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Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!
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Analysis of a gradient step

We want to solve

min f(x)
xeRd

under some assumptions on f.

(Gradient method) We decide to use: xxy1 = xx — v/ (xk).

Question: what a priori guarantees after N iterations?

Examples: what about f(xy) — f(x«), |

£ o)l Iaw — =17



Convergence rate of a gradient step



Convergence rate of a gradient step

Toy example: Convergence rate: what is the smallest p such that?
[ Gl < o[ (o)

for all xp,x1 € RY, all £, and x; = x0 — vf'(x0)?



Convergence rate of a gradient step

Toy example: Convergence rate: what is the smallest p such that?
[ Gl < o[ (o)

for all xp,x1 € RY, all £, and x; = x0 — vf'(x0)?

o Optimization problem to find sharp convergence rate:

IOl
foa  |[f/(xo)l
subject to  x3 generated by gradient descent from xg,

assumptions on f,

which has function f as variable.
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Assumptions

Nontrivial rates only by assuming something on f.

For example: pick assumptions among the following:

o A convex function f is commonly assumed to be (for all x,y € RY):
o p-strongly convex  f(x) > f(y) + (9f(y),x — y) + 4llx — yI1%,
o L-smooth F(x) < F(y) + (F(¥)ox = y) + 5lx = yI1%.

Here, we choose: f € F,, ;: class of u-strongly convex L-smooth functions.
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About the assumptions

Consider a differentiable function f : RY — R, f is (u-strongly) convex and L-smooth
iff Vx,y € R? we have:

(1) (Convexity) f(x) > f(y) + (f'(y),x — y),
(1b) (u-strong convexity) f(x) > f(y) + (f'(y),x — y) + %Hx - sz,
(2) (L-smoothness) ||f'(x) — f'(y)|| < L||x —y|l,

(2b) (L-smoothness) f(x) < f(y) + (f'(y),x = y) + 5lx — yII*.
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Convergence rate of a gradient step

Toy example: Convergence rate: what is the smallest p such that?
[ Ca)]| < o | (o) |
for all xo,x1 € RY, all £, and x1 = xo —vf'(x0)?
© Optimization problem to find sharp convergence rate:

17 ()l
fxoxa  |If"(x0)ll
subject to  x3 generated by gradient descent from xg,

f is L-smooth and p-strongly convex.

which has function f as variable.
© Variables: f, xp, x1; parameters: p, L, 7.
¢ Optimal value can be found via convex optimization! (3x3 SDP):

/(x 2
[t
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From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable 7

- How to cope with the constraint f € 7, ;?

Idea:

- replace f by its discrete version:
fi = f(Xi)7 8i = f/(Xf) vie {091}

- Require points (x;, gj, f;) to be interpolable by a function f € F, ;.
The new constraint is:

af € ‘FML : f, = f-(X,')7 g = f/(X,')7 Vi e {07 1} .

10



Discrete version

11



Discrete version

& Optimization problem to find sharp convergence rate:
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Discrete version

& Optimization problem to find sharp convergence rate:

")l
fix0,x1 Hfl(Xo)”
subject to  x; generated by gradient descent from xg

f is L-smooth and p-strongly convex.

o Variables: f, xg, x1.

o Discrete version:

llgall

maXx
X0,X1,80,81 ||g0 ||
0.f1

subject to  x1 = x0 — Y80

3f € Fu 1 such that { ;if(,x")_
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Discrete version

& Optimization problem to find sharp convergence rate:

")l
fix0,x1 Hf’(Xo)”
subject to  x; generated by gradient descent from xg

f is L-smooth and p-strongly convex.

o Variables: f, xg, x1.

o Discrete version:

llgall

maXx
X0,X1,80,81 ||g0 ||
0.f1

subject to  x1 = x0 — Y80

3f € Fu 1 such that { ;if(,x")_
;=

==
NN

o Variables: xo, x1, go, g1, fo, fi.

11
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Smooth strongly convex interpolation

Consider an index set S, and its associated values {(x;, gi, fi) };cs with coordinates x;,
(sub)gradients g; and function values f;.

f

X()\ //Xz

X1

? Possible to find f € F, ; such that
f(x;)=f;, and g € 0f(x), Vi e S.

- Necessary and sufficient condition: Vi,j € S

> £+ (gxi = %) + ol — g* + sl —x - He - &)l

12
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lea
o B%oa gl

subject to  x1 = xo — Y&o,
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¢ replacing them by

2
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Replace constraints

o Interpolation conditions allow removing red constraints

lea
o B%oa gl

subject to  x1 = xo — Y&o,
3f € F,,,1 such that { g‘:_F(X')

¢ replacing them by

2
fi > fo+ (g0, x1 — o) + 27 [lg1 — &oll* + ﬁ”h —xo0 — 7(&1 — g0)]|

2
fo>fi+ (g1, %0 — x1) + 2 |lgo — &1ll* + ﬁ”m —x1— F(go —&1)||"

© Same optimal value (no relaxation); but still non-convex quadratic problem.
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Reformulations (cont'd)

o Equivalent problem: replace red constraints

e
o Boe gl

subject to  x1 = xp — V&0,

fiL > fo+ (go,x1 — x0) + % |lg1 — &oll®

2
+ﬁ||xl — X0 — %(gl _gO)H

fo > A+ (g1, %0 — x1) + % |lgo —all

+ oyl —xa — Heo — &1)||”-
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Reformulations (cont'd)

o Equivalent problem: replace red constraints

e
o Boe gl

subject to  x1 = xp — V&0,
fiL > fo+ (go,x1 — x0) + % |lg1 — &oll®
2
oty llx — % — 1(e1— g0
fo> A+ (g1, x0 —x1) + g0 — gl

} 2
+WHXO — X1 — %(go -a)|"-
o by (substitute x; = xo — vgo):

2
fi>fo—leoll® + & ller — goll® + ﬁ“—vgo — (g1 — &0)||

2
fo > f+ (g1, g0) + 57 llgo — &1l + sty lveo — 1 (g0 — &)™
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I
o0 Boa gl

. 2
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© They can therefore be represented with a Gram matrix G and a vector F, with

Ixl?  (x0,80) (x0.&1)
G=|(x0,8) lleol® (go,g1)|, F=[h A],
(x0,81) (g0,81) ll&wll?

where G > 0 by construction
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Semidefinite lifting

o All elements are quadratic in (xo, go, g1), and linear in (fo, f1):
llgll
B gl
subject to f1 > fo — ’y||go||2 + ngl - go||2 + MH—W@ — %(g1 - go)||2
fo > f+ (g1, 80) + % llgo — &1l> + ﬁ”'ygo — (g0 — g1)||2-
© They can therefore be represented with a Gram matrix G and a vector F, with
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Semidefinite lifting

o All elements are quadratic in (xo, go, g1), and linear in (fo, f1):

I
o0 Boa gl

. 2
subject to f1 > fo — 7llgoll* + 57 ler — goll* + syl —vg0 — 1 (g1 — g0
3 2
fo > f+ (g1, 80) + % llgo — &1l> + WH’YEO — (g0 — &))"
© They can therefore be represented with a Gram matrix G and a vector F, with

Ixl?  (x0,80) (x0.&1)
G=|(x0,8) lleol® (go,g1)|, F=[h A],
(x0,81) (g0,81) ll&wll?

where G > 0 by construction, and reformulate to:
by F + Tr(A.G)
max ———————~
G,F b]F+Tr(AsG)
subject to b F 4 Tr(A1G) >0
by F+Tr(A2G) >0
G = 0.

with appropriate Ao, As, A1, A2, bo, bs, b1, by for picking elements in G and F.

o Note: assuming xo, 80, g1 € RY with d > 3, same optimal cost!
15
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o Constraints are positively homogeneous of deg. 1 and the cost is constant under
scaling of G and F

by F + Tr(A.G)
max —
G, F  b] F+Tr(AsG)
subject to b F 4 Tr(A1G) >0
by F 4+ Tr(A2G) >0
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Last part in convexification

o Constraints are positively homogeneous of deg. 1 and the cost is constant under
scaling of G and F
by F + Tr(A.G)
max —————— =
G, F  b] F+Tr(AsG)
subject to by F + Tr(A1G)
bJ F + Tr(A2G)
G~ 0.

>0
>0

o Therefore an equivalent convex problem is

max by F 4 Tr(A.G)

)

subject to by F + Tr(A1G) >0
by F +Tr(A2G) >0
bl F+Tr(AsG) =1
G>o0.

which is a 3x3 semidefinite program.
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Solving the SDP...

Fix L =1, p = .1 and solve the SDP for a few values of .

4

[EAC]
177C0) 1%

Step size

Observation: it matches max{(1 — vL)?, (1 — yu)?}—convergence for v € (0,2/L).

17
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Dual problem

¢ Introduce dual variables 7, A1 and \»

max
G, F

subject to

by F + Tr(A.G)

bl F + Tr(A1G) >0
by F + Tr(A2G) >0
bl F+ Tr(AsG) =1
G =0.

A1
A2
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Dual problem

¢ Introduce dual variables 7, A1 and \»

max by F + Tr(A.G)

subject to b F + Tr(A1G) >0 : g
by F+Tr(A2G) >0 : X2
bl F+Tr(AsG)=1 7
G > 0.
o Dual problem becomes
minimize T
T,A1,A2
subjectto  \; >0
S=Ao+ 2 NA —TAs <0
0= bo + 3.7, Aib; — Tbs.
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max by F + Tr(A.G)

subject to b F + Tr(A1G) >0 : g
by F+Tr(A2G) >0 : X2
bl F+Tr(AsG)=1 7
G >0

o Dual problem becomes

minimize T
T,A1,A2
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Dual problem

¢ Introduce dual variables 7, A1 and \»

max by F + Tr(A.G)

subject to b F + Tr(A1G) >0 : g
by F+Tr(A2G) >0 : X2
bl F+Tr(AsG)=1 7
G >0

o Dual problem becomes

minimize T
T,A1,A2
subjectto  \; >0
S=Ao+ 2 NA —TAs <0
0=bo+ 32, \ibj — Ths.

¢ In this example:

0 0 0
s—|o - Al(w;l):ﬂfl) s Al(géfft))ﬂ)
0 _ Ma(y(pth)—2) 1_ M
2(L—p) L—p
0=XA1 — o

o Strong duality holds (existence of a Slater point): rank(G) + rank(S) < 3.
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Remarks

A few notes:

o Dual interpretation: find smallest convergence rate that can be proved by a
linear combination of interpolation inequalities.

o Consequence of strong duality: in such settings, any (dimension-independent)
convergence rate can be proved by a linear combination of interpolation
inequalities.

¢ The methodology offers 3 ways to proceed:

— play with primal formulation,
— play with primal-dual saddle-point formulation,
— play with dual formulation.

o Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

© Standard tricks apply, e.g., trace minimization for promoting low-rank solutions.
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Dual problem: find a proof

Gradient with v = %: combine corresponding inequalities

fo2fi +(f'(x1).x0 =) + 3lIf'(0) = ()l
Jrﬁnxo — X1 — %(f/(XO) - f/(Xl))H

f>fo +(f(x),x —x0)+ I (x0) — f' ()l
2

Jr2(17MM/L) ”XO — X1 %(fl(XO) - f/(Xl))H

T A1

T A2
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fo>fi +(f'(x1),x0 —x1) + & [If'(x0) — f/(n)nzz
Jr2(1fu/L) ”XO - X1 %(f/(XO) - f/(Xl))H

A>fo +(f'(x0),x1 —x0) + & I/ (x0) — £ (x1)I?
2

Jr2(17MM/L) ”XO — X1 %(fl(XO) - f/(Xl))H

Weighted sum with A1, A2 > 0 can be reformulated as

T A1

T A2
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Weighted sum with A1, A2 > 0 can be reformulated as

A=
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Gradient with v = %: combine corresponding inequalities

fo>fi +(f'(x1),x0 —x1) + & [If'(x0) — f/(n)nzz
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Gradient with v = %: combine corresponding inequalities

fo>fi +(f'(x1),x0 —x1) + & [If'(x0) — f/(n)nzz
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Gradient with v = %: combine corresponding inequalities

fo>fi +(f(x1),x0 —x1)+ 2 [f'(x0) — F'(x)l 2
u 100 , 2 tA= (1= py)
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Gradient with v = %: combine corresponding inequalities

fo>fi +(f'(x1),x0 —x1) + & [If'(x0) — f/(n)nzz
Jr2(1fu/L) ”XO - X1 %(f/(XO) - f/(Xl))H

A>fo +(f'(x0),x1 —x0) + & I/ (x0) — £ (x1)I?
2

Jr2(17MM/L) ”XO — X1 %(fl(XO) - f/(Xl))H

Weighted sum with A1, A2 > 0 can be reformulated as

’ 2 ’ 2 2*7(L+N
(1—p)? [IF' o)1= =1 G)||” + DR

YES %(1 — )

P o= %(1 — )

D11 = 1) () = £ ()|,

>0, or = 0 when worst-case is achieved

>[|# ()%,

leading to [|'(x1)|[* < (1 — £)2||f"(x0)I|? (tight).
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Base methodological developments:

'14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods
via SDP. Problems scale with number of iterations (NxN SDP matrices).

'16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

'16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs"). Essentially Lyapunov functions.
In this presentation:

'17 T, Hendrickx and Glineur (MP): tightness and primal/dual interpretations of the
certificates. (essentially previous slides)

'17 T, Hendrickx and Glineur (SIOPT): tightness of generalizations (see later).
— Other examples randomly picked from different works.

'19 T, Bach (COLT): potential functions with tightness for sublinear convergence
rates. Essentially: try to “force” simpler proofs. (if time allows)

But also:

o Fair amount of algorithmic analyses (and design) originated from SDPs (from
different authors, examples below), in different settings.

o We try keeping track of related works in the toolbox’ manual (see later).
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Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:
- any primal solution is a lower bound (i.e., a function),
- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).
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Classes of problems

Constrained and regularized optimization problems can be handled, as well:
min f(x) + h(x),
xeRd

for different functional classes:
- different types of (smooth or non-smooth) convex functions,
- convex indicator and support functions,
- non-convex smooth functions,

- problem classes whose interpolation conditions are SDP-representable:

e.g., monotone inclusions, variational inequalities, fixed-point problems.
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The approach can be used to obtain (tight) results for variety of “fixed-step’

,

(sub)gradient methods,

inexact gradients methods,

proximal point methods,

projected and proximal gradients methods,
mirror descent,

conditional gradient methods,

splitting methods,

randomized/stochastic gradient methods,

distributed /decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

SDPs might scale badly, for example in stochastic or distributed settings.

methods:
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Convergence measures

Different convergence measures can be taken into account.
Among others:
2 2
- FO) = FOa)s (v = x| (177 O 117,
- best iterates on the way:
min, £(5) — F(x), min [~ x| om

in
0<i< 0<i<N

- any concave function of fi's, {x;, g)'s, llg:||*’s and [|x;[[*'s.

[[6a)1?,
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Gradient method: final words?
Question: Let x11 = x4 — %f’(xk); what is the smallest 7 such that
fxn) — fu < 7llx0 — x|

is valid, for all xg and all L-smooth and convex function f?

From (Drori and Teboulle, 2014):

fon)—f) ) _ L
max{ xo—x2 S~ aN+ 2

Observation: worst-cases achieved on one-dimensional Huber losses:

L L 1
min £(x) = { s~ e when [l > sy

xER x2 otherwise,

NI~N

Numerically observed from trace norm minimization heuristic.
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Francois Glineur Etienne de Klerk
(UCLouvain) (Tilburg & Delft)

“On the worst-case complexity of the gradient method with exact line
search for smooth strongly convex functions” (2017, Opt. Letters)
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min f(x),
x€R
with f € F,, ; (L-smooth p-strongly convex).
Relative error model:

IF'(xi) —dill <ellf'(x)ll i=01,...,

1)

Noisy gradient descent method with exact line search
Input: f € 7, | (R"), xo € R",0<e< 1.

fori=0,1,...
Select any seach direction d; that satisfies (1);
v = argmin, cpf (x; —~d;)

Xjt1 = X; — vd;
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Steepest descent with inexact search directions

min f(x),
x€R
with f € F,, ; (L-smooth p-strongly convex).
Relative error model:

IF'(xi) —dill <ellf'(x)ll i=01,..., (1)

Noisy gradient descent method with exact line search
Input: f € 7, | (R"), xo € R",0<e< 1.

fori=0,1,...
Select any seach direction d; that satisfies (1);
v = argmin, cpf (x; —~d;)

Xjt1 = X; — vd;

Worst-case behavior:

f(xit1) — f < (

1— ke

2
Fx)—£) i=0,1,...
) ) - )

pw(l—e
L

where k. = 1T -
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Steepest descent with inexact search directions

Quadratic worst-case function:

1 n
f(x):EE Aix?  where 0<p=XA<XA<...<\ =L
i=1
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Steepest descent with inexact search directions

Quadratic worst-case function:

1 n
f(x):EZ)\;x,Z where 0<p=X <A <...< A =L
i=1
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fo > fo+ (g0, X — 0) + -l g+ — goll* +

1
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1
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0= (go, &1)
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What does the proof look like?
Aggregate constraints:
1
fo> f +(g1,%0 — x1) + ﬂllgo —al*+

1
fo > fo+ (g0, % —0) + o g —gl®+

1
fi > f+ (g1, %« — x1) + i”g* —al?+

0= (go, &1)
0= (g1,x1 — Xo)

with multipliers

%&)nxa —x1— (g0 — &1) /L1
L

2(1
H 2
WHX* —x0 — (g« — go) /LIl
H 2
I —x1— (g« — &1) /L]
2(1-1%)
_2p 2 1
BT BT BT
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What does the proof look like?

Resulting inequality:

Aofo< (52) (1)

_ plL(L+3u) o Ltp,
A3 |0 T T3
2L;J,2
L2+2LH_3N2 X1 X

2u _ 3ltp  L+4p

Cr3p”* — 213,080 — 123,081
2

(L—p)?® _ Ltp

2uL(L+1) 80 ~ 2.0 81
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What does the proof look like?

Resulting inequality:

Aofo< (52) (1)

_pbLa3p) | Lt

2(L+p)? |70 T 3n
2L;J,2

[220—3u2 X1 Xx

Last two terms nonpositive, so

fl_f*g(

L—p
L+p

o o 3lip . Lig
XU~ 3% T 213,080 T 213,081

2
(L—p)? Lip ‘

2uL(L+1) 80 ~ 2.0 81

>a@_a)
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What does the proof look like?

Resulting inequality:

Aofo< (52) (1)

_ pL(L+3p) _ L+p _2p _ _3l4p __Ltp
()2 ||X0 T T3 Xt T 335 T 1213,080 T 213,081
e o (ew)? L
Zralu—3.2 || X1~ X = 2,0+ 80 — 2,081 -

Last two terms nonpositive, so
L—p 2
A—f <|— fo — fi).
1 * > (L+M) ( 0 *)

One actually has equality at optimality, due to the quadratic example.
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Yoel Drori
(Google)

“Efficient first-order methods for convex minimization: a constructive
approach” (2019, MP)
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Optimized gradient methods
Smooth convex minimization setting:

min f(x)
x€RI

with f being L-smooth and convex, with black-box oracle f/(.) available.
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xER

with f being L-smooth and convex, with black-box oracle f/(.) available.

Lower bound for large-scale setting (d > N + 2) by Drori (2017):

L|xo — xx 2
f(xn) — f(xx) > %
N

with g = 1, and:

VR i N o,
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Oip1 =
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N

with g = 1, and:
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Optimized gradient methods
Smooth convex minimization setting:

min f(x)
xER

with f being L-smooth and convex, with black-box oracle f/(.) available.

Lower bound for large-scale setting (d > N + 2) by Drori (2017):

Lixo — %

fow) = ) 2 = O(1/N?),

=T

with g = 1, and:

VR i N o,

2

Oip1 =
1+,/862+1
— ' ifi=N-1.

2

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal
methods (Nemirovski 1982), (Nesterov 1983).
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Optimized gradient methods

Three methods with the same (optimal) worst-case behavior

Greedy First-order Method (GFOM)
Inputs: f, xo, N.
Fori=1,2,...

x; = argmin {f(x) : x € xo + span{f’(xo),
x€RI

ey f/(X,',l)}} .

Worst-case guarantee:
Lllxo — xu1?

f(xn) — f(xx) < 26%,
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Optimized gradient methods

Three methods with the same (optimal) worst-case behavior

Optimized gradient method with exact line-search
Inputs: f, xo, N.
Fori=1,...,N

1 ! + !
i= 1= x- X
Yi 0; 1 0; (0]

1 , 1 = /
di = (1 — 6—) f'(xi—1) + 7 (229jf ()

i i j=0

o = argmin f(y; + ad;)
a€cR

xi = yi + ad;

)

Worst-case guarantee:
Lllxo — x|

f(xn) — F(x) < 20,2\[
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Optimized gradient methods

Three methods with the same (optimal) worst-case behavior

Optimized gradient method
Inputs: f, xo, N.
Fori=1,....N 1
Yi = Xi—1— Zf'(Xi—1)

2 i—1
Zi = X0 — Z Zﬁjf'(xj)
Jj=0

1 1
xj = 1*5 it gz

Worst-case guarantee:
Llxo — x|1?

f(xn) — f(xx) < 262’\[

See also (Drori & Teboulle 2014) and (Kim & Fessler 2016).



What does the proof look like?

Aggregate quite a few constraints with appropriate coefficients.
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What does the proof look like?

Aggregate quite a few constraints with appropriate coefficients.

Weighted sum can be rewritten exactly as (for the three cases):

L||xo — x. 2 L
om) — ) < PO L g e O N)“Zef(x,
N N
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1 « 7
Ernest Ryu Carolina Bergeling Pontus Giselsson
(UCLA) (Lund) (Lund)

“Operator splitting performance estimation: Tight contraction factors
and optimal parameter selection” (2018, arXiv:1812.00146)
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Let £ and h be two convex, closed, proper functions. (Overrelaxed) DRS for solving

min f(x) + h(x),
xE€R

consists in iterating:
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Douglas-Rachford Splitting |

Let £ and h be two convex, closed, proper functions. (Overrelaxed) DRS for solving

min f(x) + h(x),
x€ERI
consists in iterating:

X1 = argmin, cpa{vh(x) + 3 [Ix — wi|*}
Yiep1 = argmin, cpa{vF(y) + 3 lly — 21 + wi[*}

Wiy1 = Wk + 0(Yks1 — Xkr1),

for some choices of (6, 7).
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Let A, and B be maximally monotone operators; and let J, 4 := (/ + ~vA)~! and
Jyg = (I +vB)™! be their respective resolvents.
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Let A, and B be maximally monotone operators; and let J, 4 := (/ + ~vA)~! and

Jyg = (I +vB)™! be their respective resolvents.

Monotone inclusion problem:

find 0 € A(x) + B(x),
x€R

(overrelaxed) Douglas-Rachford for solving the monotone inclusion

Wiyl = (/ — 9_/73 + GJ,YA(2J.YB — /))Wk.
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Douglas-Rachford Splitting Il

Let A, and B be maximally monotone operators; and let J, 4 := (/ + ~vA)~! and

Jyg = (I +vB)™! be their respective resolvents.

Monotone inclusion problem:

find 0 € A(x) + B(x),
x€R

(overrelaxed) Douglas-Rachford for solving the monotone inclusion

Wiyl = (/ — 9_/73 + GJ,YA(2J.YB — /))Wk.

Recover optimization setting with A = 9f and B = 0Oh.
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Nontrivial rates by assuming something more on A and/or B.

Pick among the following (well documented) assumptions:

o A convex function f is commonly assumed to be (for all x,y € R9):
o p-strongly convex  f(x) > f(y)+ (Of(y),x —y) + 5lIx — vI?,
o L-smooth F(x) < F(y) + (F(y)yx —y) + SlIx = |12
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Assumptions

Nontrivial rates by assuming something more on A and/or B.

Pick among the following (well documented) assumptions:

o A convex function f is commonly assumed to be (for all x,y € R9):
o p-strongly convex  f(x) > f(y)+ (Of(y),x —y) + 5lIx — vI?,
o L-smooth F(x) < F(y) + (F(y)yx —y) + SlIx = |12

¢ A max. monotone operators B is commonly assumed to be (for all x,y € Rd):

¢ a subdifferential B = 0f(x),

o p-strongly monotone  (B(x) — B(y),x — y) > ullx — y||?,

© [(-cocoercive (B(x) — B(y),x — y) > B||B(x) — By)|I?,
o L-Lipschitz 1BG) = BO)I < Lix -yl
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Question: When is the DRS iteration a contraction? What is the smallest p such that
[[wr = wil| < pflwo — wol,

for all wo, wj € R? and wi, w] generated with DRS from respectively wo and w?
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¢ barely obtainable by hand,
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Question: When is the DRS iteration a contraction? What is the smallest p such that
[[wa = wi| < pf[wo — woll,
for all wo, wj € R? and wi, w] generated with DRS from respectively wo and w?
Warning for the next few slides:
o the expressions are horrible,

¢ barely obtainable by hand,

© computer-generated (Mathematica or Matlab),
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Question: When is the DRS iteration a contraction? What is the smallest p such that
! !
[[wr = wil| < pflwo — wol,

for all wo, wj € R? and wi, w] generated with DRS from respectively wo and w?

Warning for the next few slides:

o the expressions are horrible,

<o

barely obtainable by hand,

o

computer-generated (Mathematica or Matlab),
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verifiable by hand (possibly long algebraic proofs).
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Contraction factor

Question: When is the DRS iteration a contraction? What is the smallest p such that
! !
[[wr = wil| < pflwo — wol,

for all wo, wj € R? and wi, w] generated with DRS from respectively wo and w?

Warning for the next few slides:

o the expressions are horrible,

<o

barely obtainable by hand,

o

computer-generated (Mathematica or Matlab),

<

verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ®
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DRS contraction factors

Table: Contraction factors for DRS: assumptions beyond max. monotonicity.

# Properties for A Properties for B Reference Sharp  Notes
01  Of, f: str. cvx & smooth og [1.2] 4

02 Of, f: str. cvx dg, g: smooth [3] % 1.
M1  str. mono. & cocoercive - [3] v

M2 str. mono. & Lipschitz - [3] v 2
M3 str. mono. cocoercive [3] ®

M4 str. mono. Lipschitz [4] x 3.

1. sharp rates for some parameter choices in [3]
2. Lions and Mercier [5] provided conservative rate in this setting
3. sharp rate when B is skew linear in [4]

[1] Giselsson, Boyd, Diagonal Scaling in DRS and ADMM, 2014.

[2] Giselsson, Boyd, Linear Convergence and Metric Selection in DRS and ADMM, 2017.

[3] Giselsson, Tight Global Linear Convergence Rate Bounds for DRS, 2017.

[4] Moursi, Vandenberghe. DRS for a Lipschitz continuous and a strongly monotone operator, 2018.
[5] Lions, Mercier. Splitting Algorithms for the Sum of Two Nonlinear Operators, 1979.
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Assumptions: A p-strongly monotone, B [-cocoercive.
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B [-cocoercive.

We have || Tx — Ty|| < p||x — y|| for all x,y € H with:

_9 B i _ _ B+ (p=B=pB) _
1—-0557] fub —p+ <0, and 0 < 2 57 2,52

46



Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B [-cocoercive.

We have || Tx — Ty|| < p||x — y|| for all x,y € H with:

_9 B i _ B+1)(n—B—pB)
|1 95+1‘ if u8 —p+pB <0, and9§2u+uﬁ—/3—/32—2u[32' .
— g LfuB i - pEA BBt ptB—p®p
-0 e HHB—n—B>0 and 0 < 2 5 s AT it —2n2p2
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B [-cocoercive.

We have || Tx — Ty|| < p||x — y|| for all x,y € H with:

_9 B i _ B+1)(n—B—pB)
|1 95+1‘ if u8 —p+pB <0, and9§2u+uﬁ—/3—/32—2u[32' .
— g LfuB i - pEA BBt ptB—p®p
-0y fus—w B+B+>/3 0, and 0 < 2 s e s a2 2,252
p= _ ; puB+p
11— o if 0 > 2 10tts
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B [-cocoercive.

We have || Tx — Ty|| < p||x — y|| for all x,y € H with:

_ 9B i _ B+1)(n—B—pB)
|1 95+1‘ if u8 —p+pB <0, and9§2u+uﬁ—/3—/32—2u[32' .
— g LfuB i - pEA BBt ptB—p®p
-0y fus—w B+B+>/3 0, and 0 < 2 s e s a2 2,252
p= _ ; puB+p
Y ISR CAIN (ur1)(8 8)
_ gk ; _ pA)(B—p—p
|1 6“+1| if uB+p—pB <0, and6§2ﬁ+“ﬁiuiu ~3.25°
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B [-cocoercive.

We have || Tx — Ty|| < p||x — y|| for all x,y € H with:

_ 9B i _ (B+1)(p=B—=pB)
|1 95+1‘ if u8 —p+pB <0, and9§2u+uﬁ—/3—/32—2u[32' .
— g LfuB i - pEA BBt ptB—p®p
-0y fus—w B+B+>/3 0, and 0 < 2 s e s a2 2,252
p= _ i pBtu
Y ISR CAIN (ur1)(8 8)
_ gk ; _ pA)(B—p—p
|1 6“+1| if uB8+p—p <0, and@gzm,
X otherwise,
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B [-cocoercive.

We have || Tx — Ty|| < p||x — y|| for all x,y € H with:

|179B+1\ if uB —p+pB8 <0, and § <2

1-0 W(Lfﬂﬂ if uB —p— B >0, and 6 < 2
p= _ pBtptB

11— 0 if 0 > 2 LBEUED

|1—6“‘11| ifuB+p—B <0, and g <2

X otherwise,

with

(B+1)(p=B—=pB)

ntpB-B—B2—2up2"

w2482 4 uBrutp—u?p2

124+82+u28+puB2+ut+p—

(p+1)(B—p—pp)

BruB—p—pZ—2p23’

\/ (2=0)u(B+1)—08(p—1)) (2—0)B(n+1)—0p(B—1))

(2=0)uB(p+1)(B+1)—

6252

2,252
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B [-cocoercive.

We have || Tx — Ty|| < p||x — y|| for all x,y € H with:

[1— 0525 ifuB —p+ B <0, and 0 < 2 BHNL=B=pp)

ntnBrB-pE—2up?’
_ g 1tuB i - ne+Be+uB+put+B—pncp
- 11— 0! fus ilﬂifﬁ 0, and 0 < 2 s e s a2 2,252
11— 0 if 0 > 2 BHES 3
1— o0t if B +p— B <0, andagz%,
nB—p—ps—2pn
X otherwise,

with

F (2=0)p(B+1)—0B8(p—1)) (2—0)B(p+1)—0p(B—1))
(2—0)uB(p+1)(B+1)—0p252 ’

o The first four cases are achieved on 1-dimensional examples (primal is simpler).
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B [-cocoercive.

We have || Tx — Ty|| < p||x — y|| for all x,y € H with:

[1— 0525 ifuB —p+ B <0, and 0 < 2 BHNL=B=pp)

ntnBrB-pE—2up?’
_ g 1tuB i - ne+Be+uB+put+B—pncp
- 11— 0! fus ilﬂifﬁ 0, and 0 < 2 s e s a2 2,252
11— 0 if 0 > 2 BHES 3
1— o0t if B +p— B <0, andagz%,
nB—p—ps—2pn
X otherwise,

with

F (2=0)p(B+1)—0B8(p—1)) (2—0)B(p+1)—0p(B—1))
(2—0)uB(p+1)(B+1)—0p252 ’

o The first four cases are achieved on 1-dimensional examples (primal is simpler).

o Fifth case is achieved on 2-dimensional example (dual is simpler).
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47



Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B [-cocoercive.

Examples on which those bounds are attained?

47



Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B [-cocoercive.

Examples on which those bounds are attained?
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Examples on which those bounds are attained?

¢ Case 1: (1-dimensional) A = Ny, (i.e., Jxa=0), B= %I forp=1-60
o Case 2: (1-dimensional) A = ul, B= 1/ for p= |1 — 9%\.

o Case 3: (1-dimensional) A= Noy, B =0 for p=[1—0|.

o Case 4: (1-dimensional) A= pul, B=0for p=|1— 9ﬁ|

L|
B+1l

47



Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B [-cocoercive.

Examples on which those bounds are attained?

¢ Case 1: (1-dimensional) A = Ny, (i.e., Jxa=0), B= %I for p=11— 9%|
. H H — _ 1 — 1+pB

o Case 2: (1-dimensional) A= pul, B = 51 forp= 11— HW"

o Case 3: (1-dimensional) A= Noy, B =0 for p=[1—0|.

o Case 4: (1-dimensional) A= pul, B=0for p=|1— 9ﬁ|

o Case 5: (2-dimensional) for appropriate (complicated) values of a and K:

a u m BK

for p— V20 \/((2*9)M(ﬂ+1)795(u71))((Z*G)ﬂ(uﬂ)f@u(/@*l))
P 2 OB (ur1)(f+1)—0u2 52 :

A:(H _E’), B_< 8K _m)
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B L-Lipschitz and monotone.
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We have || Tx — Ty|| < p||x — y|| for all x,y € H with:
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B L-Lipschitz and monotone.

We have || Tx — Ty|| < p||x — y|| for all x,y € H with:

241

9+\/(2(9—1)u+e—2>2+L2<e—z<u+1)>2
2(j+1) if (a),

— L4p .
P=9 - Ot if (b),

otherwise,

(2—6) (9(L2+1)—ZH(G+L2—I)) (e <1+2u+L2) —2(u+1)(L2+1))
ap(L2+1) 2u(0+12—-1)—(2—0)(1—12)
with

(&) —(2(0—1)pu+6—2)+12(0—2(1+u)) <JV2+1
V@O-1)u+0-2)2412(6—2(n+1))2

1241 2(p41)(L+1)(ptpl? =12 —2ul—1)
(b) L<1p> (L—1)2"’ and 0 < 2p2 —ppl3 -3 -3u12 122,21 —pl—L—1"
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B L-Lipschitz and monotone.

We have || Tx — Ty|| < p||x — y|| for all x,y € H with:

o (2(0—1)pu+6—-2)2+12(0—2(u+1))?
1211 i
2(nt1) if (a),

— L4p .
P=9 - Ot if (b),

(2—6) (9(L2+1)—ZH(G+L2—I)) (e <1+2u+L2) —2(u+1)(L2+1)) .
\/Au(L2+1) 2u(0+2—1)—(2—0)(1—L?) otherwise,

with

(&) —(2(0—1)pu+6—2)+12(0—2(1+u)) <JV2+1
\/(2(9—1)u+9—2)2+L2(9—2(u+1))2 -

1241 < 2(p41)(L+1)(ptpl? =12 —2ul—1)
(b) L<ip> (L—1)2"’ and 0 < 2p2 —ppl3 -3 -3u12 122,21 —pl—L—1"

o First and third cases are achieved on 2-dimensional examples (dual is simpler),
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B L-Lipschitz and monotone.

We have || Tx — Ty|| < p||x — y|| for all x,y € H with:

1241

9+\/(2(9—1)u+972)2+L2(0—2(M+1))2
2(p+1) if (a),

— L4p .
P=9 - Ot if (b),

otherwise,

(2—6) (9(L2+1)—ZH(G+L2—I)) (e <1+ZM+L2) —2(u+1)(L2+1))
ap(L2+1) 2u(0+12—-1)—(2—0)(1—12)
with

(&) —(2(0—1)pu+6—2)+12(0—2(1+u)) <JV2+1
\/(2(9—1)u+9—2)2+L2(9—2(u+1))2 -

1241 < 2(p41)(L+1)(ptpl? =12 —2ul—1)
(b) L<ip> (L—1)2"’ and 0 < 2p2 —ppl3 -3 -3u12 122,21 —pl—L—1"

o First and third cases are achieved on 2-dimensional examples (dual is simpler),

© Second case is achieved on 1-dimensional example (primal is simpler).
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

o Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

0 1
A= pl+ Nyoy e, B:LL1 0]

_ _2)2 2 _ 2
P +\/(2<6 1)p+0 2L)2++1L (0—2(u+1))
2(p+1)

for p =
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

o Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

0 1
A= pl+ Nyoy e, B:LL1 0]

o ¢ ((0=1)n+0-2)>+%(0—2(pu+1))?

— L2+1
forp = D)
o Case 2: (1-dimensional) A= ul, B= LI for p = |1 — 9@%|
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Douglas-Rachford Splitting

Assumptions: A p-strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

o Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

0 1
A= pl+ Nyoy e, B:LL1 0]

(2(0—1)pu+6—2)%+12(0—2(u+1))2
for p = 9+\/ . 1241 5
= 2(it1)
Ltp |

o Case 2: (1-dimensional) A= ul, B= LI for p = |1 — Qm

o Case 3: (2-dimensional) For appropriately chosen (complicated) K:

K -1 - K2
A=ttt B=t( e ).

for p— (2-0)  (0(L2+1)—2p(0+L2 1)) (0(1+2p+L3) —2(p+1) (L2 +1))
O P =\ au(z+1) 200+ 2 —1)-(2-9)(1_L?)
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A-R. Dragomir Jérdme Bolte A. d'Aspremont
(ENS/TSE) (TSE) (CNRS/ENS)

“Optimal complexity and certification of Bregman first-order
methods” (2019, arXiv:1911.08510)
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Mirror descent/Bregman gradient/NoLips

Recall gradient descent with step size ~:

Xk+1 = argmin {f(xx) + <f’(xk),x - xk> + %Hx — Xk||2}.
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Mirror descent/Bregman gradient/NoLips

Recall gradient descent with step size ~:
Xyl = argTin {FOk) + (F (), x — xi) + %Hx — xe|I?}
High-level intuition: gradient descent should work well when
F(x) + (F (), x — xic) + %HX —x)?

is a good approximation of f.
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Mirror descent/Bregman gradient/NoLips

Recall gradient descent with step size ~:

Xyl = argTin {FOk) + (F (), x — xi) + %Hx — xe|I?}
High-level intuition: gradient descent should work well when

F(xa) + (F (xk), x — xic) + %HX —x)?

is a good approximation of f.
Mirror descent: change notion of distance and iterate:

Xkl = argrxﬂin {F () 4 (F (i), x — xi) + %Dh(x, xi)}
where Dp(x, xx) is a Bregman divergence:

h(x) — h(xk) — (W' (xk), x — x¢) >0,

and h is strictly convex and differentiable.
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Mirror descent/Bregman gradient/NoLips

Recent assumption for mirror descent: “relative smoothness” (Bauschke, Bolte,
Teboulle, 2016), (Lu, Freund, Nesterov 2018):

Lh — f convex, f convex, and h strictly convex and differentiable

(boils down to regular smoothness when h = %||||2)
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Mirror descent/Bregman gradient/NoLips

Recent assumption for mirror descent: “relative smoothness” (Bauschke, Bolte,
Teboulle, 2016), (Lu, Freund, Nesterov 2018):

Lh — f convex, f convex, and h strictly convex and differentiable
(boils down to regular smoothness when h = %||||2)
Question: Let x,.1 = MD(xk); what is the smallest 7 such that
f(xk) — fx < TDp(xx, x0)

is valid, for all xg, all (f, h) satisfying previous assumptions?
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Mirror descent/Bregman gradient/NoLips

In this case: strictly convex differentiable functions (i.e., open set of functions).

Pathological nonsmooth limiting behaviors in the closure of this open set (via PEPs):

Xo="'""=X3 X X0 X1 X2 X3 X

The guarantee
Flxi) — f. < Lonlxe0)

cannot be improved (attained on example above).
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Mirror descent/Bregman gradient/NoLips
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Mirror descent/Bregman gradient/NoLips

Convexity of f, between x. and x; (i =0,..., k) with weight v, ; = %:

f(x«) > f(xi) + <f’(x,-),x* - X,->7

54



Mirror descent/Bregman gradient/NoLips
Convexity of f, between x. and x; (i =0,..., k) with weight v, ; = :
Fxe) = F(x) + (F (), % = %),
convexity of f, between x; and xj;1 (i =0,...,k — 1) with weight ~; 11 = i

F(xi) > f(xip1) + (F'(xip1), Xi — Xig1),
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Mirror descent/Bregman gradient/NoLips
Convexity of f, between x. and x; (i =0,..., k) with weight v, ; = %:
Fxe) > F(xi) + (F' (%), % — xi),
convexity of f, between x; and xj;1 (i =0,...,k — 1) with weight ~; 11 = ﬁ
F(xi) > f(xip1) + (F'(xip1), Xi — Xig1),
convexity of Lh — f, between x. and xj with weight 1, , = %:
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and reformulate:

fOa) — fx) < Lh(x*)fh(x")*ih/(xo),x* —xo)

)

where there is no residual term to neglect!
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Avoiding semidefinite programming modeling steps?

Francois Glineur Julien Hendrickx
(UCLouvain) (UCLouvain)

“Performance Estimation Toolbox (PESTO): automated worst-case
analysis of first-order optimization methods” (CDC 2017)
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PESTO example: contraction factors for DRS

% (0) Initialize an empty PER
P=pep();

Set up the class of monetone inclusions

paramA.L = 1; paramA.mu = ©; % A 1s l-Lipschitz and 0-strongly monotone
paramB.mu = .1; % B is .1l-strongly monotone

A = P.DeclareFunction('LipschitzStronglyMonotone' ,parama);

B = P.DeclareFunction('StronglyMonotone', paramg) ;

w o= celline1,1);  wp = cell(nl1,1);

x cell(n,1); xp = cell(n,1);

y = cell(n,1); yp = cell(n,1);

% (2) Set up the starting points
w{l} = P.StartingPoint(); wp{l} = P.StartingPoint()
P.Initialcondition( {(w{1l}-wp{1})~2==1);

% (3) Algorithm
1.3; % step size (in the resolvents)
=.9; % overrelaxation

= proximal_step(w{kl},B, lambda) ;
yik} proximal_step(2#x{k}-w(k}, 4, lambda);
wik+1} = wik}-theta*(elkl-y{k});

xpik} = proximal_step(wp{k},&, lambda);
yplk} = proximal_step(2*xp{k}-wp{k},a,lambda);
wplk+1} = wpik}-theta®(xp{k}-yplk});
end
% (4) Set up the performance measure: ||zo-z1||~2
P.performancemetric( (wik+1}-wp{k+1})~2);

(5) Solve the PEP
.salve()

s

% (6) Evaluate the output
double( (w{k+1}-wp{k+1})~2) % worst-case contraction factor
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B = P.DeclareFunction('StronglyMonotone', paramg) ; g
“ 0.6 |-
w o= celline1,1);  wp = cell(nl1,1); g
x cell(n,1); xp = cell(n,1); 'S5 0.4 |-
y = cellin,1); yp = cell(N,1); 5
. 5 0.2 |-
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PESTO example: contraction factors for DRS

% (0) Initialize an empty PER

P=pep();
N=1;
% (1) Set up the class of monotene inclusions
paramA.L = 1; paramA.mu = ©; % A 1s l-Lipschitz and @-strongly monotor\f
paramB.mu = .1; % B is .1l-strongly monotone AN 01
N — =0
A = P.DeclareFunction('LipschitzStronglyMonotone' ,parama); ] 0.8 |~ —0.5
B = P.DeclareFunction('StronglyMonotone',parame) ; o p==0
“ 0.6 |- —_—p =1
w o= celline1,1);  wp = cell(nl1,1); g
x = cellin, 1]; xp = cell(n,1); 5 0.4 —p =15
y = cellin,1); yp = cell(N,1); 5 —_— =
4
s 0.2 |-
% (2) Set up the starting points <
w{l} = P.StartingPoint(); wp{l} = P.StartingPoint(); 8 0 | | |

P.Initialcondition( {(w{1l}-wp{1})~2==1);

0 0.5 1 1.5 2
% (3) Algerithm Lipschitz constant L
lambda = 1.3; % step size (in the resolvents)
theta = .9; % overrelaxation
x{k} = proximal_step(wik},B, Llambda);
yik} = proximal_step(2*x{k}-w{k},a, lambda);

wik+1} = wik}-theta*(x{k}-y{k});
xpikr = prm(wﬂk),& EEEN
yplk} = proximal_step(2*xp{k}-wp{k},a,lambda);
wplk+1} = wpik}-theta®(xp{k}-yplk});

end . . .

v fast prototyping (~ 20 effective lines)
% (4) Set up the performance measure: ||zo-z1l|~2 . .
P.performancemetric( (wik+1}-wp{k+1})~2); V qUICk ana|yseS (N 10 mlnuteS)
% (5) Solve the 2P v computer-aided proofs (multipliers)
P.solve()

% (6) Evaluate the output
double( (w{k+1}-wp{k+1})~2) % worst-case contraction factor 56



Current library of examples within PESTO

Includes... but not limited to

o subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

L R R R IR R R R

proximal point algorithm,

projected and proximal gradient, accelerated/momentum versions,
steepest descent, greedy/conjugate gradient methods,
Douglas-Rachford/three operator splitting,
Frank-Wolfe/conditional gradient,

inexact gradient/fast gradient,

Krasnoselskii-Mann and Halpern fixed-point iterations,

mirror descent,

stochastic methods: SAG, SAGA, SGD and variants.
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Includes... but not limited to

o subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
proximal point algorithm,
projected and proximal gradient, accelerated/momentum versions,
steepest descent, greedy/conjugate gradient methods,
Douglas-Rachford/three operator splitting,
Frank-Wolfe/conditional gradient,
inexact gradient/fast gradient,
Krasnoselskii-Mann and Halpern fixed-point iterations,
mirror descent,
stochastic methods: SAG, SAGA, SGD and variants.

L R R R IR R R R

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.
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Toward simpler proofs
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Francis Bach
(Inria/ENS)

“Stochastic first-order methods: non-asymptotic and computer-aided
analyses via potential functions” (COLT 2019)
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Some opinions on PEPs

Pros/cons of PEPs
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Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),
fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.
SDPs typically become prohibitively large (with N and generalizations),
proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

proofs (may be) hard to generalize (e.g., to handle projections, backtracking),
examples in (Kim & Fessler 2016 2018).

allows reaching proofs that could barely be obtained by hand,

easy to try via Performance EStimation TOolbox (PESTO),

possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).
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Potential functions
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oy <oPny_1<...Z¢p
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Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f. = min f(x)?
x€RI

It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, x, € R?, and k > 0, easy to show ¢£+1 < ¢£ with
& = k(F(x) — f) + é”xk — x4||? (potential at iteration k),
see e.g., (Bansal & Gupta 2017).
Why is that nice? Very simple resulting proof:
N(F(xn) = ) < oy < dy_1 < ... < 0h = &llxo — xull?,

_ 2
hence: f(xn) — fi < %_
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How does it work for the gradient method?

Gradient descent, take Il: how to bound ||#/(xy)||* using potentials?

Key idea: forget how x, was generated and prove ¢>£+1 < ¢£.

® only need to study one iteration

®  where does this ¢li comes from!? (structure and dependence on k)

Starting point: candidate quadratic qb,c with all the available information at iteration k

& = an xe — xul? 4 bic |77 () |12+ 2k (F/ (i) 3k — XY + die (F(x) — ).

How to choose ay, by, ¢, di's?

1. choice should satisfy “qbi“ < ¢£”,

2. choice should result in bound on ||/ (xy)]/?.
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How does it work for the gradient method?

Given ¢£+1, <z>£, how to verify that for all L-smooth convex f, x, € RY, and d € N:

f f
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How does it work for the gradient method?
Given ¢£+1, <z>£, how to verify that for all L-smooth convex f, x, € RY, and d € N:

f f
Phr < 07
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f f
Phr < 07

(notations: the set of such pairs (¢f, ¢£+1) is denoted Vy.)

Answer:
¢£+1 < d)i for all L-smooth convex f, x, € RY, and d € N
=4

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ay, b, ¢k, di } k-

In others words:
o efficient (convex) representation of V. available!
¢ idea: apply previous reformulation tricks to feasibility problem

0 > max o1 — ok

The dual is also a feasibility problem, linear in {ax, bk, ¢k, di } -
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2. Observe the ay, by, ¢k, di's for some values of N.

64



How does it work for the gradient method?

2. choose

Recap: we want to bound ||/ (xy)|
¢£ = ak HXk — X*”2 + by ||f/(Xk)H2 + 2¢i <f/(Xk),Xk — X*> + di (f(Xk) — f*).

with 0§ = L?|[x0 — x| and ¢f, = by || f"(xn)|%.

L2[|x0 —x ||?

Motivation: this structure would result in ||/ (xp)||? < o

Question: largest provable by using such potentials?

of n;f)x , by such that (¢, d5) € Vo,..., (dhy_1, ) € Vv_1
1 PN_1PN

Let's engineer a worst-case guarantee:
1. Solve the SDP for some values of N.
2. Observe the ay, by, ¢k, di's for some values of N.

3. Try to simplify the qbi’s without loosing too much.

64



How does it work for the gradient method?

Recap: we want to bound ||/ (xy)|
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¢£ = ak HXk — X*”2 + by ||f/(Xk)H2 + 2¢i <f/(Xk),Xk — X*> + di (f(Xk) — f*).

with ¢§ = L2||x0 — x.||* and ¢}, = by [|f"(xn)|1*.

Motivation: this structure would result in ||/ (xp)||? <

L2 xo—x4 I
by

Question: largest provable by using such potentials?

of n;baf)x , by such that (¢, d5) € Vo,..., (dhy_1, ) € Vv_1
1 PN_1PN

Let's engineer a worst-case guarantee:

1.

Solve the SDP for some values of N.

2. Observe the ay, by, ¢k, di's for some values of N.
3.
4. Prove target result by analytically playing with Vi (i.e., study single iteration).

Try to simplify the qbi’s without loosing too much.
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How does it work for the gradient method?
1. Solve the SDP for some values of N; recall final guarantee of the form:

I ()2 < W

N =

1 3 4 100
by= 4

2
9 16 25 ... 10201
2. Observe the ay, by, ck, di's for some values of N.

3. Try to simplify the d)i's without loosing too much.
Tentative simplification #1: dyx = (2k + 1)L [success]
Tentative simplification #2: a, = L2, ¢, = 0 [success]
Tentative simplification #3: dj = 0 [fail]

4. Prove target result by analytically playing with Vj:

h () =(2k + L(F(xe) = ) + k(k + 2)[|F () ||* + L2 [1xc = I,

hence f(xy) — f. = O(N=1) and ||f/(xy)||? = O(N—2).
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Potential functions

Simpler proof structures:
o allow keeping SDP formulations more tractable,

© hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:
o all previous variants (everything that fits into regular PEPs)
© stochastic variants (e.g., finite sum, bounded variance, over-parametrization),
¢ randomized block-coordinate variants,

. and probably many others (but not in the paper)!
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(quasi-Newton, NL conjugate gradients, etc.): can we close the gap?
Higher order methods?
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Sometimes, those optimization problems are tractable.

Often tractable in convex optimization!
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Any interest raised?

Main references:
© “Smooth strongly convex interpolation and exact worst-case performance of
first-order methods” (with J. Hendrickx and F. Glineur),
o "“Exact worst-case performance of first-order methods for composite convex
optimization” (with J. Hendrickx and F. Glineur).
© “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (with F. Bach)
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via potential functions” (with F. Bach)

A few other recent directions (on my webpage):
& Stochastic methods
& Monotone operators
¢ Mirror descent, relative smoothness
o

Attempts to the analysis of adaptive methods



Thanks! Questions?

www.di.ens.fr/~ataylor/

ADprIENTAYLOR/PERFORMANCE-EsTIiMATION-TOOLBOX on GITHUB
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