5 = 1.

32

What does the proof look like?

Aggregate constraints:

f0 ≥ f1 + 〈g1, x0 − x1〉+
1
2L
‖g0 − g1‖2 +

µ

2
(
1− µ

L

)‖x0 − x1 − (g0 − g1) /L‖2

f? ≥ f0 + 〈g0, x? − x0〉+
1
2L
‖g? − g0‖2 +

µ

2
(
1− µ

L

)‖x? − x0 − (g? − g0) /L‖2

f? ≥ f1 + 〈g1, x? − x1〉+
1
2L
‖g? − g1‖2 +

µ

2
(
1− µ

L

)‖x? − x1 − (g? − g1) /L‖2

0 = 〈g0, g1〉
0 = 〈g1, x1 − x0〉

with multipliers

y1 =
L− µ
L+ µ

, y2 = 2µ
(L− µ)
(L+ µ)2

, y3 =
2µ

L+ µ
, y4 =

2
L+ µ

, y5 = 1.

32

What does the proof look like?

Aggregate constraints:

f0 ≥ f1 + 〈g1, x0 − x1〉+
1
2L
‖g0 − g1‖2 +

µ

2
(
1− µ

L

)‖x0 − x1 − (g0 − g1) /L‖2

f? ≥ f0 + 〈g0, x? − x0〉+
1
2L
‖g? − g0‖2 +

µ

2
(
1− µ

L

)‖x? − x0 − (g? − g0) /L‖2

f? ≥ f1 + 〈g1, x? − x1〉+
1
2L
‖g? − g1‖2 +

µ

2
(
1− µ

L

)‖x? − x1 − (g? − g1) /L‖2

0 = 〈g0, g1〉
0 = 〈g1, x1 − x0〉

with multipliers

y1 =
L− µ
L+ µ

, y2 = 2µ
(L− µ)
(L+ µ)2

, y3 =
2µ

L+ µ
, y4 =

2
L+ µ

, y5 = 1.

32

What does the proof look like?

Resulting inequality:

f1 − f? ≤
(

L−µ
L+µ

)2
(f0 − f?)

−µL(L+3µ)
2(L+µ)2

∥∥∥x0 − L+µ
L+3µx1 − 2µ

L+3µx? −
3L+µ

L2+3µLg0 − L+µ
L2+3µLg1

∥∥∥2

− 2Lµ2

L2+2Lµ−3µ2

∥∥∥x1 − x? − (L−µ)2
2µL(L+µ)g0 − L+µ

2µL g1

∥∥∥2
.

Last two terms nonpositive, so

f1 − f? ≤
(
L− µ
L+ µ

)2
(f0 − f?).

One actually has equality at optimality, due to the quadratic example.

33

What does the proof look like?

Resulting inequality:

f1 − f? ≤
(

L−µ
L+µ

)2
(f0 − f?)

−µL(L+3µ)
2(L+µ)2

∥∥∥x0 − L+µ
L+3µx1 − 2µ

L+3µx? −
3L+µ

L2+3µLg0 − L+µ
L2+3µLg1

∥∥∥2

− 2Lµ2

L2+2Lµ−3µ2

∥∥∥x1 − x? − (L−µ)2
2µL(L+µ)g0 − L+µ

2µL g1

∥∥∥2
.

Last two terms nonpositive, so

f1 − f? ≤
(
L− µ
L+ µ

)2
(f0 − f?).

One actually has equality at optimality, due to the quadratic example.

33

What does the proof look like?

Resulting inequality:

f1 − f? ≤
(

L−µ
L+µ

)2
(f0 − f?)

−µL(L+3µ)
2(L+µ)2

∥∥∥x0 − L+µ
L+3µx1 − 2µ

L+3µx? −
3L+µ

L2+3µLg0 − L+µ
L2+3µLg1

∥∥∥2

− 2Lµ2

L2+2Lµ−3µ2

∥∥∥x1 − x? − (L−µ)2
2µL(L+µ)g0 − L+µ

2µL g1

∥∥∥2
.

Last two terms nonpositive, so

f1 − f? ≤
(
L− µ
L+ µ

)2
(f0 − f?).

One actually has equality at optimality, due to the quadratic example.

33

Yoel Drori
(Google)

“Efficient first-order methods for convex minimization: a constructive
approach” (2019, MP)

34

Optimized gradient methods
Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex, with black-box oracle f ′(.) available.

Lower bound for large-scale setting (d ≥ N + 2) by Drori (2017):

f (xN)− f (x?) ≥
L‖x0 − x?‖2

2θ2N

= O(1/N2)

,

with θ0 = 1, and:

θi+1 =


1+
√

4θ2i +1
2 if i ≤ N − 2,

1+
√

8θ2i +1
2 if i = N − 1.

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal
methods (Nemirovski 1982), (Nesterov 1983).

35

Optimized gradient methods
Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex, with black-box oracle f ′(.) available.

Lower bound for large-scale setting (d ≥ N + 2) by Drori (2017):

f (xN)− f (x?) ≥
L‖x0 − x?‖2

2θ2N

= O(1/N2)

,

with θ0 = 1, and:

θi+1 =


1+
√

4θ2i +1
2 if i ≤ N − 2,

1+
√

8θ2i +1
2 if i = N − 1.

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal
methods (Nemirovski 1982), (Nesterov 1983).

35

Optimized gradient methods
Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex, with black-box oracle f ′(.) available.

Lower bound for large-scale setting (d ≥ N + 2) by Drori (2017):

f (xN)− f (x?) ≥
L‖x0 − x?‖2

2θ2N
= O(1/N2),

with θ0 = 1, and:

θi+1 =


1+
√

4θ2i +1
2 if i ≤ N − 2,

1+
√

8θ2i +1
2 if i = N − 1.

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal
methods (Nemirovski 1982), (Nesterov 1983).

35

Optimized gradient methods
Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex, with black-box oracle f ′(.) available.

Lower bound for large-scale setting (d ≥ N + 2) by Drori (2017):

f (xN)− f (x?) ≥
L‖x0 − x?‖2

2θ2N
= O(1/N2),

with θ0 = 1, and:

θi+1 =


1+
√

4θ2i +1
2 if i ≤ N − 2,

1+
√

8θ2i +1
2 if i = N − 1.

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal
methods (Nemirovski 1982), (Nesterov 1983).

35

Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Greedy First-order Method (GFOM)
Inputs: f , x0, N.

For i = 1, 2, . . .
xi = argmin

x∈Rd

{
f (x) : x ∈ x0 + span{f ′(x0), . . . , f ′(xi−1)}

}
.

Worst-case guarantee:

f (xN)− f (x?) ≤
L‖x0 − x?‖2

2θ2N
.

36

Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Optimized gradient method with exact line-search
Inputs: f , x0, N.

For i = 1, . . . ,N

yi =

(
1−

1
θi

)
xi−1 +

1
θi
x0

di =

(
1−

1
θi

)
f ′(xi−1) +

1
θi

2
i−1∑
j=0

θj f
′(xj)


α = argmin

α∈R
f (yi + αdi)

xi = yi + αdi

Worst-case guarantee:

f (xN)− f (x?) ≤
L‖x0 − x?‖2

2θ2N
.

37

Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Optimized gradient method
Inputs: f , x0, N.

For i = 1, . . . ,N

yi = xi−1 −
1
L
f ′(xi−1)

zi = x0 −
2
L

i−1∑
j=0

θj f
′(xj)

xi =

(
1−

1
θi

)
yi +

1
θi
zi

Worst-case guarantee:

f (xN)− f (x?) ≤
L‖x0 − x?‖2

2θ2N
.

See also (Drori & Teboulle 2014) and (Kim & Fessler 2016).

38

What does the proof look like?

Aggregate quite a few constraints with appropriate coefficients.

Weighted sum can be rewritten exactly as (for the three cases):

f (xN)− f (x?) ≤
L‖x0 − x?‖2

2θ2N
−

L

2θ2N

∥∥∥∥∥x0 − x∗ −
θN

L
f ′(xN)−

2
L

N−1∑
i=0

θi f
′(xi)

∥∥∥∥∥
2

39

What does the proof look like?

Aggregate quite a few constraints with appropriate coefficients.

Weighted sum can be rewritten exactly as (for the three cases):

f (xN)− f (x?) ≤
L‖x0 − x?‖2

2θ2N
−

L

2θ2N

∥∥∥∥∥x0 − x∗ −
θN

L
f ′(xN)−

2
L

N−1∑
i=0

θi f
′(xi)

∥∥∥∥∥
2

39

Ernest Ryu
(UCLA)

Carolina Bergeling
(Lund)

Pontus Giselsson
(Lund)

“Operator splitting performance estimation: Tight contraction factors
and optimal parameter selection” (2018, arXiv:1812.00146)

40

Douglas-Rachford Splitting I

Let f and h be two convex, closed, proper functions. (Overrelaxed) DRS for solving

min
x∈Rd

f (x) + h(x),

consists in iterating:

xk+1 = argminx∈Rd {γh(x) + 1
2‖x − wk‖2}

yk+1 = argminy∈Rd {γf (y) + 1
2‖y − 2xk+1 + wk‖2}

wk+1 = wk + θ(yk+1 − xk+1),

for some choices of (θ, γ).

41

Douglas-Rachford Splitting I

Let f and h be two convex, closed, proper functions. (Overrelaxed) DRS for solving

min
x∈Rd

f (x) + h(x),

consists in iterating:

xk+1 = argminx∈Rd {γh(x) + 1
2‖x − wk‖2}

yk+1 = argminy∈Rd {γf (y) + 1
2‖y − 2xk+1 + wk‖2}

wk+1 = wk + θ(yk+1 − xk+1),

for some choices of (θ, γ).

41

Douglas-Rachford Splitting II

Let A, and B be maximally monotone operators; and let JγA := (I + γA)−1 and
JγB := (I + γB)−1 be their respective resolvents.

Monotone inclusion problem:

find
x∈Rd

0 ∈ A(x) + B(x),

(overrelaxed) Douglas-Rachford for solving the monotone inclusion

wk+1 = (I − θJγB + θJγA(2JγB − I))wk .

Recover optimization setting with A = ∂f and B = ∂h.

42

Douglas-Rachford Splitting II

Let A, and B be maximally monotone operators; and let JγA := (I + γA)−1 and
JγB := (I + γB)−1 be their respective resolvents.

Monotone inclusion problem:

find
x∈Rd

0 ∈ A(x) + B(x),

(overrelaxed) Douglas-Rachford for solving the monotone inclusion

wk+1 = (I − θJγB + θJγA(2JγB − I))wk .

Recover optimization setting with A = ∂f and B = ∂h.

42

Douglas-Rachford Splitting II

Let A, and B be maximally monotone operators; and let JγA := (I + γA)−1 and
JγB := (I + γB)−1 be their respective resolvents.

Monotone inclusion problem:

find
x∈Rd

0 ∈ A(x) + B(x),

(overrelaxed) Douglas-Rachford for solving the monotone inclusion

wk+1 = (I − θJγB + θJγA(2JγB − I))wk .

Recover optimization setting with A = ∂f and B = ∂h.

42

Douglas-Rachford Splitting II

Let A, and B be maximally monotone operators; and let JγA := (I + γA)−1 and
JγB := (I + γB)−1 be their respective resolvents.

Monotone inclusion problem:

find
x∈Rd

0 ∈ A(x) + B(x),

(overrelaxed) Douglas-Rachford for solving the monotone inclusion

wk+1 = (I − θJγB + θJγA(2JγB − I))wk .

Recover optimization setting with A = ∂f and B = ∂h.

42

Assumptions

Nontrivial rates by assuming something more on A and/or B.

Pick among the following (well documented) assumptions:

� A convex function f is commonly assumed to be (for all x , y ∈ Rd):

� µ-strongly convex f (x) ≥ f (y) + 〈∂f (y), x − y〉+ µ
2 ‖x − y‖2,

� L-smooth f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

� A max. monotone operators B is commonly assumed to be (for all x , y ∈ Rd):

� a subdifferential B = ∂f (x),

� µ-strongly monotone 〈B(x)− B(y), x − y〉 ≥ µ‖x − y‖2,

� β-cocoercive 〈B(x)− B(y), x − y〉 ≥ β‖B(x)− B(y)‖2,

� L-Lipschitz ‖B(x)− B(y)‖ ≤ L‖x − y‖.

43

Assumptions

Nontrivial rates by assuming something more on A and/or B.

Pick among the following (well documented) assumptions:

� A convex function f is commonly assumed to be (for all x , y ∈ Rd):

� µ-strongly convex f (x) ≥ f (y) + 〈∂f (y), x − y〉+ µ
2 ‖x − y‖2,

� L-smooth f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

� A max. monotone operators B is commonly assumed to be (for all x , y ∈ Rd):

� a subdifferential B = ∂f (x),

� µ-strongly monotone 〈B(x)− B(y), x − y〉 ≥ µ‖x − y‖2,

� β-cocoercive 〈B(x)− B(y), x − y〉 ≥ β‖B(x)− B(y)‖2,

� L-Lipschitz ‖B(x)− B(y)‖ ≤ L‖x − y‖.

43

Assumptions

Nontrivial rates by assuming something more on A and/or B.

Pick among the following (well documented) assumptions:

� A convex function f is commonly assumed to be (for all x , y ∈ Rd):

� µ-strongly convex f (x) ≥ f (y) + 〈∂f (y), x − y〉+ µ
2 ‖x − y‖2,

� L-smooth f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

� A max. monotone operators B is commonly assumed to be (for all x , y ∈ Rd):

� a subdifferential B = ∂f (x),

� µ-strongly monotone 〈B(x)− B(y), x − y〉 ≥ µ‖x − y‖2,

� β-cocoercive 〈B(x)− B(y), x − y〉 ≥ β‖B(x)− B(y)‖2,

� L-Lipschitz ‖B(x)− B(y)‖ ≤ L‖x − y‖.

43

Assumptions

Nontrivial rates by assuming something more on A and/or B.

Pick among the following (well documented) assumptions:

� A convex function f is commonly assumed to be (for all x , y ∈ Rd):

� µ-strongly convex f (x) ≥ f (y) + 〈∂f (y), x − y〉+ µ
2 ‖x − y‖2,

� L-smooth f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

� A max. monotone operators B is commonly assumed to be (for all x , y ∈ Rd):

� a subdifferential B = ∂f (x),

� µ-strongly monotone 〈B(x)− B(y), x − y〉 ≥ µ‖x − y‖2,

� β-cocoercive 〈B(x)− B(y), x − y〉 ≥ β‖B(x)− B(y)‖2,

� L-Lipschitz ‖B(x)− B(y)‖ ≤ L‖x − y‖.

43

Assumptions

Nontrivial rates by assuming something more on A and/or B.

Pick among the following (well documented) assumptions:

� A convex function f is commonly assumed to be (for all x , y ∈ Rd):

� µ-strongly convex f (x) ≥ f (y) + 〈∂f (y), x − y〉+ µ
2 ‖x − y‖2,

� L-smooth f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

� A max. monotone operators B is commonly assumed to be (for all x , y ∈ Rd):

� a subdifferential B = ∂f (x),

� µ-strongly monotone 〈B(x)− B(y), x − y〉 ≥ µ‖x − y‖2,

� β-cocoercive 〈B(x)− B(y), x − y〉 ≥ β‖B(x)− B(y)‖2,

� L-Lipschitz ‖B(x)− B(y)‖ ≤ L‖x − y‖.

43

Contraction factor

Question: When is the DRS iteration a contraction? What is the smallest ρ such that∥∥w1 − w ′1
∥∥ ≤ ρ∥∥w0 − w ′0

∥∥,
for all w0,w ′0 ∈ Rd and w1, w ′1 generated with DRS from respectively w0 and w ′0?

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

44

Contraction factor

Question: When is the DRS iteration a contraction? What is the smallest ρ such that∥∥w1 − w ′1
∥∥ ≤ ρ∥∥w0 − w ′0

∥∥,
for all w0,w ′0 ∈ Rd and w1, w ′1 generated with DRS from respectively w0 and w ′0?

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

44

Contraction factor

Question: When is the DRS iteration a contraction? What is the smallest ρ such that∥∥w1 − w ′1
∥∥ ≤ ρ∥∥w0 − w ′0

∥∥,
for all w0,w ′0 ∈ Rd and w1, w ′1 generated with DRS from respectively w0 and w ′0?

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

44

Contraction factor

Question: When is the DRS iteration a contraction? What is the smallest ρ such that∥∥w1 − w ′1
∥∥ ≤ ρ∥∥w0 − w ′0

∥∥,
for all w0,w ′0 ∈ Rd and w1, w ′1 generated with DRS from respectively w0 and w ′0?

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

44

Contraction factor

Question: When is the DRS iteration a contraction? What is the smallest ρ such that∥∥w1 − w ′1
∥∥ ≤ ρ∥∥w0 − w ′0

∥∥,
for all w0,w ′0 ∈ Rd and w1, w ′1 generated with DRS from respectively w0 and w ′0?

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

44

Contraction factor

Question: When is the DRS iteration a contraction? What is the smallest ρ such that∥∥w1 − w ′1
∥∥ ≤ ρ∥∥w0 − w ′0

∥∥,
for all w0,w ′0 ∈ Rd and w1, w ′1 generated with DRS from respectively w0 and w ′0?

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

44

Contraction factor

Question: When is the DRS iteration a contraction? What is the smallest ρ such that∥∥w1 − w ′1
∥∥ ≤ ρ∥∥w0 − w ′0

∥∥,
for all w0,w ′0 ∈ Rd and w1, w ′1 generated with DRS from respectively w0 and w ′0?

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

44

Contraction factor

Question: When is the DRS iteration a contraction? What is the smallest ρ such that∥∥w1 − w ′1
∥∥ ≤ ρ∥∥w0 − w ′0

∥∥,
for all w0,w ′0 ∈ Rd and w1, w ′1 generated with DRS from respectively w0 and w ′0?

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

44

DRS contraction factors

Table: Contraction factors for DRS: assumptions beyond max. monotonicity.

Properties for A Properties for B Reference Sharp Notes

O1 ∂f , f : str. cvx & smooth ∂g [1,2] 4

O2 ∂f , f : str. cvx ∂g , g : smooth [3] 6 1.

M1 str. mono. & cocoercive - [3] 4

M2 str. mono. & Lipschitz - [3] 4 2.

M3 str. mono. cocoercive [3] 6

M4 str. mono. Lipschitz [4] 6 3.

1. sharp rates for some parameter choices in [3]
2. Lions and Mercier [5] provided conservative rate in this setting
3. sharp rate when B is skew linear in [4]

[1] Giselsson, Boyd, Diagonal Scaling in DRS and ADMM, 2014.
[2] Giselsson, Boyd, Linear Convergence and Metric Selection in DRS and ADMM, 2017.
[3] Giselsson, Tight Global Linear Convergence Rate Bounds for DRS, 2017.
[4] Moursi, Vandenberghe. DRS for a Lipschitz continuous and a strongly monotone operator, 2018.
[5] Lions, Mercier. Splitting Algorithms for the Sum of Two Nonlinear Operators, 1979.

45

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).

46

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).

46

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).

46

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).

46

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).

46

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).

46

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).

46

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).

46

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).

46

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).

46

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).

46

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

Examples on which those bounds are attained?

� Case 1: (1-dimensional) A = N{0} (i.e., JλA = 0), B = 1
β
I for ρ = |1− θ β

β+1 |.

� Case 2: (1-dimensional) A = µI , B = 1
β
I for ρ = |1− θ 1+µβ

(µ+1)(β+1) |.

� Case 3: (1-dimensional) A = N{0}, B = 0 for ρ = |1− θ|.
� Case 4: (1-dimensional) A = µI , B = 0 for ρ = |1− θ µ

µ+1 |.

� Case 5: (2-dimensional) for appropriate (complicated) values of a and K :

A =

(
µ −a
a µ

)
, B =

(
βK −

√
K − K2β2√

K − K2β2 βK

)
,

for ρ =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

47

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

Examples on which those bounds are attained?

� Case 1: (1-dimensional) A = N{0} (i.e., JλA = 0), B = 1
β
I for ρ = |1− θ β

β+1 |.

� Case 2: (1-dimensional) A = µI , B = 1
β
I for ρ = |1− θ 1+µβ

(µ+1)(β+1) |.

� Case 3: (1-dimensional) A = N{0}, B = 0 for ρ = |1− θ|.
� Case 4: (1-dimensional) A = µI , B = 0 for ρ = |1− θ µ

µ+1 |.

� Case 5: (2-dimensional) for appropriate (complicated) values of a and K :

A =

(
µ −a
a µ

)
, B =

(
βK −

√
K − K2β2√

K − K2β2 βK

)
,

for ρ =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

47

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

Examples on which those bounds are attained?

� Case 1: (1-dimensional) A = N{0} (i.e., JλA = 0), B = 1
β
I for ρ = |1− θ β

β+1 |.

� Case 2: (1-dimensional) A = µI , B = 1
β
I for ρ = |1− θ 1+µβ

(µ+1)(β+1) |.

� Case 3: (1-dimensional) A = N{0}, B = 0 for ρ = |1− θ|.
� Case 4: (1-dimensional) A = µI , B = 0 for ρ = |1− θ µ

µ+1 |.

� Case 5: (2-dimensional) for appropriate (complicated) values of a and K :

A =

(
µ −a
a µ

)
, B =

(
βK −

√
K − K2β2√

K − K2β2 βK

)
,

for ρ =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

47

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

Examples on which those bounds are attained?

� Case 1: (1-dimensional) A = N{0} (i.e., JλA = 0), B = 1
β
I for ρ = |1− θ β

β+1 |.

� Case 2: (1-dimensional) A = µI , B = 1
β
I for ρ = |1− θ 1+µβ

(µ+1)(β+1) |.

� Case 3: (1-dimensional) A = N{0}, B = 0 for ρ = |1− θ|.
� Case 4: (1-dimensional) A = µI , B = 0 for ρ = |1− θ µ

µ+1 |.

� Case 5: (2-dimensional) for appropriate (complicated) values of a and K :

A =

(
µ −a
a µ

)
, B =

(
βK −

√
K − K2β2√

K − K2β2 βK

)
,

for ρ =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

47

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

Examples on which those bounds are attained?

� Case 1: (1-dimensional) A = N{0} (i.e., JλA = 0), B = 1
β
I for ρ = |1− θ β

β+1 |.

� Case 2: (1-dimensional) A = µI , B = 1
β
I for ρ = |1− θ 1+µβ

(µ+1)(β+1) |.

� Case 3: (1-dimensional) A = N{0}, B = 0 for ρ = |1− θ|.

� Case 4: (1-dimensional) A = µI , B = 0 for ρ = |1− θ µ
µ+1 |.

� Case 5: (2-dimensional) for appropriate (complicated) values of a and K :

A =

(
µ −a
a µ

)
, B =

(
βK −

√
K − K2β2√

K − K2β2 βK

)
,

for ρ =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

47

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

Examples on which those bounds are attained?

� Case 1: (1-dimensional) A = N{0} (i.e., JλA = 0), B = 1
β
I for ρ = |1− θ β

β+1 |.

� Case 2: (1-dimensional) A = µI , B = 1
β
I for ρ = |1− θ 1+µβ

(µ+1)(β+1) |.

� Case 3: (1-dimensional) A = N{0}, B = 0 for ρ = |1− θ|.
� Case 4: (1-dimensional) A = µI , B = 0 for ρ = |1− θ µ

µ+1 |.

� Case 5: (2-dimensional) for appropriate (complicated) values of a and K :

A =

(
µ −a
a µ

)
, B =

(
βK −

√
K − K2β2√

K − K2β2 βK

)
,

for ρ =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

47

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

Examples on which those bounds are attained?

� Case 1: (1-dimensional) A = N{0} (i.e., JλA = 0), B = 1
β
I for ρ = |1− θ β

β+1 |.

� Case 2: (1-dimensional) A = µI , B = 1
β
I for ρ = |1− θ 1+µβ

(µ+1)(β+1) |.

� Case 3: (1-dimensional) A = N{0}, B = 0 for ρ = |1− θ|.
� Case 4: (1-dimensional) A = µI , B = 0 for ρ = |1− θ µ

µ+1 |.

� Case 5: (2-dimensional) for appropriate (complicated) values of a and K :

A =

(
µ −a
a µ

)
, B =

(
βK −

√
K − K2β2√

K − K2β2 βK

)
,

for ρ =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

47

Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1) if (a),

|1− θ L+µ
(µ+1)(L+1) | if (b),

√
(2−θ)

4µ(L2+1)

(
θ(L2+1)−2µ(θ+L2−1)

)(
θ
(
1+2µ+L2

)
−2(µ+1)

(
L2+1

))
2µ(θ+L2−1)−(2−θ)(1−L2)

otherwise,

with

(a) µ
−(2(θ−1)µ+θ−2)+L2(θ−2(1+µ))√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

≤
√

L2 + 1,

(b) L < 1, µ > L2+1
(L−1)2

, and θ ≤ 2(µ+1)(L+1)(µ+µL2−L2−2µL−1)
2µ2−µ+µL3−L3−3µL2−L2−2µ2L−µL−L−1

.

� First and third cases are achieved on 2-dimensional examples (dual is simpler),

� Second case is achieved on 1-dimensional example (primal is simpler).

48

Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1) if (a),

|1− θ L+µ
(µ+1)(L+1) | if (b),

√
(2−θ)

4µ(L2+1)

(
θ(L2+1)−2µ(θ+L2−1)

)(
θ
(
1+2µ+L2

)
−2(µ+1)

(
L2+1

))
2µ(θ+L2−1)−(2−θ)(1−L2)

otherwise,

with

(a) µ
−(2(θ−1)µ+θ−2)+L2(θ−2(1+µ))√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

≤
√

L2 + 1,

(b) L < 1, µ > L2+1
(L−1)2

, and θ ≤ 2(µ+1)(L+1)(µ+µL2−L2−2µL−1)
2µ2−µ+µL3−L3−3µL2−L2−2µ2L−µL−L−1

.

� First and third cases are achieved on 2-dimensional examples (dual is simpler),

� Second case is achieved on 1-dimensional example (primal is simpler).

48

Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1) if (a),

|1− θ L+µ
(µ+1)(L+1) | if (b),

√
(2−θ)

4µ(L2+1)

(
θ(L2+1)−2µ(θ+L2−1)

)(
θ
(
1+2µ+L2

)
−2(µ+1)

(
L2+1

))
2µ(θ+L2−1)−(2−θ)(1−L2)

otherwise,

with

(a) µ
−(2(θ−1)µ+θ−2)+L2(θ−2(1+µ))√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

≤
√

L2 + 1,

(b) L < 1, µ > L2+1
(L−1)2

, and θ ≤ 2(µ+1)(L+1)(µ+µL2−L2−2µL−1)
2µ2−µ+µL3−L3−3µL2−L2−2µ2L−µL−L−1

.

� First and third cases are achieved on 2-dimensional examples (dual is simpler),

� Second case is achieved on 1-dimensional example (primal is simpler).

48

Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1) if (a),

|1− θ L+µ
(µ+1)(L+1) | if (b),

√
(2−θ)

4µ(L2+1)

(
θ(L2+1)−2µ(θ+L2−1)

)(
θ
(
1+2µ+L2

)
−2(µ+1)

(
L2+1

))
2µ(θ+L2−1)−(2−θ)(1−L2)

otherwise,

with

(a) µ
−(2(θ−1)µ+θ−2)+L2(θ−2(1+µ))√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

≤
√

L2 + 1,

(b) L < 1, µ > L2+1
(L−1)2

, and θ ≤ 2(µ+1)(L+1)(µ+µL2−L2−2µL−1)
2µ2−µ+µL3−L3−3µL2−L2−2µ2L−µL−L−1

.

� First and third cases are achieved on 2-dimensional examples (dual is simpler),

� Second case is achieved on 1-dimensional example (primal is simpler).

48

Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1) if (a),

|1− θ L+µ
(µ+1)(L+1) | if (b),

√
(2−θ)

4µ(L2+1)

(
θ(L2+1)−2µ(θ+L2−1)

)(
θ
(
1+2µ+L2

)
−2(µ+1)

(
L2+1

))
2µ(θ+L2−1)−(2−θ)(1−L2)

otherwise,

with

(a) µ
−(2(θ−1)µ+θ−2)+L2(θ−2(1+µ))√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

≤
√

L2 + 1,

(b) L < 1, µ > L2+1
(L−1)2

, and θ ≤ 2(µ+1)(L+1)(µ+µL2−L2−2µL−1)
2µ2−µ+µL3−L3−3µL2−L2−2µ2L−µL−L−1

.

� First and third cases are achieved on 2-dimensional examples (dual is simpler),

� Second case is achieved on 1-dimensional example (primal is simpler).

48

Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

� Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

A = µ I + N{0}×R, B = L

[
0 1
−1 0

]

for ρ =
θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1)

� Case 2: (1-dimensional) A = µI , B = LI for ρ = |1− θ L+µ
(µ+1)(L+1) |

� Case 3: (2-dimensional) For appropriately chosen (complicated) K :

A = µ I + NR×{0}, B = L

(
K −

√
1− K2

√
1− K2 K

)
,

for ρ =

√
(2−θ)

4µ(L2+1)
(θ(L2+1)−2µ(θ+L2−1))(θ(1+2µ+L2)−2(µ+1)(L2+1))

2µ(θ+L2−1)−(2−θ)(1−L2) .

49

Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

� Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

A = µ I + N{0}×R, B = L

[
0 1
−1 0

]

for ρ =
θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1)

� Case 2: (1-dimensional) A = µI , B = LI for ρ = |1− θ L+µ
(µ+1)(L+1) |

� Case 3: (2-dimensional) For appropriately chosen (complicated) K :

A = µ I + NR×{0}, B = L

(
K −

√
1− K2

√
1− K2 K

)
,

for ρ =

√
(2−θ)

4µ(L2+1)
(θ(L2+1)−2µ(θ+L2−1))(θ(1+2µ+L2)−2(µ+1)(L2+1))

2µ(θ+L2−1)−(2−θ)(1−L2) .

49

Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

� Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

A = µ I + N{0}×R, B = L

[
0 1
−1 0

]

for ρ =
θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1)

� Case 2: (1-dimensional) A = µI , B = LI for ρ = |1− θ L+µ
(µ+1)(L+1) |

� Case 3: (2-dimensional) For appropriately chosen (complicated) K :

A = µ I + NR×{0}, B = L

(
K −

√
1− K2

√
1− K2 K

)
,

for ρ =

√
(2−θ)

4µ(L2+1)
(θ(L2+1)−2µ(θ+L2−1))(θ(1+2µ+L2)−2(µ+1)(L2+1))

2µ(θ+L2−1)−(2−θ)(1−L2) .

49

Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

� Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

A = µ I + N{0}×R, B = L

[
0 1
−1 0

]

for ρ =
θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1)

� Case 2: (1-dimensional) A = µI , B = LI for ρ = |1− θ L+µ
(µ+1)(L+1) |

� Case 3: (2-dimensional) For appropriately chosen (complicated) K :

A = µ I + NR×{0}, B = L

(
K −

√
1− K2

√
1− K2 K

)
,

for ρ =

√
(2−θ)

4µ(L2+1)
(θ(L2+1)−2µ(θ+L2−1))(θ(1+2µ+L2)−2(µ+1)(L2+1))

2µ(θ+L2−1)−(2−θ)(1−L2) .

49

Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

� Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

A = µ I + N{0}×R, B = L

[
0 1
−1 0

]

for ρ =
θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1)

� Case 2: (1-dimensional) A = µI , B = LI for ρ = |1− θ L+µ
(µ+1)(L+1) |

� Case 3: (2-dimensional) For appropriately chosen (complicated) K :

A = µ I + NR×{0}, B = L

(
K −

√
1− K2

√
1− K2 K

)
,

for ρ =

√
(2−θ)

4µ(L2+1)
(θ(L2+1)−2µ(θ+L2−1))(θ(1+2µ+L2)−2(µ+1)(L2+1))

2µ(θ+L2−1)−(2−θ)(1−L2) .

49

A-R. Dragomir
(ENS/TSE)

Jérôme Bolte
(TSE)

A. d’Aspremont
(CNRS/ENS)

“Optimal complexity and certification of Bregman first-order
methods” (2019, arXiv:1911.08510)

50

Mirror descent/Bregman gradient/NoLips
Recall gradient descent with step size γ:

xk+1 = argmin
x
{f (xk) +

〈
f ′(xk), x − xk

〉
+ 1

2γ ‖x − xk‖2}.

High-level intuition: gradient descent should work well when

f (xk) +
〈
f ′(xk), x − xk

〉
+ 1

2γ ‖x − xk‖2

is a good approximation of f .

Mirror descent: change notion of distance and iterate:

xk+1 = argmin
x
{f (xk) +

〈
f ′(xk), x − xk

〉
+ 1
γ
Dh(x , xk)}

where Dh(x , xk) is a Bregman divergence:

h(x)− h(xk)−
〈
h′(xk), x − xk

〉
≥ 0,

and h is strictly convex and differentiable.

51

Mirror descent/Bregman gradient/NoLips
Recall gradient descent with step size γ:

xk+1 = argmin
x
{f (xk) +

〈
f ′(xk), x − xk

〉
+ 1

2γ ‖x − xk‖2}.

High-level intuition: gradient descent should work well when

f (xk) +
〈
f ′(xk), x − xk

〉
+ 1

2γ ‖x − xk‖2

is a good approximation of f .

Mirror descent: change notion of distance and iterate:

xk+1 = argmin
x
{f (xk) +

〈
f ′(xk), x − xk

〉
+ 1
γ
Dh(x , xk)}

where Dh(x , xk) is a Bregman divergence:

h(x)− h(xk)−
〈
h′(xk), x − xk

〉
≥ 0,

and h is strictly convex and differentiable.

51

Mirror descent/Bregman gradient/NoLips
Recall gradient descent with step size γ:

xk+1 = argmin
x
{f (xk) +

〈
f ′(xk), x − xk

〉
+ 1

2γ ‖x − xk‖2}.

High-level intuition: gradient descent should work well when

f (xk) +
〈
f ′(xk), x − xk

〉
+ 1

2γ ‖x − xk‖2

is a good approximation of f .

Mirror descent: change notion of distance and iterate:

xk+1 = argmin
x
{f (xk) +

〈
f ′(xk), x − xk

〉
+ 1
γ
Dh(x , xk)}

where Dh(x , xk) is a Bregman divergence:

h(x)− h(xk)−
〈
h′(xk), x − xk

〉
≥ 0,

and h is strictly convex and differentiable.

51

Mirror descent/Bregman gradient/NoLips

Recent assumption for mirror descent: “relative smoothness” (Bauschke, Bolte,
Teboulle, 2016), (Lu, Freund, Nesterov 2018):

Lh − f convex, f convex, and h strictly convex and differentiable

(boils down to regular smoothness when h = 1
2‖.‖

2).

Question: Let xk+1 = MD(xk); what is the smallest τ such that

f (xk)− f∗ ≤ τDh(x∗, x0)

is valid, for all x0, all (f , h) satisfying previous assumptions?

52

Mirror descent/Bregman gradient/NoLips

Recent assumption for mirror descent: “relative smoothness” (Bauschke, Bolte,
Teboulle, 2016), (Lu, Freund, Nesterov 2018):

Lh − f convex, f convex, and h strictly convex and differentiable

(boils down to regular smoothness when h = 1
2‖.‖

2).

Question: Let xk+1 = MD(xk); what is the smallest τ such that

f (xk)− f∗ ≤ τDh(x∗, x0)

is valid, for all x0, all (f , h) satisfying previous assumptions?

52

Mirror descent/Bregman gradient/NoLips
In this case: strictly convex differentiable functions (i.e., open set of functions).

Pathological nonsmooth limiting behaviors in the closure of this open set (via PEPs):

x0 = · · · = x3 x∗

f (x)

h(x)

x0 x1 x2 x3 x∗

fµ(x)

hµ(x)

The guarantee
f (xk)− f∗ ≤ LDh(x∗,x0)

k

cannot be improved (attained on example above).

53

Mirror descent/Bregman gradient/NoLips

Convexity of f , between x∗ and xi (i = 0, . . . , k) with weight γ∗,i = 1
k
:

f (x∗) ≥ f (xi) +
〈
f ′(xi), x∗ − xi

〉
,

convexity of f , between xi and xi+1 (i = 0, . . . , k − 1) with weight γi,i+1 = i
k
:

f (xi) ≥ f (xi+1) +
〈
f ′(xi+1), xi − xi+1

〉
,

convexity of Lh − f , between x∗ and xk with weight µ∗,k = 1
k
:

Lh(x∗)− f (x∗) ≥ Lh(xk)− f (xk) +
〈
Lh′(xk)− f ′(xk), x∗ − xk

〉
,

convexity of Lh − f , between xi+1 and xi (i = 0, . . . , k − 1) with weight µi+1,i =
i+1
k

Lh(xi+1)− f (xi+1) ≥ Lh(xi)− f (xi) +
〈
Lh′(xi)− f ′(xi), xi+1 − xi

〉
,

convexity of Lh − f , between xi and xi+1 (i = 0, . . . , k − 1) with weight µi,i+1 = i
k

Lh(xi)− f (xi) ≥ Lh(xi+1)− f (xi+1) +
〈
Lh′(xi+1)− f ′(xi+1), xi − xi+1

〉
.

and reformulate:

f (xk)− f (x∗) ≤ L
h(x∗)−h(x0)−〈h′(x0),x∗−x0〉

k
,

where there is no residual term to neglect!

54

Mirror descent/Bregman gradient/NoLips
Convexity of f , between x∗ and xi (i = 0, . . . , k) with weight γ∗,i = 1

k
:

f (x∗) ≥ f (xi) +
〈
f ′(xi), x∗ − xi

〉
,

convexity of f , between xi and xi+1 (i = 0, . . . , k − 1) with weight γi,i+1 = i
k
:

f (xi) ≥ f (xi+1) +
〈
f ′(xi+1), xi − xi+1

〉
,

convexity of Lh − f , between x∗ and xk with weight µ∗,k = 1
k
:

Lh(x∗)− f (x∗) ≥ Lh(xk)− f (xk) +
〈
Lh′(xk)− f ′(xk), x∗ − xk

〉
,

convexity of Lh − f , between xi+1 and xi (i = 0, . . . , k − 1) with weight µi+1,i =
i+1
k

Lh(xi+1)− f (xi+1) ≥ Lh(xi)− f (xi) +
〈
Lh′(xi)− f ′(xi), xi+1 − xi

〉
,

convexity of Lh − f , between xi and xi+1 (i = 0, . . . , k − 1) with weight µi,i+1 = i
k

Lh(xi)− f (xi) ≥ Lh(xi+1)− f (xi+1) +
〈
Lh′(xi+1)− f ′(xi+1), xi − xi+1

〉
.

and reformulate:

f (xk)− f (x∗) ≤ L
h(x∗)−h(x0)−〈h′(x0),x∗−x0〉

k
,

where there is no residual term to neglect!

54

Mirror descent/Bregman gradient/NoLips
Convexity of f , between x∗ and xi (i = 0, . . . , k) with weight γ∗,i = 1

k
:

f (x∗) ≥ f (xi) +
〈
f ′(xi), x∗ − xi

〉
,

convexity of f , between xi and xi+1 (i = 0, . . . , k − 1) with weight γi,i+1 = i
k
:

f (xi) ≥ f (xi+1) +
〈
f ′(xi+1), xi − xi+1

〉
,

convexity of Lh − f , between x∗ and xk with weight µ∗,k = 1
k
:

Lh(x∗)− f (x∗) ≥ Lh(xk)− f (xk) +
〈
Lh′(xk)− f ′(xk), x∗ − xk

〉
,

convexity of Lh − f , between xi+1 and xi (i = 0, . . . , k − 1) with weight µi+1,i =
i+1
k

Lh(xi+1)− f (xi+1) ≥ Lh(xi)− f (xi) +
〈
Lh′(xi)− f ′(xi), xi+1 − xi

〉
,

convexity of Lh − f , between xi and xi+1 (i = 0, . . . , k − 1) with weight µi,i+1 = i
k

Lh(xi)− f (xi) ≥ Lh(xi+1)− f (xi+1) +
〈
Lh′(xi+1)− f ′(xi+1), xi − xi+1

〉
.

and reformulate:

f (xk)− f (x∗) ≤ L
h(x∗)−h(x0)−〈h′(x0),x∗−x0〉

k
,

where there is no residual term to neglect!

54

Mirror descent/Bregman gradient/NoLips
Convexity of f , between x∗ and xi (i = 0, . . . , k) with weight γ∗,i = 1

k
:

f (x∗) ≥ f (xi) +
〈
f ′(xi), x∗ − xi

〉
,

convexity of f , between xi and xi+1 (i = 0, . . . , k − 1) with weight γi,i+1 = i
k
:

f (xi) ≥ f (xi+1) +
〈
f ′(xi+1), xi − xi+1

〉
,

convexity of Lh − f , between x∗ and xk with weight µ∗,k = 1
k
:

Lh(x∗)− f (x∗) ≥ Lh(xk)− f (xk) +
〈
Lh′(xk)− f ′(xk), x∗ − xk

〉
,

convexity of Lh − f , between xi+1 and xi (i = 0, . . . , k − 1) with weight µi+1,i =
i+1
k

Lh(xi+1)− f (xi+1) ≥ Lh(xi)− f (xi) +
〈
Lh′(xi)− f ′(xi), xi+1 − xi

〉
,

convexity of Lh − f , between xi and xi+1 (i = 0, . . . , k − 1) with weight µi,i+1 = i
k

Lh(xi)− f (xi) ≥ Lh(xi+1)− f (xi+1) +
〈
Lh′(xi+1)− f ′(xi+1), xi − xi+1

〉
.

and reformulate:

f (xk)− f (x∗) ≤ L
h(x∗)−h(x0)−〈h′(x0),x∗−x0〉

k
,

where there is no residual term to neglect!

54

Mirror descent/Bregman gradient/NoLips
Convexity of f , between x∗ and xi (i = 0, . . . , k) with weight γ∗,i = 1

k
:

f (x∗) ≥ f (xi) +
〈
f ′(xi), x∗ − xi

〉
,

convexity of f , between xi and xi+1 (i = 0, . . . , k − 1) with weight γi,i+1 = i
k
:

f (xi) ≥ f (xi+1) +
〈
f ′(xi+1), xi − xi+1

〉
,

convexity of Lh − f , between x∗ and xk with weight µ∗,k = 1
k
:

Lh(x∗)− f (x∗) ≥ Lh(xk)− f (xk) +
〈
Lh′(xk)− f ′(xk), x∗ − xk

〉
,

convexity of Lh − f , between xi+1 and xi (i = 0, . . . , k − 1) with weight µi+1,i =
i+1
k

Lh(xi+1)− f (xi+1) ≥ Lh(xi)− f (xi) +
〈
Lh′(xi)− f ′(xi), xi+1 − xi

〉
,

convexity of Lh − f , between xi and xi+1 (i = 0, . . . , k − 1) with weight µi,i+1 = i
k

Lh(xi)− f (xi) ≥ Lh(xi+1)− f (xi+1) +
〈
Lh′(xi+1)− f ′(xi+1), xi − xi+1

〉
.

and reformulate:

f (xk)− f (x∗) ≤ L
h(x∗)−h(x0)−〈h′(x0),x∗−x0〉

k
,

where there is no residual term to neglect!

54

Mirror descent/Bregman gradient/NoLips
Convexity of f , between x∗ and xi (i = 0, . . . , k) with weight γ∗,i = 1

k
:

f (x∗) ≥ f (xi) +
〈
f ′(xi), x∗ − xi

〉
,

convexity of f , between xi and xi+1 (i = 0, . . . , k − 1) with weight γi,i+1 = i
k
:

f (xi) ≥ f (xi+1) +
〈
f ′(xi+1), xi − xi+1

〉
,

convexity of Lh − f , between x∗ and xk with weight µ∗,k = 1
k
:

Lh(x∗)− f (x∗) ≥ Lh(xk)− f (xk) +
〈
Lh′(xk)− f ′(xk), x∗ − xk

〉
,

convexity of Lh − f , between xi+1 and xi (i = 0, . . . , k − 1) with weight µi+1,i =
i+1
k

Lh(xi+1)− f (xi+1) ≥ Lh(xi)− f (xi) +
〈
Lh′(xi)− f ′(xi), xi+1 − xi

〉
,

convexity of Lh − f , between xi and xi+1 (i = 0, . . . , k − 1) with weight µi,i+1 = i
k

Lh(xi)− f (xi) ≥ Lh(xi+1)− f (xi+1) +
〈
Lh′(xi+1)− f ′(xi+1), xi − xi+1

〉
.

and reformulate:

f (xk)− f (x∗) ≤ L
h(x∗)−h(x0)−〈h′(x0),x∗−x0〉

k
,

where there is no residual term to neglect!

54

Mirror descent/Bregman gradient/NoLips
Convexity of f , between x∗ and xi (i = 0, . . . , k) with weight γ∗,i = 1

k
:

f (x∗) ≥ f (xi) +
〈
f ′(xi), x∗ − xi

〉
,

convexity of f , between xi and xi+1 (i = 0, . . . , k − 1) with weight γi,i+1 = i
k
:

f (xi) ≥ f (xi+1) +
〈
f ′(xi+1), xi − xi+1

〉
,

convexity of Lh − f , between x∗ and xk with weight µ∗,k = 1
k
:

Lh(x∗)− f (x∗) ≥ Lh(xk)− f (xk) +
〈
Lh′(xk)− f ′(xk), x∗ − xk

〉
,

convexity of Lh − f , between xi+1 and xi (i = 0, . . . , k − 1) with weight µi+1,i =
i+1
k

Lh(xi+1)− f (xi+1) ≥ Lh(xi)− f (xi) +
〈
Lh′(xi)− f ′(xi), xi+1 − xi

〉
,

convexity of Lh − f , between xi and xi+1 (i = 0, . . . , k − 1) with weight µi,i+1 = i
k

Lh(xi)− f (xi) ≥ Lh(xi+1)− f (xi+1) +
〈
Lh′(xi+1)− f ′(xi+1), xi − xi+1

〉
.

and reformulate:

f (xk)− f (x∗) ≤ L
h(x∗)−h(x0)−〈h′(x0),x∗−x0〉

k
,

where there is no residual term to neglect!

54

Avoiding semidefinite programming modeling steps?

François Glineur
(UCLouvain)

Julien Hendrickx
(UCLouvain)

“Performance Estimation Toolbox (PESTO): automated worst-case
analysis of first-order optimization methods” (CDC 2017)

55

Avoiding semidefinite programming modeling steps?

François Glineur
(UCLouvain)

Julien Hendrickx
(UCLouvain)

“Performance Estimation Toolbox (PESTO): automated worst-case
analysis of first-order optimization methods” (CDC 2017)

55

PESTO example: contraction factors for DRS

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

fa
ct

or
ρ
2

56

PESTO example: contraction factors for DRS

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

fa
ct

or
ρ
2

56

PESTO example: contraction factors for DRS

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

fa
ct

or
ρ
2

µ = 0.1
µ = 0.5
µ = 1
µ = 1.5
µ = 2

56

PESTO example: contraction factors for DRS

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

fa
ct

or
ρ
2

µ = 0.1
µ = 0.5
µ = 1
µ = 1.5
µ = 2

56

Current library of examples within PESTO
Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent,

� stochastic methods: SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

57

Current library of examples within PESTO
Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent,

� stochastic methods: SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

57

Current library of examples within PESTO
Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent,

� stochastic methods: SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

57

Current library of examples within PESTO
Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent,

� stochastic methods: SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

57

Toy example

Performance estimation

Further examples

Toward simpler proofs

Conclusions and discussions

58

Francis Bach
(Inria/ENS)

“Stochastic first-order methods: non-asymptotic and computer-aided
analyses via potential functions” (COLT 2019)

59

Francis Bach
(Inria/ENS)

“Stochastic first-order methods: non-asymptotic and computer-aided
analyses via potential functions” (COLT 2019)

59

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).

60

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).

60

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).

60

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).

60

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).

60

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,
examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).

60

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,
examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).

60

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,
examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),
examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).

60

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,
examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),
examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).

60

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,
examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),
examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).

60

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,
examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),
examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).

60

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f? = min
x∈Rd

f (x)?

It is known that f (xN)− f? = O(1
N
) with small enough step sizes (e.g., 1

L
).

For all L-smooth convex f , xk ∈ Rd , and k ≥ 0, easy to show φfk+1 ≤ φ
f
k with

φfk = k(f (xk)− f?) +
L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) ≤ φfN ≤ φ
f
N−1 ≤ . . . ≤ φ

f
0 = L

2‖x0 − x?‖2,

hence: f (xN)− f? ≤ L‖x0−x?‖2
2N .

61

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f? = min
x∈Rd

f (x)?

It is known that f (xN)− f? = O(1
N
) with small enough step sizes (e.g., 1

L
).

For all L-smooth convex f , xk ∈ Rd , and k ≥ 0, easy to show φfk+1 ≤ φ
f
k with

φfk = k(f (xk)− f?) +
L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) ≤ φfN ≤ φ
f
N−1 ≤ . . . ≤ φ

f
0 = L

2‖x0 − x?‖2,

hence: f (xN)− f? ≤ L‖x0−x?‖2
2N .

61

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f? = min
x∈Rd

f (x)?

It is known that f (xN)− f? = O(1
N
) with small enough step sizes (e.g., 1

L
).

For all L-smooth convex f , xk ∈ Rd , and k ≥ 0, easy to show φfk+1 ≤ φ
f
k with

φfk = k(f (xk)− f?) +
L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) ≤ φfN ≤ φ
f
N−1 ≤ . . . ≤ φ

f
0 = L

2‖x0 − x?‖2,

hence: f (xN)− f? ≤ L‖x0−x?‖2
2N .

61

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f? = min
x∈Rd

f (x)?

It is known that f (xN)− f? = O(1
N
) with small enough step sizes (e.g., 1

L
).

For all L-smooth convex f , xk ∈ Rd , and k ≥ 0, easy to show φfk+1 ≤ φ
f
k with

φfk = k(f (xk)− f?) +
L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) ≤ φfN ≤ φ
f
N−1 ≤ . . . ≤ φ

f
0 = L

2‖x0 − x?‖2,

hence: f (xN)− f? ≤ L‖x0−x?‖2
2N .

61

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f? = min
x∈Rd

f (x)?

It is known that f (xN)− f? = O(1
N
) with small enough step sizes (e.g., 1

L
).

For all L-smooth convex f , xk ∈ Rd , and k ≥ 0, easy to show φfk+1 ≤ φ
f
k with

φfk = k(f (xk)− f?) +
L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) ≤

φfN ≤ φ
f
N−1 ≤ . . . ≤ φ

f
0

= L
2‖x0 − x?‖2,

hence: f (xN)− f? ≤ L‖x0−x?‖2
2N .

61

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f? = min
x∈Rd

f (x)?

It is known that f (xN)− f? = O(1
N
) with small enough step sizes (e.g., 1

L
).

For all L-smooth convex f , xk ∈ Rd , and k ≥ 0, easy to show φfk+1 ≤ φ
f
k with

φfk = k(f (xk)− f?) +
L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) ≤ φfN ≤ φ
f
N−1 ≤ . . . ≤ φ

f
0

= L
2‖x0 − x?‖2,

hence: f (xN)− f? ≤ L‖x0−x?‖2
2N .

61

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f? = min
x∈Rd

f (x)?

It is known that f (xN)− f? = O(1
N
) with small enough step sizes (e.g., 1

L
).

For all L-smooth convex f , xk ∈ Rd , and k ≥ 0, easy to show φfk+1 ≤ φ
f
k with

φfk = k(f (xk)− f?) +
L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) ≤ φfN ≤ φ
f
N−1 ≤ . . . ≤ φ

f
0 = L

2‖x0 − x?‖2,

hence: f (xN)− f? ≤ L‖x0−x?‖2
2N .

61

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f? = min
x∈Rd

f (x)?

It is known that f (xN)− f? = O(1
N
) with small enough step sizes (e.g., 1

L
).

For all L-smooth convex f , xk ∈ Rd , and k ≥ 0, easy to show φfk+1 ≤ φ
f
k with

φfk = k(f (xk)− f?) +
L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) ≤ φfN ≤ φ
f
N−1 ≤ . . . ≤ φ

f
0 = L

2‖x0 − x?‖2,

hence: f (xN)− f? ≤ L‖x0−x?‖2
2N .

61

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖f ′(xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 ≤ φ
f
k .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 ≤ φ
f
k ”,

2. choice should result in bound on ‖f ′(xN)‖2.

62

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖f ′(xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 ≤ φ
f
k .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 ≤ φ
f
k ”,

2. choice should result in bound on ‖f ′(xN)‖2.

62

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖f ′(xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 ≤ φ
f
k .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 ≤ φ
f
k ”,

2. choice should result in bound on ‖f ′(xN)‖2.

62

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖f ′(xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 ≤ φ
f
k .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 ≤ φ
f
k ”,

2. choice should result in bound on ‖f ′(xN)‖2.

62

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖f ′(xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 ≤ φ
f
k .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 ≤ φ
f
k ”,

2. choice should result in bound on ‖f ′(xN)‖2.

62

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖f ′(xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 ≤ φ
f
k .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 ≤ φ
f
k ”,

2. choice should result in bound on ‖f ′(xN)‖2.

62

How does it work for the gradient method?
Given φfk+1, φ

f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 ≤ φ
f
k?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 ≤ φ
f
k for all L-smooth convex f , xk ∈ Rd , and d ∈ N

⇔
some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words:
� efficient (convex) representation of Vk available!

� idea: apply previous reformulation tricks to feasibility problem

0 ≥ max
f

φfk+1 − φ
f
k .

The dual is also a feasibility problem, linear in {ak , bk , ck , dk}k .

63

How does it work for the gradient method?
Given φfk+1, φ

f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 ≤ φ
f
k?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 ≤ φ
f
k for all L-smooth convex f , xk ∈ Rd , and d ∈ N

⇔
some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words:
� efficient (convex) representation of Vk available!

� idea: apply previous reformulation tricks to feasibility problem

0 ≥ max
f

φfk+1 − φ
f
k .

The dual is also a feasibility problem, linear in {ak , bk , ck , dk}k .

63

How does it work for the gradient method?
Given φfk+1, φ

f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 ≤ φ
f
k?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 ≤ φ
f
k for all L-smooth convex f , xk ∈ Rd , and d ∈ N

⇔
some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words:
� efficient (convex) representation of Vk available!

� idea: apply previous reformulation tricks to feasibility problem

0 ≥ max
f

φfk+1 − φ
f
k .

The dual is also a feasibility problem, linear in {ak , bk , ck , dk}k .

63

How does it work for the gradient method?
Given φfk+1, φ

f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 ≤ φ
f
k?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 ≤ φ
f
k for all L-smooth convex f , xk ∈ Rd , and d ∈ N

⇔
some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words:
� efficient (convex) representation of Vk available!

� idea: apply previous reformulation tricks to feasibility problem

0 ≥ max
f

φfk+1 − φ
f
k .

The dual is also a feasibility problem, linear in {ak , bk , ck , dk}k .

63

How does it work for the gradient method?
Given φfk+1, φ

f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 ≤ φ
f
k?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 ≤ φ
f
k for all L-smooth convex f , xk ∈ Rd , and d ∈ N

⇔
some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words:
� efficient (convex) representation of Vk available!

� idea: apply previous reformulation tricks to feasibility problem

0 ≥ max
f

φfk+1 − φ
f
k .

The dual is also a feasibility problem, linear in {ak , bk , ck , dk}k .

63

How does it work for the gradient method?
Given φfk+1, φ

f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 ≤ φ
f
k?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 ≤ φ
f
k for all L-smooth convex f , xk ∈ Rd , and d ∈ N

⇔
some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words:
� efficient (convex) representation of Vk available!
� idea: apply previous reformulation tricks to feasibility problem

0 ≥ max
f

φfk+1 − φ
f
k .

The dual is also a feasibility problem, linear in {ak , bk , ck , dk}k .

63

How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

64

How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

64

How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

64

How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

64

How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

64

How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

64

How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

64

How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

64

How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

64

How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

64

How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

64

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N =

1 2 3 4 . . . 100

bN =

4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L

[success]

Tentative simplification #2: ak = L2, ck = 0

[success]

Tentative simplification #3: dk = 0

[fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖f ′(xk)‖2 = O(k−2).

65

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N = 1

2 3 4 . . . 100

bN =

4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L

[success]

Tentative simplification #2: ak = L2, ck = 0

[success]

Tentative simplification #3: dk = 0

[fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖f ′(xk)‖2 = O(k−2).

65

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N = 1

2 3 4 . . . 100

bN = 4

9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L

[success]

Tentative simplification #2: ak = L2, ck = 0

[success]

Tentative simplification #3: dk = 0

[fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖f ′(xk)‖2 = O(k−2).

65

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N = 1 2

3 4 . . . 100

bN = 4 9

16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L

[success]

Tentative simplification #2: ak = L2, ck = 0

[success]

Tentative simplification #3: dk = 0

[fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖f ′(xk)‖2 = O(k−2).

65

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N = 1 2 3

4 . . . 100

bN = 4 9 16

25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L

[success]

Tentative simplification #2: ak = L2, ck = 0

[success]

Tentative simplification #3: dk = 0

[fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖f ′(xk)‖2 = O(k−2).

65

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L

[success]

Tentative simplification #2: ak = L2, ck = 0

[success]

Tentative simplification #3: dk = 0

[fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖f ′(xk)‖2 = O(k−2).

65

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L [success]
Tentative simplification #2: ak = L2, ck = 0 [success]
Tentative simplification #3: dk = 0 [fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖f ′(xk)‖2 = O(k−2).

65

Fixed horizon N = 100, L = 1, and

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

0 20 40 60 80 100
0

0.5

1

1.5

2

a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

66

Fixed horizon N = 100, L = 1, and

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk)∥∥2

+ 2ck
〈
f ′(xk), xk − x?

〉
+ dk (f (xk)− f?).

0 20 40 60 80 100
0

0.5

1

1.5

2
a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

66

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L

[success]

Tentative simplification #2: ak = L2, ck = 0

[success]

Tentative simplification #3: dk = 0

[fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖f ′(xN)‖2 = O(N−2).

67

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L [success]
Tentative simplification #2: ak = L2, ck = 0 [success]
Tentative simplification #3: dk = 0 [fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖f ′(xN)‖2 = O(N−2).

67

Vk =

(
xk − x?
f ′(xk)

)> [(
ak ck
ck bk

)
⊗ Id

](
xk − x?
f ′(xk)

)
+ dk (f (xk)− f (x?))

0 20 40 60 80 100
0

0.5

1

1.5

2
a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

68

Vk =

(
xk − x?
f ′(xk)

)> [(
ak ck
ck bk

)
⊗ Id

](
xk − x?
f ′(xk)

)
+ (2k + 1)L (f (xk)− f (x?))

0 20 40 60 80 100
0

0.5

1

1.5

2
a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

68

Vk =

(
xk − x?
f ′(xk)

)> [(
L2 0
0 bk

)
⊗ Id

](
xk − x?
f ′(xk)

)
+ (2k + 1)L (f (xk)− f (x?))

0 20 40 60 80 100
0

0.5

1

1.5

2
a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

68

Vk =

(
xk − x?
f ′(xk)

)> [(
ak ck
ck bk

)
⊗ Id

](
xk − x?
f ′(xk)

)
+ 0 (f (xk)− f (x?))

0 20 40 60 80 100
0

0.5

1

1.5

2
a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

68

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L

[success]

Tentative simplification #2: ak = L2, ck = 0

[success]

Tentative simplification #3: dk = 0

[fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖f ′(xN)‖2 = O(N−2).

69

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L [success]
Tentative simplification #2: ak = L2, ck = 0 [success]
Tentative simplification #3: dk = 0 [fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖f ′(xN)‖2 = O(N−2).

69

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L [success]
Tentative simplification #2: ak = L2, ck = 0 [success]
Tentative simplification #3: dk = 0 [fail]

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)
∥∥f ′(xk)∥∥2

+ L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖f ′(xN)‖2 = O(N−2).

69

Potential functions

Simpler proof structures:

� allow keeping SDP formulations more tractable,

� hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:

� all previous variants (everything that fits into regular PEPs)

� stochastic variants (e.g., finite sum, bounded variance, over-parametrization),

� randomized block-coordinate variants,

... and probably many others (but not in the paper)!

70

Potential functions

Simpler proof structures:

� allow keeping SDP formulations more tractable,

� hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:

� all previous variants (everything that fits into regular PEPs)

� stochastic variants (e.g., finite sum, bounded variance, over-parametrization),

� randomized block-coordinate variants,

... and probably many others (but not in the paper)!

70

Potential functions

Simpler proof structures:

� allow keeping SDP formulations more tractable,

� hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:

� all previous variants (everything that fits into regular PEPs)

� stochastic variants (e.g., finite sum, bounded variance, over-parametrization),

� randomized block-coordinate variants,

... and probably many others (but not in the paper)!

70

Potential functions

Simpler proof structures:

� allow keeping SDP formulations more tractable,

� hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:

� all previous variants (everything that fits into regular PEPs)

� stochastic variants (e.g., finite sum, bounded variance, over-parametrization),

� randomized block-coordinate variants,

... and probably many others (but not in the paper)!

70

Potential functions

Simpler proof structures:

� allow keeping SDP formulations more tractable,

� hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:

� all previous variants (everything that fits into regular PEPs)

� stochastic variants (e.g., finite sum, bounded variance, over-parametrization),

� randomized block-coordinate variants,

... and probably many others (but not in the paper)!

70

Potential functions

Simpler proof structures:

� allow keeping SDP formulations more tractable,

� hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:

� all previous variants (everything that fits into regular PEPs)

� stochastic variants (e.g., finite sum, bounded variance, over-parametrization),

� randomized block-coordinate variants,

... and probably many others (but not in the paper)!

70

Potential functions

Simpler proof structures:

� allow keeping SDP formulations more tractable,

� hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:

� all previous variants (everything that fits into regular PEPs)

� stochastic variants (e.g., finite sum, bounded variance, over-parametrization),

� randomized block-coordinate variants,

... and probably many others (but not in the paper)!

70

Potential functions

Simpler proof structures:

� allow keeping SDP formulations more tractable,

� hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:

� all previous variants (everything that fits into regular PEPs)

� stochastic variants (e.g., finite sum, bounded variance, over-parametrization),

� randomized block-coordinate variants,

... and probably many others (but not in the paper)!

70

Toy example

Performance estimation

Further examples

Toward simpler proofs

Conclusions and discussions

71

Concluding remarks
Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!

� fast prototyping:

before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!

� fast prototyping:

before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!

� fast prototyping:

before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!

� fast prototyping:

before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!
� fast prototyping:

before trying to prove your new FO method works; give PEP a try!
� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!
� fast prototyping:

before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!
� fast prototyping:

before trying to prove your new FO method works; give PEP a try!
� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!
� fast prototyping:

before trying to prove your new FO method works; give PEP a try!
� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:

� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!
� fast prototyping:

before trying to prove your new FO method works; give PEP a try!
� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization
� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!
� fast prototyping:

before trying to prove your new FO method works; give PEP a try!
� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization
� closed-form solutions might be involved.

Ongoing research directions, open questions:

� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!
� fast prototyping:

before trying to prove your new FO method works; give PEP a try!
� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization
� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,

� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!
� fast prototyping:

before trying to prove your new FO method works; give PEP a try!
� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization
� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,

� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!
� fast prototyping:

before trying to prove your new FO method works; give PEP a try!
� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization
� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?

� best performing methods usually come with super weak guarantees
(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?

� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!
� fast prototyping:

before trying to prove your new FO method works; give PEP a try!
� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization
� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?

� Higher order methods?

72

Concluding remarks
Performance estimation’s philosophy
� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!
� fast prototyping:

before trying to prove your new FO method works; give PEP a try!
� step forward to “reproducible theory” (useful for reviewing, too ,).

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization
� closed-form solutions might be involved.

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� best performing methods usually come with super weak guarantees

(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
� Higher order methods?

72

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable in convex optimization!

73

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable in convex optimization!

73

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable in convex optimization!

73

Any interest raised?

Main references:

� “Smooth strongly convex interpolation and exact worst-case performance of
first-order methods” (with J. Hendrickx and F. Glineur),

� “Exact worst-case performance of first-order methods for composite convex
optimization” (with J. Hendrickx and F. Glineur).

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (with F. Bach)

A few other recent directions (on my webpage):

� Stochastic methods

� Monotone operators

� Mirror descent, relative smoothness

� Attempts to the analysis of adaptive methods

74

Any interest raised?

Main references:

� “Smooth strongly convex interpolation and exact worst-case performance of
first-order methods” (with J. Hendrickx and F. Glineur),

� “Exact worst-case performance of first-order methods for composite convex
optimization” (with J. Hendrickx and F. Glineur).

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (with F. Bach)

A few other recent directions (on my webpage):

� Stochastic methods

� Monotone operators

� Mirror descent, relative smoothness

� Attempts to the analysis of adaptive methods

74

Any interest raised?

Main references:

� “Smooth strongly convex interpolation and exact worst-case performance of
first-order methods” (with J. Hendrickx and F. Glineur),

� “Exact worst-case performance of first-order methods for composite convex
optimization” (with J. Hendrickx and F. Glineur).

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (with F. Bach)

A few other recent directions (on my webpage):

� Stochastic methods

� Monotone operators

� Mirror descent, relative smoothness

� Attempts to the analysis of adaptive methods

74

Any interest raised?

Main references:

� “Smooth strongly convex interpolation and exact worst-case performance of
first-order methods” (with J. Hendrickx and F. Glineur),

� “Exact worst-case performance of first-order methods for composite convex
optimization” (with J. Hendrickx and F. Glineur).

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (with F. Bach)

A few other recent directions (on my webpage):

� Stochastic methods

� Monotone operators

� Mirror descent, relative smoothness

� Attempts to the analysis of adaptive methods

74

Any interest raised?

Main references:

� “Smooth strongly convex interpolation and exact worst-case performance of
first-order methods” (with J. Hendrickx and F. Glineur),

� “Exact worst-case performance of first-order methods for composite convex
optimization” (with J. Hendrickx and F. Glineur).

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (with F. Bach)

A few other recent directions (on my webpage):

� Stochastic methods

� Monotone operators

� Mirror descent, relative smoothness

� Attempts to the analysis of adaptive methods

74

Thanks! Questions?
www.di.ens.fr/∼ataylor/

AdrienTaylor/Performance-Estimation-Toolbox on Github

	Toy example
	Performance estimation
	Further examples
	Toward simpler proofs
	Conclusions and discussions

