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Abstract. We provide a framework for computing the exact worst-case performance of any algo-
rithm belonging to a broad class of oracle-based first-order methods for composite convex optimiza-
tion, including those performing explicit, projected, proximal, conditional, and inexact (sub)gradient
steps. We simultaneously obtain tight worst-case guarantees and explicit instances of optimization
problems on which the algorithm reaches this worst-case. We achieve this by reducing the compu-
tation of the worst-case to solving a convex semidefinite program, generalizing previous works on
performance estimation by Drori and Teboulle [Math. Program., 145 (2014), pp. 451–482] and the
authors [A. B. Taylor, J. M. Hendrickx, and F. Glineur, Math. Program., 161 (2017), pp. 307–345].
We use these developments to obtain a tighter analysis of the proximal point algorithm and of sev-
eral variants of fast proximal gradient, conditional gradient, subgradient, and alternating projection
methods. In particular, we present a new analytical worst-case guarantee for the proximal point algo-
rithm that is twice better than previously known and improve the standard worst-case guarantee for
the conditional gradient method by more than a factor of two. We also show how the optimized gradi-
ent method proposed by Kim and Fessler [Math. Program., 159 (2016), pp. 81–107] can be extended
by incorporating a projection or a proximal operator, which leads to an algorithm that converges
in the worst-case twice as fast as the standard accelerated proximal gradient method [A. Beck and
M. Teboulle, SIAM J. Imaging Sci., 2 (2009), pp. 183–202].
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1. Introduction. Consider the composite convex minimization problem

(CM) min
x∈E

{
F (x) ≡

n∑
k=1

F (k)(x)

}
,

where E is a finite-dimensional real vector space and each functional component
F (k) : E→ R∪{∞} is a convex function belonging to some class Fk(E)—e.g., smooth
or nonsmooth, strongly convex or not, indicator functions—for which some operations
are assumed to be available in closed form (e.g., computing a gradient, projecting on
the domain, computing a proximal step).

We are interested in the composite optimization problem (CM) because it nat-
urally allows representing and exploiting a lot of the structure in many problems,
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which can play a major role in our ability to efficiently solve them (see [33] among
others). In addition, the class of composite convex optimization problems arises very
commonly in practice, as it contains, for example, constrained, `1- and `2-regularized
convex optimization problems.

We focus on black-box oracle-based algorithms that use first-order information to
approximately solve (CM) and in particular on obtaining exact and global worst-case
guarantees on their performances. That is, for a given algorithm, we simultaneously
seek to obtain worst-case guarantees—for example, on objective function accuracy—
and an instance of (CM) for which the algorithm behaves as such. In this work,
we investigate fixed-step linear first-order methods (FSLFOM), which include among
others fixed-step projected, proximal, conditional, and inexact (sub)gradient methods.

This work builds on the recent idea of performance estimation, first developed
by Drori and Teboulle in [14] and followed up on by Kim and Fessler [23] and the
authors [44]. The approach was initially tailored for obtaining upper bounds on the
worst-case behavior of fixed-step gradient methods for unconstrained minimization
of a single smooth convex objective function. Motivated by subsequent results (see
among others [22, 23]) we extend the framework of performance estimation to the
composite case involving a much broader class of algorithms and function classes (see
section 1.4 for more details about previous works).

Our performance estimation framework relies on formulating the worst-case com-
putation problem as a tractable semidefinite program (SDP), which can be tackled
with standard solvers [25, 27, 42]. It enjoys the following attractive features:

• Any primal feasible solution to this SDP leads to a lower bound on the worst-
case performance of the method under consideration, by exhibiting a partic-
ular instance of (CM).

• Any dual feasible solution to this SDP corresponds to an upper bound on
the worst-case performance of the method under consideration, which can be
converted into an explicit proof based on a combination of valid inequalities.

1.1. Notation. In this paper, we work in a finite-dimensional real vector space
E and the corresponding dual space E∗ consisting of all linear functions on E, and
denote their dimension by d = dimE = dimE∗. We consider a dual pairing1 between
those spaces, denoted by 〈., .〉 : E∗ × E → R. We also consider a self-adjoint positive
definite2 linear operator B : E → E∗ for 〈., .〉, which allows defining the following
primal and dual norms:

‖x‖2E = 〈Bx, x〉 ∀x ∈ E, ‖s‖2E∗ =
〈
s,B−1s

〉
∀s ∈ E∗.

We denote 〈x, y〉E = 〈Bx, y〉 for x, y ∈ E and 〈x, y〉E∗ =
〈
x,B−1y

〉
for x, y ∈ E∗. The

usual case is simply E = E∗ = Rd with 〈x, y〉 = x>y the standard Euclidean inner

product and B the identity operator, for which we also have ‖x‖2E = ‖x‖2E∗ = 〈x, x〉.
In addition, we use the notation F0,∞ for the set of closed, proper, and convex

functions. For a convex function f : E→ R ∪ {∞}, we denote by f∗ : E∗ → R ∪ {∞}
its Legendre–Fenchel conjugate

f∗(y) = sup
x∈E
〈y, x〉 − f(x),

1The dual pairing is a real bilinear map 〈., .〉 : E∗ × E → R satisfying (i) ∀x ∈ E\{0},
∃s ∈ E∗ such that 〈s, x〉 6= 0, and (ii) ∀s ∈ E∗\{0}, ∃x ∈ E such that 〈s, x〉 6= 0.

2That is, a linear operator B satisfying (i) 〈Bx, y〉 = 〈By, x〉 ∀x, y ∈ E (self-adjoint), and
(ii) 〈Bx, x〉 > 0 ∀x ∈ E\{0} (positive definite). A direct consequence of B satisfying those
assumptions is the existence of the linear operator B−1.
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by ∂f(x) the subdifferential of f at x (set of all subgradients of f at x), and by ∇̃f(x)
a particular subgradient of f at x. Similarly, the gradient of a differentiable function
f at x is denoted by ∇f(x).

For notational convenience we denote by K = {1, . . . , n} the set of indices corre-
sponding to the different components F (k) in the objective function of (CM). We also
denote by FK(E) the set of functions of the form (CM) with components F (k) ∈ Fk(E)
∀k ∈ K—that is, F ∈ FK(E).

Finally, we use the standard notation ei for the unit vector having a single 1 as
its ith component.

1.2. Performance estimation problems. In [44], we introduced a formal def-
inition for the performance estimation problem in the case of a black-box first-order
method for unconstrained minimization of a single convex function F . We now gener-
alize the performance estimation framework for handling multiple components in the
objective function.

First, we formalize black-box methods using the concept of black-box oracles. That
means that methods are only allowed to access the different components of the objec-
tive function by calling some routines, or oracles, returning some information about
them at a given point. In particular, we focus, in what follows, on the standard first-
order oracle for F (k): OF (k)(x) = (F (k)(x), ∇̃F (k)(x)), where ∇̃F (k)(x) ∈ ∂F (k)(x)
is a subgradient of F (k) at x. The general formalism of the approach is nevertheless
also valid for other standard oracles, as, for example, zeroth-order or second-order
ones—that is, OF (k)(x) = (F (k)(x)) or OF (k)(x) = (F (k)(x),∇F (k)(x),∇2F (k)(x)).
However, as we will see, our ability to solve the corresponding performance estima-
tion problems in an exact way is currently limited to first-order oracles.

Second, we consider a sequence of N+1 iterates {xi}0≤i≤N ⊂ E, corresponding to
a method that performsN steps from an initial iterate x0. For each of those iterates we
consider the set oracle calls for each functional component3 OF (k) : {OF (k)(xi)}0≤i≤N .

Third, we consider a method M whose iterates can be computed by combining
past and current oracle information about F . This means that after the method has
performed i − 1 steps, the next iterate xi should be computable as a solution to an
equation of the form

(EQi)
Equation(x0, {OF (k)(x0)}k∈K , x1, {OF (k)(x1)}k∈K , . . . , xi, {OF (k)(xi)}k∈K).

Note that the only unknown in this equation is xi and that it thus provides an implicit
definition for the next step. We will see later that this assumption on M includes a
large number of existing methods for composite optimization.

Finally, we consider a real-valued performance criterion P for evaluating the effi-
ciency of the method. In what follows, we assume without loss of generality that the
lower the value of P, the better the corresponding method.

In our framework, this performance criterion is generally allowed to depend on
information returned by the oracles OF (k) at all the iterates {xi}0≤i≤N , but also at
an extra point x∗ ∈ E assumed to be an optimal solution to problem (CM). Also, we

3That is, we choose to associate a call to each oracle to every iterate. This is mostly for notational
convenience and does not induce any loss of generality, as a method can always avoid using the
information returned by one of the oracles at some iterations.
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allow P to depend on the iterates themselves. Examples of such performance criteria
include objective function accuracy F (xN )−F (x∗) and distance to an optimal solution

‖xN − x∗‖2E. For notational convenience we introduce an index set for all iterates
(including optimal solution) I = {0, 1, . . . , N, ∗}.

The worst-case performance of method M on (CM) is then the optimal value
of the following optimization problem, with both functions {F (k)}k∈K and iterates
{xi}i∈I as variables, which we call a performance estimation problem (PEP):

sup
{F (k)}

k∈K
,{xi}i∈I

P({OF (k)(xi)}i∈I,k∈K , {xi}i∈I)(PEP)

subject to F (k) ∈ Fk(E) ∀k ∈ K,
x0 satisfies some initialization condition,

xi is computed by M according to (EQi) ∀1 ≤ i ≤ N ,

x∗ is a minimizer of F (x).

That is, a solution to (PEP) corresponds to an instance of problem (CM) on which
methodM behaves as badly as possible with respect to the performance criterion P.
The initialization condition on x0 is required as most methods exhibit unbounded
worst-case performance without it. In what follows we will mostly restrict ourselves
to the classical approach, which consists in bounding the initial distance to an optimal
solution with a constant R, i.e., assume ‖x0 − x∗‖E ≤ R.

Note that (PEP) is inherently an infinite-dimensional optimization problem, as
functions F (k) appear as variables. However, a crucial observation is that, due to the
black-box assumption on the objective components, this problem can be cast com-
pletely equivalently in a finite-dimensional fashion. Indeed, introducing the outputs

of the oracle calls as variables, namely, O
(k)
i = OF (k)(xi) for all iterates i ∈ I and

oracles k ∈ K, we observe that steps of method M can be still be computed using

only information contained in variables O
(k)
i , so that we can reformulate (PEP) as

sup{
O

(k)
i

}
i∈I,k∈K

,{xi}i∈I

P
({

O
(k)
i

}
i∈I,k∈K

, {xi}i∈I

)
,(PEP2)

subject to ∃F (k) ∈ Fk(E) satisfying OF (k)(xi) = O
(k)
i ∀i ∈ I, k ∈ K,

x0 satisfies some initialization condition,

xi is computed by M according to (EQi) ∀1 ≤ i ≤ N ,

x∗ is a minimizer of F (x).

Note the central role played by the interpolation conditions OF (k)(xi) = O
(k)
i ∀i ∈ I

and k ∈ K, which enforce the existence of functions F (k) compatible with the output
of the oracles. In the next subsection we describe situations for which this formulation
is tractable.

1.3. First-order methods and first-order convex interpolation. In the
remainder of this work, we restrict ourselves to first-order oracles and methods. We
now investigate the concept of (first-order) convex interpolability, in order to make
existence constraints from (PEP2) tractable—more precise requirements are detailed
in section 2. From the assumptions, the existence constraint for function F (k)

∃F (k) ∈ Fk(E) satisfying OF (k)(xi) = O
(k)
i ∀i ∈ I,
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WORST-CASE PERFORMANCE OF FIRST-ORDER METHODS 1287

found in (PEP2), may be expressed in terms of first-order information only. Con-
sidering oracles returning first-order information OF (k)(x) = (F (k)(x), ∇̃F (k)(x)), we

denote their output at point xi by OF (k)(xi) = O
(k)
i = (f

(k)
i , g

(k)
i ). The above exis-

tence constraint can be rephrased into the set of interpolation conditions

(INT) ∃F (k) ∈ Fk(E) satisfying F (k)(xi) = f
(k)
i and g

(k)
i ∈ ∂F (k)(xi),

which leads us to introduce the following general definition.

Definition 1.1 (F(E)-interpolation). Let I be an index set and F(E) a class of
convex functions, and consider the set of triples S = {(xi, gi, fi)}i∈I where xi ∈ E,
gi ∈ E∗ and fi ∈ R ∀i ∈ I. The set S is F(E)-interpolable if and only if there exists
a function F ∈ F(E) such that both gi ∈ ∂F (xi) and F (xi) = fi hold ∀i ∈ I.

The notion of F(E)-interpolation can be considered for any class of convex func-
tions. It allows us to formulate our PEP in its final form,

sup{
(f

(k)
i ,g

(k)
i )

}
i∈I,k∈K

,{xi}i∈I

P
({

(f
(k)
i , g

(k)
i )
}
i∈I,k∈K

, {xi}i∈I

)
,(f-PEP)

subject to
{

(xi, g
(k)
i , f

(k)
i )

}
i∈I

is Fk-interpolable ∀k ∈ K,

x0 satisfies some initialization condition,

xi is computed by M according to (EQi) ∀1 ≤ i ≤ N ,

x∗ is a minimizer of F (x).

We conclude that identifying explicit conditions for convex interpolability by a given
class of functions will be the key to eliminate the infinite-dimensional functional vari-
ables from (PEP) and transform it into a tractable estimation problem.

First-order convex interpolation was originally developed in [44] for classes of
(possibly) L-smooth and (possibly) µ-strongly convex functions. In section 3, we ex-
tend these results to classes of functions involving simultaneously strong convexity,
smoothness, gradient boundedness, and domain boundedness (for different norms).
Those extensions also allow us to consider interpolation by indicator or support func-
tions, which may among others be used for problems involving constraints.

Also, note that the notion of first-order interpolability can be adapted for non-
convex functions as well. Replacing the concept of subdifferentiability by standard
differentiability can be used to study the convergence of first-order algorithms in the
cases where some components F (k) are not convex (see section 3.4).

1.4. Prior work. The concept of performance estimation showed itself very
promising in the pioneer work of Drori and Teboulle [14] and later in the work of Kim
and Fessler [23]. In their work [14], Drori and Teboulle proposed a convex relaxation
to obtain numerical upper bounds on the worst-case behavior of fixed-step first-order
algorithms minimizing a single smooth convex function over Rd, which turned out to
be tight in surprisingly many situations.4 They also proposed a way to numerically
optimize the step size parameters of a fixed-step algorithm by minimizing an upper
bound on its worst-case. Their approach is based on semidefinite relaxations of (PEP)
and was taken further by Kim and Fessler [23], who derived analytically the optimized
gradient method (OGM) previously identifed numerically by Drori and Teboulle.

4An extension to provide upper bounds for the fixed-step projected gradient method is also
provided in Drori’s Ph.D. thesis [12].
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The performance estimation approach on the same smooth unconstrained mini-
mization is further studied in [44], where convex interpolation allows the derivation of
an exact convex reformulation of the problem, leading to tight worst-case estimates.
The obtained semidefinite formulation also forms the basis for this work.

Another recent and closely related approach for studying performances of first-
order methods consists in viewing optimization algorithms as dynamical systems and
to use the related stability theory in order to numerically analyze them. This idea is
proposed by Lessard, Recht, and Packard in [24] and is attractive because it requires
solving a single SDP to obtain a bound that is valid for all subsequent iterations. This
technique is particularly efficient for problems involving strong convexity, for which
tight linear convergence rates are often recovered. However, as they aim at finding
global rates of convergence, they are naturally more conservative than the general
performance estimation approach.

For more details on the general topic of convergence analysis of first-order meth-
ods, we refer to the seminal books of Nemirovsky and Yudin [28], Polyak [37], Nes-
terov [30], and the more recent book of Bertsekas [4]. Concerning the development
of accelerated methods, we specifically refer to the original work of Nesterov [29, 30]
and to the later extensions to minimize smoothed convex functions [31] and composite
functions [2, 33].

1.5. Paper organization and main contributions. This work is divided
into three main parts. First, section 2 is concerned with putting in place the per-
formance estimation framework for large classes of first-order algorithms, objective
functions, performance criteria, and initialization conditions. The main idea of this
section is to require every element of the PEP to be linearly Gram-representable (de-
fined in section 2.2). This section contains multiple examples of standard settings
for which the methodology applies—including those covering (sub)gradient methods
(along with their projected and proximal counterparts) and conditional gradient meth-
ods (CGMs).

Section 3 focuses on providing convex interpolation conditions for different classes
of convex functions commonly arising in practice. Those classes include convex func-
tions, possibly with strong convexity, smoothness, bounded domain, and bounded
(sub)gradient requirements. The subclasses of indicator and support functions are
also explicitly handled. Those classes of functions can all be used directly in the per-
formance estimation framework of section 2, since their corresponding interpolation
conditions are linearly Gram-representable. This section ends with an extension of
the convex interpolation results to cope with smooth nonconvex functions in a linearly
Gram-representable way.

In section 4, we apply our approach to several concrete first-order algorithms. We
obtain improvements on the analysis of several well-known methods, either analyti-
cally or numerically, including the proximal point algorithm and the CGM. We also
use those results to provide an extension of the OGM proposed by Kim and Fessler [23]
that incorporates a projection or a proximal operator to tackle constrained and com-
posite problems.

2. Performance estimation framework for first-order algorithms. We
start this section by formulating (f-PEP) in terms of a Gram matrix. This leads
to a tractable convex formulation for (f-PEP)—once appropriate assumptions are
made on the classes of objective function components, methods, performance criteria
and initialization conditions. Those assumptions are motivated by practical appli-
cations, which we also provide in the following. The main point underlying those
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WORST-CASE PERFORMANCE OF FIRST-ORDER METHODS 1289

assumptions is to ensure that every element of the PEP can be formulated in a linear
way in terms of both the entries of a Gram matrix and the function values at the
iterates.

2.1. Gram representations. Let us consider N + 1 iterates x0, . . . , xN and an

optimal solution x∗, and the set of corresponding oracle outputs {(f (k)i , g
(k)
i )}i∈I,k∈K .

The accumulated information after those N + 1 oracle calls can be gathered into a
d× (n+ 1)(N + 2) matrix5 PN (using a slight abuse of notation) and a vector FN of
length n(N + 2):

PN = [Bx0 . . . BxN | Bx∗ | g(1)0 . . . g
(n)
0 | . . . | g(1)N . . . g

(n)
N | g(1)∗ . . . g

(n)
∗ ],(1)

FN = [ f
(1)
0 . . . f

(n)
0 | . . . | f (1)N . . . f

(n)
N | f (1)∗ . . . f

(n)
∗ ].(2)

We also denote by B−1PN the matrix

B−1PN = [x0 . . . xN | x∗ | B−1g(1)0 . . . B−1g
(n)
∗ ].

In order to formulate (PEP) in a tractable way for first-order methods, we use a Gram
matrix. That is, we define a symmetric (n+ 1)(N + 2)× (n+ 1)(N + 2) Gram matrix
GN ∈ S(n+1)(N+2), using the following construction:

GN =



〈x0, x0〉E . . . 〈x0, xN 〉E 〈x0, x∗〉E 〈g(1)
0 , x0〉 . . . 〈g(n)

∗ , x0〉
...

. . .
...

...
...

. . .
...

〈xN , x0〉E . . . 〈xN , xN 〉E 〈xN , x∗〉E 〈g(1)
0 , xN 〉 . . . 〈g(n)

∗ , xN 〉
〈x∗, x0〉E . . . 〈x∗, xN 〉E 〈x∗, x∗〉E 〈g(1)

0 , x∗〉 . . . 〈g(n)
∗ , x∗〉

〈g(1)
0 , x0〉 . . . 〈g(1)

0 , xN 〉 〈g(1)
0 , x∗〉 〈g(1)

0 , g
(1)
0 〉E∗ . . . 〈g(1)

0 , g
(n)
∗ 〉E∗

...
. . .

...
...

...
. . .

...

〈g(n)
∗ , x0〉 . . . 〈g(n)

∗ , xN 〉 〈g(n)
∗ , x∗〉 〈g(n)

∗ , g
(1)
0 〉E∗ . . . 〈g(n)

∗ , g
(n)
∗ 〉E∗


� 0.

This can be written more compactly as [GN ]ij = 〈PNei, B−1PNej〉 = 〈PNei, PNej〉E∗ ,
where PNek corresponds to the kth column of PN . Also, note that the size of this
matrix does not depend on the dimension d of the spaces we are working with.

Remark 2.1. Note that Gram matrix GN is positive semidefinite for any matrix
PN (of the form (1)). The number of linearly independent columns of PN is equal to
the rank of GN . Hence this rank is upper bounded by the dimension d of the ambient
space of the iterates. It is possible to recover a matrix PN of the form6 (1) from any
Gram matrix GN � 0 satisfying Rank GN ≤ d.

Our goal for the next subsections is to show that in a lot of situations, the per-
formance estimation problem (f-PEP) can be expressed exactly as an SDP in the FN
and GN variables:

sup
FN∈Rn(N+2),GN∈S(n+1)(N+2)

c>FN + Tr (CGN )(SDP-PEP)

subject to ai + b>i FN + Tr (DiGN ) ≤ 0 ∀i ∈ S,
GN � 0,

5We recall that B : E→ E∗ is a positive definite operator which is chosen as the identity operator
in standard situations (see section 1.1).

6In the case E = E∗ = Rd with the usual inner product 〈x, y〉 = x>y and B the identity operator,
this can be done using the standard Cholesky factorization. In the general cases the exact same idea
can be used, using the chosen inner product 〈., .〉E∗ in the process.
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1290 A. B. TAYLOR, J. M. HENDRICKX, F. GLINEUR

with S some index set related to the constraints, and elements ai, bi, c,Di, and C of
appropriate dimensions for writing the constraints and objective function linearly in
terms of the Gram matrix GN and of the objective function values FN .

2.2. Tractable formulation of the performance estimation problem. In
this section, we present our main result, stating that computing the exact worst-case
performance of a method on a class of functions is tractable and can, in many cases,
be formulated as (2.1). We start with the concept of Gram-representability for the
different ingredients of the PEP.

Definition 2.2. A class of functions is Gram-representable (resp., linearly Gram-
representable) if and only if its interpolation conditions (INT) can be formulated using
a finite number of convex (resp., linear) constraints involving only the matrix GN and
the function values FN .

The functional classes of smooth strongly convex functions, smooth convex func-
tions with bounded (sub)gradients, and strongly convex functions with bounded
domain are linearly Gram-representable. In addition, the particular subclasses of
support and indicator convex functions share this same advantageous property. The
details and proofs of these results are postponed to section 3.

Definition 2.3. A performance measure is Gram-representable (resp., linearly
Gram-representable) if and only if it can be expressed as a concave (resp., linear)
function involving only the matrix GN and the function values FN .

The class of linearly Gram-representable performance criteria contains a large
variety of choices, including most standard measures we are aware of. For example, it
is easy to check that standard optimality criteria in function values F (xN ) − F (x∗),

in residual subgradient norm ‖∇̃F (xN )‖2E∗ , distance to optimality ‖xN − x∗‖2E, and

distance to feasibility ‖xN −ΠQ(xN )‖2E, can be handled.
On the other hand, multiple examples of nonlinear Gram-representable perfor-

mance criteria can also be handled with no difficulty. This includes performance
measures involving the best values among all iterates, for example, min0≤i≤N F (xi)−
F (x∗), or the best residual gradient norm among the iterates min0≤i≤N ‖∇F (xi)‖2E∗
(see also [44, sect., 4.3]).

Definition 2.4. An initialization condition is Gram-representable (resp., lin-
early Gram-representable) if and only if it can be expressed using a finite number
of convex (resp., linear) constraints involving only the matrix GN and the function
values FN .

Standard examples of valid initial conditions include the classical bounds on
the initial distance to optimality ‖x0 − x∗‖2E ≤ R2, on the initial function value

F (x0) − F∗ ≤ R, and on initial gradient value ‖∇F (x0)‖2E∗ ≤ R2, for given values
of R ≥ 0.

Definition 2.5. A first-order method is Gram-representable (resp., linearly
Gram-representable) if and only if the computation of its iterates, implicitly defined
by an equation of type (EQi), can be expressed using a finite number of convex (resp.,
linear) constraints involving only the matrix GN and the function values FN .
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WORST-CASE PERFORMANCE OF FIRST-ORDER METHODS 1291

We refer to the next section for examples of linearly Gram-representable methods.
Note that the necessary and sufficient condition for x∗ to be optimal for F is always
linearly Gram-representable. Indeed, it corresponds to requiring ∇̃F (x∗) = 0, i.e.,

∑
k∈K

∇̃F (k)(x∗) =
∑
k∈K

g
(k)
∗ = 0⇔

∥∥∥∥∥∑
k∈K

g
(k)
∗

∥∥∥∥∥
2

E∗

=

〈∑
k∈K

g
(k)
∗ ,

∑
k∈K

g
(k)
∗

〉
E∗

= 0,

where the last condition is linear in the entries of GN .
We can now state our main results concerning Gram-representable situations.

Proposition 2.6. Consider a class of composite objective functions FK(E) with
n components, a first-order method M, a performance measure P, and an initial
condition I which are all Gram-representable.

Computing the worst-case for criterion P of method M after N iterations on
objective functions in class FK(E) with initial condition I can be formulated as a
convex program when dimension of the space E satisfies d ≥ (n+1)(N+2). Otherwise,
it can be formulated as a convex program plus an additional nonconvex rank constraint
Rank GN ≤ d.

If in addition FK(E), M, P, and I are linearly Gram-representable, then the
corresponding convex problem is an SDP of the form (2.1), with FN ∈ Rn(N+2) and
GN ∈ S(n+1)(N+2) as variables.

Proof. It directly follows from Remark 2.1 and from the definitions of (linear)
Gram-representability for the class of functions, first-order methods, performance
measures, optimality condition of a solution, and initialization conditions: any solu-
tion to the corresponding optimization problem can be transformed into a particular
instance of (CM), and vice versa.

Remark 2.7. The optimal value of (PEP) increases with dimension d. When
(PEP) with Gram-representable elements attains a finite optimal value, Proposi-
tion 2.6 implies the existence of a function with dimension at most (n + 1)(N + 2)
that achieves the worst-case value.

Remark 2.8. The assumption d ≥ (n+ 1)(N + 2) is referred to as the large-scale
assumption in what follows. In terms of PEP, this assumption allows us to discard the
nonconvex rank constraint and lead to a tractable semidefinite programming prob-
lem, which can be solved to global optimality efficiently (see e.g., [46]). Without that
assumption, our PEP is a nonconvex rank-constrained SDP, equivalent to a quadratic
programming problem that is NP-hard in general (e.g., it has MAX-CUT [17] and
other nonconvex quadratic programs [35, 41] as particular cases). Approaches to han-
dle rank constraints exist (e.g., via augmented Lagrangian techniques [6], via mani-
fold optimization [21], or via Newton-like methods [34]) but in general only guarantee
convergence to stationary points. This is not useful in the case of (2.1), as this only
provides lower bounds on the worst-case performance.

Remark 2.9. Under the large-scale assumption, we obtain dimension-free guar-
antees (i.e., valid for any dimension, and tight as soon as d ≥ (n + 1)(N + 2)), as
is commonly found in the literature about first-order methods. In addition, we note
that the dimension bound (n+ 1)(N + 2) is in fact (very) conservative for most stan-
dard algorithms—that is, the bound in the large-scale assumption can typically be
significantly reduced; see Corollary 2.12.
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1292 A. B. TAYLOR, J. M. HENDRICKX, F. GLINEUR

Remark 2.10. The worst-case results provided by the SDP from Proposition 2.6
provide a tight worst-case achievable for any operator B and any dual pairing 〈., .〉.

2.3. Linearly Gram-representable first-order methods. This class of first-
order methods contains as particular cases the class of FSLFOM, whose iterations are
defined by a linear equation (with known constant coefficients) involving the iterates
and the corresponding (sub)gradients.

Definition 2.11. An FSLFOM is a method which computes iterate xi as the
solution of7

ti,iBxi +
∑
k∈K

h
(k)
i,i g

(k)
i =

i−1∑
j=0

[
ti,jBxj +

∑
k∈K

h
(k)
i,j g

(k)
j

]
,(FSLFOM)

where all coefficients h
(k)
i,j , ti,j ∈ R (0 ≤ j ≤ i and k ∈ K) are fixed beforehand.

Note the class of FSLFOM is exactly the class of methods whose iterations can
be written in the form (using first-order optimality conditions and convexity of F (k)):

xi = argmin
x∈E

 ti,i2
‖x‖2E +

∑
k∈K

h
(k)
i,i F

(k)(x)

−

〈
i−1∑
j=0

[
ti,jBxj +

∑
k∈K

h
(k)
i,j ∇F

(k)(xj)

]
, x

〉 ,

which, in some sense, describes the most general method our framework can deal with.
The computation of iterate xi can also be written as the following linear equation,
which involves a linear combination of the columns of matrix PN (which contain the
harvested first-order information about the problem so far) using a constant vector of
coefficients mi ∈ R(n+1)(N+2):

PNmi = 0.

Note that coefficients in mi corresponding to columns describing subsequent iterates

(Bxj and g
(k)
j ∀j > i and k ∈ K) must naturally be equal to zero, as well as those

of columns related to the optimal solution (Bx∗ and g
(k)
∗ ∀k ∈ K). In addition, any

FSLFOM is linearly Gram-representable using the following formulation:

(3) 0 = PNmi ⇔ 0 = ‖PNmi‖2E∗ =
〈
PNmi, B

−1PNmi

〉
= m>i GNmi,

which is clearly linear in terms of the Gram matrix GN . This can also easily be
extended to cope with more general classes of linearly Gram-representable first-order
methods, such as the following:

(4) c
(low)>
i FN + b

(low)
i ≤ m>i GNmi ≤ c(up)>i FN + b

(up)
i ,

where c
(low)
i , b

(low)
i and c

(up)
i , b

(up)
i are some fixed parameters. Those could, for ex-

ample, be used to require a sufficient decrease condition (involving function values in

7The iteration is written as an equality on E, but it is possible and totally equivalent to write it
on E∗ using the operator B−1.
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WORST-CASE PERFORMANCE OF FIRST-ORDER METHODS 1293

FN ) or to consider methods that perform an inexact computation of the next iterate
in (FSLFOM), such as in

(Inexact FSLFOM) ‖PNmi‖E∗ ≤ εi ⇔ m>i GNmi ≤ ε2i ,

where εi ≥ 0 is some tolerance on the accuracy of the computation of xi in (FSLFOM).

Examples of FSLFOM. Before going into the details of the PEPs for our class
of linear fixed-step methods over different classes of convex functions, let us give
several examples of methods fitting into the model provided by (FSLFOM) and
(Inexact FSLFOM).

• Fixed-step subgradient and gradient algorithms. Minimizing a convex function
F using a fixed-step subgradient method is naturally described as xi = xi−1−
αiB

−1gi−1, with αi some step size and gi−1 ∈ ∂F (xi−1). The method clearly
belongs to the class of FSLFOM, and its linear Gram matrix representation
can be obtained using formulation (3).

• Proximal methods and proximal gradient methods. Consider a composite ob-
jective F (1) +F (2), where F (2) admits a computable proximal operator. Min-
imizing this objective with a fixed-step proximal gradient method is usually
described as performing an explicit (sub)gradient step on F (1) followed by a
(proximal) minimization step involving F (2):

xi = proxαiF (2)

(
xi−1 − αiB−1∇̃F (1)(xi−1)

)
= argmin

x∈E

{
αiF

(2)(x) +
1

2

∥∥∥xi−1 − αiB−1∇̃F (1)(xi−1)− x
∥∥∥2
E

}
.

Optimality conditions on this last term allow writing each iteration as

Bxi + αi∇̃F (2)(xi) = Bxi−1 − αi∇̃F (1)(xi−1)

with some ∇̃F (2)(xi) ∈ ∂F (2)(xi), which is an implicit equation in xi. This
method is clearly an FSLFOM and therefore fits in our framework. Projected
gradient methods are obtained using the same technique, but on the particular
class of convex indicator functions F (2), whereas proximal point algorithms
correspond to the case where F (1) = 0.

• CGMs. Consider an objective function F (1) to be minimized over a closed
convex set Q, whose indicator function is F (2). CGMs for this problem also fit
the FSLFOM model. Indeed, their iterations take the following form (given
a starting point z0):

yi = argmin
z∈E

{〈
z − zi, ∇̃F (1)(zi)

〉
+ F (2)(z)

}
,

zi+1 = (1− λi)zi + λiyi,

with coefficient λi ∈ [0, 1] chosen beforehand. Using first-order necessary and
sufficient optimality conditions on the intermediate optimization problem, we
obtain that yi can be defined by the following equation:

∇̃F (1)(zi) = −∇̃F (2)(yi).

This algorithm can also clearly be written as an FSLFOM; one only needs to
merge the two sequences of iterates yi and zi into a single sequence, defining,
for example, the iterates using x2i = zi and x2i+1 = yi for every i = 0, 1, . . .
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1294 A. B. TAYLOR, J. M. HENDRICKX, F. GLINEUR

• Inexact (sub)gradient methods. Consider a convex function F (1) on which
inexact steps are performed according to xi+1 = xi − αiB

−1(∇̃F (1)(xi) +
εi), where errors εi on the computation of the subgradients are bounded.
More precisely, given some tolerance εi ≥ 0, we assume that ‖εi‖E∗ ≤ εi.
This can be written in the inexact FSLFOM format:∥∥∥α−1i B (xi+1 − xi) + ∇̃F (1)(xi)

∥∥∥2
E∗
≤ ε2i .

Other noise models can also easily be used in the framework, such as the one
proposed by d’Aspremont [8]. However, the inexact (δ, L)-oracles developed
by Devolder, Glineur, and Nesterov [10] do not seem to easily fit into the
approach.8

An even broader class of methods can be obtained by combining some of the above
examples and/or restricting the functions to specific classes. For example, alternate
projection-type algorithms are special cases of proximal methods applied to sums of
convex indicator functions and hence can be represented in the FSLFOM format.

2.4. Simplified performance estimation problems. Note that for standard
algorithms such as the above examples of FSLFOM, the SDP resulting from Propo-
sition 2.6 can typically be further simplified, leading to a reduction in its size.

Corollary 2.12. Consider a class of composite objective functions FK(E) with
n components, a performance measure P and an initialization condition I which are
linearly Gram-representable, and an FSLFOM M whose iterations are linearly inde-
pendent, meaning that the constant vectors mi used to define iterates xi in (3) are
linearly independent.9

In addition, assume there are p points (g
(k)
i , f

(k)
i ) such that neither g

(k)
i nor f

(k)
i

is used in the performance measure P, the initial condition I, and the method M.
Then, the PEP can be written as a convex SDP using variables FN ∈ Rn(N+2)−p and
GN ∈ S(n+1)(N+2)−N−p−1, with the possible additional rank constraint rank GN ≤ d.

Proof. One can remove from the original SDP formulation those p unnecessary
points corresponding to p function values in variable FN and to p rows/columns in
the Gram matrix variable GN . Furthermore, the N equations defining the iterations
allow us to further substitute N variables, i.e., to remove N columns from PN and
hence N rows/columns from the Gram matrix variable GN . The dimension of GN can

finally be decreased by one, using the fact that one of the g
(k)
∗ may also be discarded,

by substituting it using the optimality condition defining x∗.

Under the assumptions of Corollary 2.12, the large-scale assumption becomes
d ≥ (n+ 1)(N + 2)−N − p−1. For example, when considering methods where only
the output from a single oracle (among the n possible F (k)) is used at each iteration,
we have that p = (n− 1)(N + 1), which leads to d ≥ N + n+ 2.

Furthermore, for many standard performance measures such as objective function
accuracy FN−F∗ or distance to optimality ‖xN − x∗‖2E, one arbitrary point xi may be
fixed to zero because solutions to the SDP are invariant with respect to translations.

8This is due to the fact that no necessary and sufficient interpolation conditions for functions
admitting such an inexact oracle are known—that is, standard conditions are only necessary to
guarantee interpolability. Using necessary conditions that are not sufficient still allows obtaining
upper bounds on the worst-case behavior, but those may not be tight.

9This is a reasonable assumption, as every method using new information at each iteration will
necessarily satisfy it. This does not imply that the points xi themselves are linearly independent.
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This results then in the large-scale assumption d ≥ N + n+ 1. For n = 1, we recover
the standard d ≥ N + 2 appearing in the case of a single component in the objective
function [44].

The original SDP from Proposition 2.6 may be challenging to solve in practice,
because of its potentially large size on the one hand and because it may lack an
interior on the other hand. We observe that the simplified PEP described above
typically improves the situation for both issues, reducing the size of the problem and
solving in a lot of cases the issue of a lack of interior points.

3. Convex interpolation. In this section, we study convex interpolation prob-
lems for different standard classes of convex functions. The underlying motivation
is to obtain discrete characterizations of convex functions commonly arising in the
context of convex optimization via first-order methods. More specifically, the classes
of convex functions of interest for this section are all linearly Gram-representable
(see Definition 2.2). Therefore, using those classes within the performance estimation
framework will lead to tractable formulations providing tightness guarantees.

The main technical tools from this section are borrowed from convex analysis; we
refer to the seminal works [1, 19, 39, 40] for details.

3.1. Functional characteristics. Consider a proper, closed, and convex func-
tion f . The main characteristics of interest for us are the following, all commonly
appearing in the context of first-order convex optimization:

(a) Smoothness: there exists some L ∈ R++ ∪ {∞} such that the inequality
1
L‖g1 − g2‖E∗ ≤ ‖x1 − x2‖E holds for all pairs x1, x2 ∈ E and corresponding
subgradients g1, g2 ∈ E∗ (i.e., such that g1 ∈ ∂f(x1) and g2 ∈ ∂f(x2)).

(b) Strong convexity: there exists some µ∈R+ such that the function f(x)−µ2 ‖x‖
2
E

is convex.
(c) Gradient boundedness: there exists some M ∈R+∪{∞} such that ‖g‖E∗ ≤M

holds for all subgradients g ∈ E∗ (i.e., such that ∃x : g ∈ ∂f(x)).
(d) Domain boundedness: there exists some D ∈ R+ ∪ {∞} such that ‖x‖E ≤ D

holds for all x belonging to the domain {x ∈ E : f(x) <∞}.
Alternatively, domain and gradient boundedness can be specified in terms of diameters
instead of radii.

(c′) Gradient boundedness: there exists some M ∈ R+ ∪ {∞} such that the
inequality ‖g1 − g2‖E∗ ≤ M holds for all subgradients g1, g2 ∈ E∗ (i.e., such
that ∃x1, x2 : g1 ∈ ∂f(x1) and g2 ∈ ∂f(x2)).

(d′) Domain boundedness: there exists D ∈ R+ ∪ {∞} such that ‖x1 − x2‖E ≤ D
holds for all pairs x1, x2 belonging to the domain {x ∈ E : f(x) <∞}.

As some characteristics are incompatible with each other (e.g., gradient bounded-
ness is incompatible with strong convexity, domain boundedness is incompatible with
smoothness), we define the following three classes of functions combining specific pairs
of properties.

Definition 3.1. Let f : E→ R ∪ {∞} be a proper, closed, and convex function,
denoted by f ∈ F0,∞. We say that

• f ∈ Fµ,L(E) (L-smooth µ-strongly convex functions) if it satisfies conditions
(a) and (b) with µ < L;
• f ∈ CM,L(E) (L-smooth M -Lipschitz convex functions) if it satisfies condi-

tions (a) and (c); alternatively, f ∈ C′M,L(E) if it satisfies (a) and (c′);
• f ∈ SD,µ(E) (D-bounded µ-strongly convex functions) if it satisfies conditions

(b) and (d); alternatively f ∈ S ′D,µ(E) if it satisfies (b) and (d′).
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Note that boundedness and smoothness constants are allowed to take the value∞,
in order to allow the use of unbounded (domain or gradient) and nonsmooth functions
as well. We handle those using conventions 1/∞ = 0 and ∞− c =∞ for any c ∈ R.
By assuming µ < L, we exclude the classes FL,L(E) for L ≥ 0. Those only contain

quadratic functions of the form f(x) = L
2 ‖x‖

2
E + 〈b, x〉+ c for some b ∈ E∗ and c ∈ R,

for which it would be straightforward to obtain interpolation conditions.
A basic building block for the smooth convex interpolation conditions proposed

in [44] comes from Fenchel–Legendre conjugation. In particular, when considering
functions f in the class F0,∞(E), the relationship f ∈ Fµ,L(E) ⇔ f∗ ∈ F1/L,1/µ(E∗)
was intensively used to require smoothness of the convex interpolant. In the fol-
lowing, we additionally use for functions f in F0,∞(E) the duality correspondences
f ∈CM,L(E)⇔ f∗ ∈SM,1/L(E∗) and its variant f ∈C′M,L(E)⇔ f∗ ∈S ′M,1/L(E∗), in or-
der to include boundedness properties in the convex interpolating functions, along
with smoothness.

Theorem 3.2. Consider a function f ∈ F0,∞(E). We have f ∈ CM,∞(E) (resp.,
f ∈ C′M,∞(E)) if and only if f∗ ∈ SM,0(E∗) (resp., f∗ ∈ S ′M,0(E∗)).

Proof. This follows from the equivalence: g ∈ ∂f(x) ⇔ x ∈ ∂f∗(g) ⇔ f(x) +
f∗(g) = 〈g, x〉 that holds for every function f in F0,∞(E).

3.2. Interpolation conditions. In this section, we provide interpolation con-
ditions for the previously introduced three classes of functions. We start by recalling
the following known interpolation result [44, Theorem 6].10

Theorem 3.3. The set {(xi, gi, fi)}i∈I is Fµ,L-interpolable if and only if the fol-
lowing set of conditions holds for every pair of indices i ∈ I and j ∈ I:

fi − fj − 〈gj , xi − xj〉 ≥
1

2(1− µ/L)

(
1

L
‖gi − gj‖2E∗ + µ‖xi − xj‖2E

− 2
µ

L
〈gj − gi, xj − xi〉

)
.

In particular, the simpler interpolation conditions for closed, convex proper func-
tions (i.e., F0,∞(E) interpolation) are

(5) fi − fj − 〈gj , xi − xj〉 ≥ 0 ∀i, j ∈ I,

which will serve to develop our next interpolation conditions. We start with SD,µ(E)-
interpolability and later obtain CM,L(E)-interpolation conditions using conjugation.

Theorem 3.4. The set {(xi, gi, fi)}i∈I is SD,µ- (D-bounded, µ-strongly convex)
(resp., S ′D,µ-) interpolable if and only if the following set of conditions holds for every
pair of indices i ∈ I and j ∈ I:

fi − fj − 〈gj , xi − xj〉 ≥
µ

2
‖xi − xj‖2E,

‖xj‖E ≤ D (resp., ‖xj − xi‖E ≤ D).

10Theorem 3.3 is formally proven in [44] for the case of the standard inner product 〈x, y〉 = x>y
(and therefore also only for ‖.‖22). However, its proof can be rewritten in a completely straightforward
manner to obtain the desired result for general inner products on E and self-adjoint positive definite
linear operators B, and the corresponding induced primal and dual Euclidean norms.
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WORST-CASE PERFORMANCE OF FIRST-ORDER METHODS 1297

Proof. Every function f ∈ SD,µ(E) (resp., f ∈ S ′D,µ(E)) satisfies the conditions.
To prove that they are sufficient, consider the following construction:

f(x) =

{
maxi∈I

{
fi + 〈gi, x− xi〉+ µ

2 ‖x− xi‖
2
E

}
if x ∈ conv

(
{xi}i∈I

)
,

∞ elsewhere.

Observe that f is µ-strongly convex (convex domain, and maximum of µ-strongly
convex functions) and that it does interpolate the set {(xi, gi, fi)}i∈I . First, we have

f(xj) = max
i∈I

{
fi + 〈gi, xj − xi〉+

µ

2
‖xj − xi‖2E

}
≤ fj ,

using interpolation conditions. By noting that the maximum is bigger than taking
individually the component j, we also have that

max
i∈I

{
fi + 〈gi, xj − xi〉+

µ

2
‖xj − xi‖2E

}
≥ fj ,

which allows us to conclude that f(xj) = fj . To obtain that gj ∈ ∂f(xj), let us write

f(x) = max
i∈I

{
fi + 〈gi, x− xi〉+

µ

2
‖x− xi‖2E

}
≥ max

i∈I
{fi + 〈gi, x− xi〉}

≥ fj + 〈gj , x− xj〉.

Finally, note that conv({xi}i∈I) ⊆ BE(0, D), where BE(0, D) is the ball centered
at the origin with radius D according to norm ‖.‖E. Indeed, choosing z =

∑
i∈I λixi

with λi ≥ 0 and
∑
i∈I λi = 1, we have ‖z‖E ≤

∑
i∈I λi‖xi‖E ≤ D, and f has a bounded

domain of radius D. Hence {(xi, gi, fi)}i∈I is SD,µ-interpolable, which concludes the
proof for the SD,µ part.

To obtain the same result for S ′D,µ, note that ∀y, z ∈ conv({xi}i∈I), we can write
y =

∑
i λixi and z =

∑
i γixi with λi, γi ≥ 0 and

∑
i λi =

∑
i γi = 1. Hence,

‖y − z‖E ≤
∑
i λi
∑
j γj‖xi − xj‖E ≤ D.

This interpolation result can be used immediately to develop interpolation con-
ditions for the class of convex functions with bounded gradient, using the conjugate
duality between smoothness and strong convexity on the one hand and gradient and
domain boundedness on the other hand.

Theorem 3.5. The set {(xi, gi, fi)}i∈I is CM,L- (L-smooth with M -bounded sub-
gradients) (resp., C′M,L-) interpolable if and only if the following set of conditions
holds for every pair of indices i ∈ I and j ∈ I:

fi − fj − 〈gj , xi − xj〉 ≥
1

2L
‖gi − gj‖2E∗ ,(6)

‖gj‖E∗ ≤M (resp., ‖gj − gi‖E∗ ≤M).(7)

Proof. Note that a function f ∈ CM,L(E) (resp., f ∈ C′M,L(E)) interpolates the
set {(xi, gi, fi)}i∈I if and only if there exists a corresponding conjugate function
f∗ ∈ SM,1/L(E∗) (resp., f∗ ∈ S ′M,1/L(E∗)) interpolating the conjugate set
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1298 A. B. TAYLOR, J. M. HENDRICKX, F. GLINEUR

{(gi, xi, 〈gi, xi〉 − fi)}i∈I = {(x̃i, g̃i, f̃i)}i∈I (see section 3.1). Using interpolation con-
ditions from Theorem 3.4, such a conjugate function f∗ exists if and only if

f̃i − f̃j − 〈x̃i − x̃j , g̃j〉 ≥
1

2L
‖x̃i − x̃j‖2E∗ ,

‖x̃j‖E∗ ≤M (resp., ‖x̃j − x̃i‖E∗ ≤M),

which are respectively equivalent to conditions (6) and (7).

3.3. Indicator and support functions. The use of projection (to deal with
constraints) and regularization is so recurrent in optimization that we dedicate the
next lines to interpolation procedures specifically tailored to deal with them.

Indicator functions. In our setting, an indicator function is a closed convex func-
tion taking only values 0 and ∞, for which it can be shown that the domain must
be a closed convex set. As explained earlier, this class of functions is particularly
interesting when considering projection operators in the context of performance esti-
mation, as a proximal step over an indicator function is equivalent to a projection on
its domain.

Given such a proper and closed convex function i : E→ {0,∞}, we say that it is
a D-bounded indicator function (which we denote by f ∈ ID(E)—resp., f ∈ I ′D(E))
if there exists a radius (resp., a diameter) 0 ≤ D ≤ ∞ such that ‖x‖E ≤ D (resp.,
‖x1 − x2‖E ≤ D) holds for all x belonging to the domain {x : i(x) = 0} (resp., for all
x1, x2 belonging to the domain {x : i(x) = 0}).

This corresponds to a particular case of the SD,µ- (or S ′D,µ-) interpolation problem
with µ = 0. Note, however, that indicator function interpolation is not completely
straightforward from S ′D,µ-interpolation, as, for example, requiring the corresponding
interpolation constraints in addition to fi = 0 would not a priori guarantee that the
interpolated function from Theorem 3.4 would satisfy f(x) = 0 on dom f .

Theorem 3.6. The set {(xi, gi, fi)}i∈I is ID- (resp., I ′D-) interpolable, i.e., in-
terpolable by a D-bounded indicator, if and only if the following inequalities hold for
every pair of indices i ∈ I and j ∈ I:

fi = 0,

〈gj , xi − xj〉 ≤ 0,(8)

‖xi‖E ≤ D (resp.,‖xj − xi‖E ≤ D).

Proof. Any function f ∈ ID(E) (resp., f ∈ I ′D(E)) satisfies those conditions. To
prove that they are sufficient, let us construct a convex set whose indicator function
interpolates the set {(xi, gi, 0)}. That is, we construct a closed convex setQ containing
all xi’s, for which ‖x‖E ≤ D holds ∀x ∈ Q (resp., ‖x− y‖E ≤ D ∀x, y ∈ Q) and such
that 〈gi, x− xi〉 ≤ 0 holds ∀x ∈ Q.

We start with the simpler case D =∞, by considering the polyhedral set

Q = {x ∈ E | 〈aj , x〉 ≤ bj ∀j ∈ I}

with aj = gj and bj = 〈gj , xj〉. The construction guarantees that xi ∈ Q. Indeed, by
condition (8) we have 〈gj , xi〉 ≤ 〈gj , xj〉, which is equivalent to 〈aj , xi〉 ≤ bj using the
definitions of aj and bj , and therefore guarantees that xi ∈ Q.
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WORST-CASE PERFORMANCE OF FIRST-ORDER METHODS 1299

In order to add the boundedness requirement, we replace the setQ by the following
Q̃ = Q ∩ conv({xi}i∈I). This new set Q̃ is still convex (intersection of two convex
sets); it also trivially still satisfies inclusions xi ∈ Q̃ (which are by construction both
contained in Q and conv({xi}i)) and conditions 〈gi, x− xi〉 ≤ 0 ∀x ∈ Q̃ (since Q̃ ⊆ Q).
In addition, Q̃ has a radius bounded above by D, because D is an upper bound on
the radius (resp., diameter) of conv({xi}i∈I). It is therefore clear that the indicator
function IQ̃ ∈ ID(E) (resp., I ′D(E)) interpolates {(xi, gi, 0)}i∈I .

Support functions. It is a standard observation that support functions are convex
conjugates of indicator functions. Indeed, the support function for the closed convex
set Q ⊆ E is defined as

σQ(s) = sup
x∈Q
〈s, x〉 = sup

x∈E
〈s, x〉 − IQ(x).

Support functions are very commonly used in applications. In particular, all norms,
which are used for regularization, are support functions (e.g., the l1 norm is the
support function of the unit ball for ‖.‖∞).

Denote the set of support functions with an M -Lipschitz condition by I∗M (E)
(resp., I ′∗M (E)). Using conjugacy, interpolation conditions for indicator functions im-
mediately give us the equivalent result for support functions. Indeed, requiring a set
S = {(xi, gi, fi)}i∈I to be I∗M - (resp., I ′∗M -) interpolable is equivalent to requiring the
set S̃ = {(gi, xi, 〈gi, xi〉 − fi)}i∈I to be IM - (resp., I ′M -) interpolable, and we obtain
the following consequence of Theorem 3.6.

Corollary 3.7. The set {(xi, gi, fi)}i∈I is I∗M - (resp., I ′∗M -) interpolable, i.e.,
interpolable by a support function with M -bounded subgradients, if and only if the
following inequalities hold for every pair of indices i ∈ I and j ∈ I:

〈gi, xi〉 − fi = 0,

〈gi − gj , xj〉 ≤ 0,

‖gi‖E∗ ≤M (resp., ‖gi − gj‖E∗ ≤M).

3.4. Smooth nonconvex interpolation. In this short section, we derive in-
terpolation conditions for smooth, not necessarily convex, functions. Those condi-
tions are also linearly Gram-representable and can be used to obtain tight versions
of (f-PEP) for nonconvex optimization.

Definition 3.8. Let L ∈ R+. A differentiable function f : E → R ∪ {∞} is
L-smooth, denoted by f ∈ F−L,L(E)), if it satisfies the following condition ∀x, y ∈ E:

∣∣f(x) + 〈∇f(x), y − x〉 − f(y)
∣∣ ≤ L

2
‖x− y‖2E.

The following lemma will be used to derive interpolation conditions for
f ∈ F−L,L(E) from the smooth convex case.

Lemma 3.9. Let L ∈ R+, and consider a function f : E → R ∪ {∞}. We have

the equivalence f ∈ F−L,L(E)⇔ f + L
2 ‖x‖

2
E ∈ F0,2L(E).

Proof. Let f : E→ R∪{∞} and define h(x) = f(x) + L
2 ‖x‖

2
E. Since we have that

∇h(x) = ∇f(x) + LBx, it follows that, ∀x, y ∈ E,
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1300 A. B. TAYLOR, J. M. HENDRICKX, F. GLINEUR

f(x) + 〈∇f(x), y − x〉 − f(y) ≤ L

2
‖x− y‖2E ⇔ h(y) ≥ h(x) + 〈∇h(x), y − x〉,

−f(x)− 〈∇f(x), y − x〉+ f(y) ≤ L

2
‖x− y‖2E ⇔ h(y) ≤ h(x) + 〈∇h(x), y − x〉

+ L‖x− y‖2E,

where the equivalences are obtained by expressing f and ∇f in terms of h and ∇h
(or reciprocally), which proves our statement.

From Lemma 3.9 and Theorem 3.3, it is now straightforward to establish the
desired interpolation conditions.

Theorem 3.10. Let L ∈ R++, the set {(xi, gi, fi)}i∈I is F−L,L- (L-smooth-)
interpolable if and only if the following inequality holds ∀i, j ∈ I:

fi ≥ fj −
L

4
‖xi − xj‖2E +

1

2
〈gi + gj , xj − xi〉+

1

4L
‖gi − gj‖2E∗ .

Proof. As L is positive and finite, the statement follows from the equivalence
between F−L,L-interpolability of the set {(xi, gi, fi)}i∈I and F0,2L-interpolability of

the set {(xi, gi + LBxi, fi + L
2 ‖xi‖

2
E)}i∈I .

4. Algorithm analysis. In this section, we analytically and numerically study
different algorithms for solving variants of (CM) and compare our results with stan-
dard guarantees from the literature.11 We begin with an analytical study of a proximal
point algorithm (section 4.1). This is followed by a comparison between several stan-
dard variants of fast proximal gradient methods (section 4.2) using the PEP approach.
On the way, we propose an extension of the OGM proposed by Kim and Fessler [23].
Finally, we conclude by applying our framework to a CGM (section 4.4) and to two
alternate projections schemes (section 4.5). Those choices illustrate the applicability
of the approach for studying a large variety of methods and performance measures.

4.1. A proximal point algorithm. Consider a simple model with only one
convex (possibly nonsmooth) term in the objective function,

min
x∈E

F (x),

with F ∈ F0,∞(E). In this first example, we assume that the following proximal
operation is easy to compute for F and defines the next iterate (using a given step
size αk+1):

xk+1 = proxαk+1F
(xk) = argmin

x∈E

{
αk+1F (x) +

1

2
‖xk − x‖2E

}
.

Using an observation made in section 2.3, we see that iterations can also be written in
the form of an implicit method xk+1 = xk−αk+1B

−1gk+1, for some gk+1 ∈ ∂F (xk+1),
and hence belong to the class (FSLFOM).

11Note that most of the literature results are presented when B is the identity operator (and
hence E = E∗). We will nevertheless compare our slightly more general results with the standard
bounds from the literature (thus even when they are officially valid only for B being the identity)—we
recall that our results are valid for any self-adjoint positive definite linear operator B : E→ E∗ (see
Remark 2.10).
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WORST-CASE PERFORMANCE OF FIRST-ORDER METHODS 1301

For a recent overview and motivations concerning proximal algorithms, we refer
the reader to the work of Combettes and Pesquet12 [7] and to the review works of
Bertsekas [3] and Parikh and Boyd [36]. For a historical point of view on those
methods, we refer to the pioneer works of Moreau [26] and Rockafellar [38] and the
analysis of Güler [18].

Proximal point algorithm (PPA)
Input: F ∈ F0,∞(E), x0 ∈ E. Parameters: {αk}k≥1 with αk > 0.

For k = 1 : N

xk = proxαkF
(xk−1)

4.1.1. Convergence of PPA in function and gradient values. The stan-
dard convergence result for the proximal point algorithm is provided by Güler in [18,
Theorem 2.1]:

F (xN )− F∗ ≤
R2

2
∑N
k=1 αk

for any initial condition x0 satisfying ‖x0 − x∗‖E ≤ R. We are able to divide this
bound by 2 using the PEP approach.

Theorem 4.1. Let {αk}k be a sequence of positive step sizes and x0 some initial
iterate satisfying ‖x0 − x∗‖E ≤ R for some optimal point x∗. Any sequence {xk}k
generated by the proximal point algorithm with step sizes {αk}k applied to a function
F ∈ F0,∞(E) satisfies

F (xN )− F∗ ≤
R2

4
∑N
k=1 αk

and this bound cannot be improved, even in dimension one (dimE = dimE∗ = 1).

Proof. We first prove that the bound is tight. For given N , R and step sizes
{αk}1≤k≤N , we consider the l1-shaped one-dimensional function

F (x) =

√
BR|x|

2
∑N
k=1 αk

=
R‖x‖E

2
∑N
k=1 αk

,

for which x∗ = 0 and F∗ = 0. Applying N iterations of PPA with step sizes
{αk}1≤k≤N to this one-dimensional function, starting from x0 = − R√

B
(which sat-

isfies ‖x0 − x∗‖E ≤ R), leads to a sequence whose last iterate satisfies

F (xN )− F∗ =
R2

4
∑N
k=1 αk

.

Indeed, note that for x 6= 0, we have ∇F (x) = sign(x)
√
BR

2
∑N

k=1 αk
. Hence,

xN = x0 +B−1
N∑
k=1

αk

√
BR

2
∑N
k=1 αk

= − R

2
√
B
,

which implies the desired result.

12This work among others features a large list of known proximal operators.
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The proof of the upper bound is based on considering a simplified formula-
tion of (f-PEP) for the proximal point algorithm, computing its dual and exhibit-
ing a feasible solution to that dual. Because it is a little longer it is relegated to
Appendix A.

Let us consider another convergence measure based on the residual subgradient
norm. Studying a PEP similar to the one above, we obtained strong numerical evi-
dence for the following conjecture.

Conjecture 4.2. Let {αk}k be a sequence of positive step sizes and x0 some ini-
tial iterate satisfying ‖x0 − x∗‖E ≤ R for some optimal point x∗. For any sequence
{xk}k generated by the proximal point algorithm with step sizes {αk}k on a function
F ∈ F0,∞(E), there exists for every iterate xN a subgradient gN ∈ ∂F (xN ) such that

‖gN‖E∗ ≤
R∑N
k=1 αk

.

In particular, the choice gN = BxN−1−BxN

αN
is a subgradient satisfying the inequality.

Observe that this bound cannot be improved, as it is attained on the (one-

dimensional) l1-shaped function F (x) =
√
BR|x|∑N
k=1 αk

started from x0 = −R/
√
B. The

particular choice of subgradient suggested in the theorem corresponds to the subgra-
dient appearing in the proximal operation when written as an implicit subgradient
step.

This sort of convergence results in terms of the residual (sub)gradient norm is
particularly interesting when considering dual methods. In that case, the dual residual
gradient norm corresponds to the primal distance to feasibility (see, e.g., [9]).

4.2. Fast gradient methods. In this section, we consider the two-term com-
posite objective function

(9) min
x∈E

{
F (x) ≡ F (1)(x) + F (2)(x)

}
with F (1) ∈ F0,L(E) (smooth convex function) and F (2) ∈ F0,∞(E) (nonsmooth
convex function). We assume that gradients are easy to compute for F (1) and that
the proximal operation is easy to compute for F (2):

proxαF (2) (x) = argmin
y∈E

{
αF (2)(y) +

1

2
‖x− y‖2E

}
.

In order to approximatively solve (9), it is common to use different variants of fast
proximal gradient methods (FPGM). We numerically investigate the worst-case guar-
antees of two variants using different step size policies and propose new variants with
slightly better worst-case behaviors. Also, we highlight differences in the worst-case
performances obtained in the cases where F (2) = 0 (unconstrained smooth convex
minimization), F (2) ∈ I∞(E) (constrained smooth convex minimization), and the
general F (2) ∈ F0,∞(E) (nonsmooth composite convex minimization).

In the following, we call the standard fast proximal gradient method FPGM1
(FISTA [2]) and introduce FPGM2, a variant with slightly better guarantees, and
POGM, a novel proximal version of the OGM [23]. FPGM2 and POGM illustrate
how PEPs can be used in the development of new optimization algorithms; their study
in this paper remains, however, entirely numerical.
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4.2.1. Standard fast proximal gradient methods (FPMG1). The first
variants of accelerated proximal methods we are considering use a standard proximal
step after an explicit gradient step for generating the so-called primary sequence {yk}k.

Fast proximal gradient method (FPGM1)
Input: F (1) ∈ F0,L(E), F (2) ∈ F0,∞(E) x0 ∈ E, y0 = x0.

For k = 1 : N

yk = proxF (2)/L

(
xk−1 −

1

L
B−1∇F (1)(xk−1)

)
xk = yk + αk(yk − yk−1)

In this algorithm, we refer to coefficients αk as inertial parameters. We use

two standard variants: α
(a)
k = k−1

k+2—among others proposed in [43, 45]—and α
(b)
k =

θk−1−1
θk

, with

θk =
1 +

√
4θ2k−1 + 1

2

and θ0 = 1—see [2, 29, 45]. For both variants, the standard convergence result is (see,
e.g., [2, 43])

F (yN )− F∗ ≤
2LR2

(N + 1)2
(10)

for any initial iterate x0 such that ‖x0 − x∗‖E ≤ R. We numerically compare those
two variants of FPGM1 using (f-PEP) in Figure 1 (left plot). After 100 iterations,

both inertial parameter policies behave about the same way (parameters α
(b)
k perform

only about 2% better than α
(a)
k in terms of worst-case performances). We also ob-

serve that the behavior of both variants of FPGM1 is well captured by the standard
guarantee (10).

4.2.2. New fast proximal gradient methods (FPGM2). Secondary se-
quences {xk} are usually converging slightly faster than primary sequences {yk} in
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Fig. 1. Comparison of the worst-case convergence speed of the different variants of FPGM1
(left) and FPGM2 (right) for N ∈ {1, . . . , 100}, L = 1, and R = 1. Curves correspond to the different

inertial coefficient, namely, α
(a)
k (dashed, black) and α

(b)
k (red), and to the standard guarantee (10)

(blue).
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the unconstrained case (F (2) = 0), as observed in [23, 44]. However, some issues
may arise with the secondary sequences of FPGM1 when applied to constrained or
proximal problems: iterates may in some cases become infeasible, or the objective
may become unbounded (see Table 1). We therefore propose a new variant of a fast
proximal gradient method called FPGM2, also with two different step size policies,
that does not suffer from theses drawbacks. Part of the underlying motivation behind
FPGM2 is also the ability to generalize it later to the OGM.

Remark 4.3. The design of FPGM2 is based on two ideas: on the one hand, it
should be equivalent to the standard fast gradient method in the case of smooth
unconstrained convex minimization, and on the other hand, it should not move after
two consecutive iterates have reached the same optimal point for (9) (i.e., xk−1 =
xk = x∗ implies xk+1 = x∗).

Fast proximal gradient method 2 (FPGM2)
Input: F (1) ∈ F0,L(E), F (2) ∈ F0,∞(E) x0 ∈ E, z0 = y0 = x0.

For k = 1 : N

yk = xk−1 −
1

L
B−1∇F (1)(xk−1)

zk = yk + αk(yk − yk−1) +
αk

Lγk−1
(zk−1 − xk−1)

xk = proxγkF (2) (zk)

In this algorithm, we use the coefficients γk = αk+1
L . Note that we introduced

two intermediate sequences: on the one hand sequence {γk}k, corresponding to the
step sizes to be taken by the proximal steps, and on the other hand sequence {zk}k,
which keeps track of the subgradient used in the proximal steps (note that 1

γk
(zk−xk)

corresponds to the subgradient used in the proximal step from zk to xk). Although
FPGM2 may look more intricate than the classical FPGM1, it is in fact simpler, as it
involves only one sequence on which both implicit (proximal) and explicit (gradient)
steps are being taken. Indeed, explicit steps are taken using gradient values of F (1)

at xk, and subgradients used in the proximal steps are subgradients of F (2) also at
xk. This can also be seen by rewriting the iterations of FPGM2 using the secondary
sequence {xk}k only, in the following way:

xk+1 = xk + αk+1(xk − xk−1)

+
αk+1

L
B−1∇F (1)(xk−1)− 1

L
B−1∇F (1)(xk)− αk+1

L
B−1∇F (1)(xk)

+
αk+1

L
B−1∇̃F (2)(xk)− 1

L
B−1∇̃F (2)(xk+1)− αk+1

L
B−1∇̃F (2)(xk+1),

with ∇̃F (2)(xk) the subgradient of F (2) used in the proximal operation generating xk.
Comparing the different variants of FPGM2 on Figure 1 (right plot) leads to

the same conclusion as for FPGM1: inertial parameters α(b) perform slightly better
than α(a).

In Table 1, we report the different worst-case performance guarantees obtained
numerically for FPGM1 (for both sequences) and FPGM2 (for the better secondary
sequence only). We consider three situations: F (2) = 0 (unconstrained smooth con-
vex minimization), F (2) ∈ I∞(E) (constrained smooth convex minimization with
projected methods), and F (2) ∈ F0,∞(E) (nonsmooth composite convex minimization
with proximal methods).
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Table 1
Worst-case obtained for FPGM1 and FPGM2 with inertial coefficient αk = k−1

k+2
and N ≥ 1.

Type
F (yN )− F∗
(FPGM1)

F (xN )− F∗
(FPGM1)

F (xN )− F∗
(FPGM2)

Unconstrained LR2

2
4

N2+5N+6
LR2

2
4

N2+7N+4
LR2

2
4

N2+7N+4(F (2) = 0)

Constrained LR2

2
4

N2+5N+2
Infeasible LR2

2
4

N2+7N(F (2) ∈ I∞)

Nonsmooth LR2

2
4

N2+5N+2
Unbounded LR2

2
4

N2+7N(F (2) ∈ F0,∞)

All finite convergence results reported in the table actually correspond to spe-
cific worst-case functions that we could identify numerically, which means that they
provide rigorous lower bounds. After solving the corresponding PEPs numerically
(for L = R = 1 and 1 ≤ N ≤ 100), we conjecture them to be equal to the exact
worst-case guarantees.

We observe that the worst-case guarantees for FPGM2 are slightly better than for
FPGM1. Guarantees for the unconstrained case are slightly better than those for the
constrained and proximal cases, which are equal. Note that the secondary sequence
of FPGM1 is not guaranteed to be feasible in the constrained case and that the
corresponding objective value may be unbounded in the proximal case (for anyN ≥ 1).

The worst-case functions identified numerically for the unconstrained case are
Huber-shaped functions [44]. In the constrained case, we identified one-dimensional
linear optimization problems of the form minx≥0 cx as worst-cases, where c is a con-
stant defined by

c =

√
BR

2
∑N−1
j=0 h

(1)
N,j

where {h(1)N,j} correspond to the step sizes used in FPGM according to the notation
introduced in (FSLFOM), under the particular choice of tN,N = 1, and tN,j = 0
for all 0 ≤ j ≤ N − 1. Finally, for the proximal case, our worst-case has function
F (1)(x) = cx with the same c as above, and function F (2)(x) may be chosen equal to
zero for x ≥ 0 and to sx for x < 0, for any negative value of the slope s < 0.

4.3. A proximal optimized gradient method. In this section, we consider
again the nonsmooth composite convex minimization problem (9). In particular, we
investigate the possibility of obtaining an optimized method for this setting (i.e., a
method whose worst-case performance is the best possible).

Our proposal consists in extending the OGM developed by Kim and Fessler in [23],
which was originally tailored for smooth unconstrained minimization (F (2) = 0). In
the unconstrained smooth minimization setting, this first-order method was recently
shown in [13] to have the best achievable worst-case guarantee for the criterion
FN −F∗.

The new method we propose, called POGM, has been obtained by combining
ideas obtained from the original OGM [23] and the nonstandard placement of the
proximal operator used for speeding up the convergence of fast proximal gradient
methods (FPGM2). It was designed using the same two principles as FPGM2 (see
Remark 4.3): on the one hand, it is equivalent to OGM when applied to smooth
unconstrained convex minimization problems, and on the other hand, it remains at
an optimal point when it reaches one.
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Proximal optimized gradient method (POGM)
Input: F (1) ∈ F0,L(E), F (2) ∈ F0,∞(E), x0 ∈ E, y0 = x0, θ0 = 1.

For k = 1 : N

yk = xk−1 −
1

L
B−1∇F (1)(xk−1)

zk = yk +
θk−1 − 1

θk
(yk − yk−1) +

θk−1

θk
(yk − xk−1) +

θk−1 − 1

Lγk−1θk
(zk−1 − xk−1)

xk = proxγkF (2) (zk)

In this algorithm, we use the sequence γk = 1
L

2θk−1+θk−1
θk

and the inertial coeffi-

cients proposed in [23]:

θk =


1+
√

4θ2k−1+1

2 , i ≤ N − 1,
1+
√

8θ2k−1+1

2 , i = N.

Simply trying to generalize OGM using the standard proximal step on the primary
sequence {yi} (as for FPGM1) does not lead to a converging algorithm. We obtained
numerical evidence, i.e., worst-case functions showing that the worst-case bound for
this candidate algorithm does not decrease after each iteration (in other words, its
worst-case rate is not converging to zero). Therefore we have to introduce the same
idea used in FPGM2 concerning the place of the proximal operator.

We compare POGM to FPGM with inertial coefficients α
(b)
k in Figure 2. We

obtain worst-case performances about twice better for POGM when compared to
both FPGM1 and FPGM2 between 1 and 100 iterations. Also, we observe that the
bound for POGM (equivalent to OGM when F (2) = 0) is approximately 12% worse
than that for OGM [23] in the worst-case.

Of course, POGM suffers from the drawback of requiring the knowledge of the
number of iterations in advance (because the rule to compute the last coefficient θN
differs from the rule to compute all the previous ones). This practical disadvantage is
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Fig. 2. Comparison between the worst-case performances of FPGM1 (with inertial coefficients

α
(b)
k ) (red), FPGM2 (with inertial coefficients α

(b)
k ) (blue), POGM (black), and OGM (dashed,

black) for N ∈ {1, . . . , 100}, L = 1, and R = 1.
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not easily solved: if the last θN is updated with the same rule as all the previous co-
efficients, performance is degraded by a nonnegligible factor, rendering it even slower
than FPGM (note that this is already the case for smooth unconstrained minimiza-
tion [22]).

4.4. A conditional gradient method. Consider the constrained smooth con-
vex optimization problem

min
x∈Q

F (x)

with F ∈ F0,L(E) and Q ⊂ E a bounded and closed convex set. In that setting,
different ways exist for treating the constraint set Q. In the previous section, we
proposed to use fast gradient methods, which require the ability to project onto the
closed convex set Q. In this section, we rather consider the standard CGM (also
sometimes referred to as the Frank–Wolfe method), which originates from [16]. This
algorithm has the advantage of avoiding projections onto Q and performs instead
linear optimization on this set (which is typically easier when Q is a polyhedral set).

Conditional gradient method (CGM)
Input: F ∈ F0,L(E), closed convex Q ⊂ E with ‖x− y‖E ≤ D ∀x, y ∈
Q, x0 ∈ Q.

For k = 1 : N

yk = argmin
y∈Q

{〈∇F (xk−1), y − xk−1〉}

λk =
2

1 + k

xk = (1− λk)xk−1 + λkyk

The standard global convergence guarantee for this method (see, e.g., [20, Theo-
rem 1]) is

F (xN )− F∗ ≤
2LD2

N + 2
,

which we compare with the exact bound provided by PEP in Figure 3(a) (see
section 2.3, which shows that CGM fits into the (FSLFOM) format). The numer-
ical guarantees we obtained by solving the PEP for up to a hundred iterations are
between two and three times better than the standard guarantee.

4.5. Alternate projection and Dykstra methods. In this section, we nu-
merically investigate the difference between the worst-case behaviors of the standard
alternate projection method (APM) for finding a point in the intersection of two con-
vex sets and the Dykstra [5] method (DAPM) for finding the closest point in the
intersection of two convex sets. APM is a particular instance of subgradient-type
descent13 applied to the problem

(11) min
x∈E
{f(x) = max

i
‖x−ΠQi

(x)‖E},

13It can be shown that
x−ΠQk

(x)

||x−ΠQk
(x)|| is a subgradient of the function f(x) (at x such that

f(x) = ||x − ΠQk
(x)||). Therefore, in the case of two sets Q1, Q2, and assuming that x is feasi-

ble for one of the two sets (say, Q1), a projection onto the other one corresponds to a subgradient
step on f with step size ||x − ΠQ2 (x)||. Hence, APM is an instance of a subgradient method for
k > 1 (when xk is feasible for one of the two sets).
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(a) Worst-case performance of CGM (red)
and its theoretical guarante (4.4) (blue) for
N ∈ {1, . . . , 100}, L = 1 and D = 1.

10
0

10
1

10
2

10
−2

10
−1

10
0

Iteration count (log scale)

U
p
p
e
r 

b
o
u
n
d
 o

n
 d

is
ta

n
c
e
 t
o
 f
e
a
s
ib

ili
ty

 (
lo

g
 s

c
a
le

)

(b) Worst-case performance of APM (red),
DAPM (blue) and lower bound R√

N+1

valid for subgradient methods (dashed,
black), for N ∈ {1, . . . , 100} and R = 1.
.

Fig. 3. Numerical analysis of a CGM (left) and of two variants of alternate projections algo-
rithms (right).

whose objective function is convex and nonsmooth (with Lipschitz constant M = 1).
Therefore, its expected global convergence rate is O( 1√

N
) (see [15, Theorem A.1]). We

compare below the convergence of both APM and DAPM with the standard lower
bound for subgradient schemes MR√

N+1
as a reference.

Alternate projection method (APM)
Input: x0 ∈ E, convex sets Q1, Q2 ⊆ E, ‖x0 − x∗‖E ≤ R,
for some x∗ ∈ Q1 ∩Q2.

For k = 1 : N

xk = ΠQ2(ΠQ1(xk−1))

Dykstra alternate projection method (DAPM)
Input: x0 ∈ E, convex sets Q1, Q2 ⊆ E, ‖x0 − x∗‖E ≤ R,
for some x∗ ∈ Q1 ∩Q2. Initialize p0 = q0 = 0.

For k = 0 : N − 1

yk = ΠQ1(xk + pk)

pk+1 = xk + pk − yk
xi+1 = ΠQ2(yk + qk)

qk+1 = yk + qk − xk+1

The performance measure used is minx∈Q1
‖x− xN‖E = ‖xN −ΠQ1

(xN )‖E (not-
ing that xN ∈ Q2 always holds). We do not provide details on the corresponding
PEP here, as it is very similar to the previous sections. The results for APM and
DAPM are shown in Figure 3(b), where the (expected) convergence in O( 1√

N
) is

clearly obtained. Interestingly, DAPM converges slightly slower than APM (more
precisely, DAPM has a worst-case about 18% larger than APM), which is therefore
more advisable for finding a point in the intersection of two convex sets (in terms of
worst-case performance, when no additional structure is assumed). In addition, note
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that both APM and DAPM have a worst-case which is about twice better than the
standard lower bound for explicit nonsmooth schemes.

5. Conclusion. In this work, we presented a performance estimation approach
to analyze first-order algorithms for composite optimization problems. The results
of [44] were largely extended to handle both larger classes of (composite) objective
functions and larger classes of first-order algorithms (also in a more general setting
for handling pairs of conjugate norms).

Our contribution was essentially threefold: first, we developed specific interpo-
lation conditions for different classes of convex and nonconvex functions; then, we
exploited those interpolation conditions to formulate the exact worst-case problem
for fixed-step linear first-order methods, and finally we applied that methodology to
provide tight analyses for different first-order methods. Among others, we presented
a new analytical guarantee for the proximal point algorithm that is twice better than
previously known and improved the standard worst-case guarantee for the conditional
gradient method by more than a factor of two. On the way, we also proposed an ex-
tension of the optimized gradient method proposed by Kim and Fessler [23] that
incorporates a projection or a proximal operator.

As further research, we believe this methodology should be applied to refine anal-
yses of methods fitting in the context of fixed-step linear first-order methods, and
possibly extended to handle dynamic step size rules. To this end, a possibility is to
explore convex relaxations of the resulting possibly nonconvex performance estimation
problems. As an example, we believe it would be interesting to analyze algorithms
involving line-search, such as backtracking or Armijo–Wolfe procedures (a first step in
that direction is taken in [11], which study the worst-case behavior of steepest descent
with exact line-search). Moreover, it seems to us that the performance estimation ap-
proach could be used to refine the analyses of randomized coordinate descent-type
algorithms [32]. Performance estimation problems also opened the door for looking
toward optimized methods, as proposed by Kim and Fessler [23] for unconstrained
smooth convex minimization.

Finally, algorithmic analyses using performance estimation problems are intrinsi-
cally limited by our ability to solve semidefinite problems, both numerically (when the
number of iterations is large) or analytically (to obtain results valid for any number
of iterations). Therefore, any idea leading to (convex) programs that are easier to
solve while maintaining reasonable guarantees would be very advantageous.

Software. An easy-to-use MATLAB implementation of the approach is available
at https://github.com/AdrienTaylor/Performance-Estimation-Toolbox.

Appendix A. Proof of upper bound in Theorem 4.1. In order to ex-
press the corresponding PEP in the simplest form, we heavily rely on some straight-
forward simplifications of (2.1) (see Corollary 2.12 and Remark 2.4). Let us de-
note by PN the matrix containing the information harvested after N iterations:
PN = [g1 g2 . . . gN Bx0] (we use the notation gi for subgradients gi ∈ ∂F (xi)),
and by GN its corresponding Gram matrix (see section 2.1). Also, we introduce the
step size vectors mk that express each iterate xk in terms of x0 and the subgradients
{gi}1≤i≤N , that is, xk = PNmk (k = 0, . . . , N). Using the standard notation ei for
the unit vector having a single 1 as its ith component, this results in the following
explicit expressions for mk: mk = eN+1 −

∑k
i=1 αiei, along with m0 = eN+1 and

m∗ = 0 (where we assumed without loss of generality that x∗ = 0).
In order to perform the worst-case analysis for PPA, we now formulate the per-

formance estimation problem (f-PEP) as the following SDP, the simplified version
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of (2.1) where the xk’s (k = 1, . . . , N) have been substituted using the equation
defining the iterates xk = xk−1 − αkB−1gk:

max
GN∈SN+1,f1,...,fN ,f∗∈RN

fN − f∗, s.t. fj − fi + Tr(AijGN ) ≤ 0, i, j ∈ {1, . . . , N, ∗}
(PPA-PEP)

‖x0 − x∗‖2E ≤ R
2,

GN � 0,

with matrices 2Aij = ej(mi −mj)
>+ (mi −mj)e

>
j (where e∗ = 0) coming from the

nonsmooth convex interpolation inequalities (see condition (5)). In order to obtain
an analytical upper bound for PPA, we consider the Lagrangian dual to (PPA-PEP),
which is given by the following:

min
λij≥0,τ≥0

τR2 s.t. eN −
∑
i

∑
j 6=i

(λij − λji)ej = 0,(PPA-dPEP)

∑
i

∑
j 6=i

λijAij + τm0m
>
0 � 0

(where the constraint corresponding to f∗ can be discarded since it is clear that letting
f∗ = 0 does not change the optimal solution of (PPA-PEP)). Note that the set of
equality constraints can be assimilated to a set of flow constraints on a complete
directed graph. That is, considering a graph where the optimum and each iterate
correspond to nodes, each nonnegative λij corresponds to the flow on the edge going
from node j to node i (we choose this direction by convention). This flow constraint
imposes that the outgoing flow equals the ingoing flow for every node, except at the
node for final iterate N , where the outgoing flow should be equal to 1, and at the
optimum node, where the incoming flow should be equal to 1. We show that the
following choice is a feasible point of the dual (PPA-dPEP):

λi,i+1 =

i∑
k=1

αk

2
N∑
k=1

αk −
i∑

k=1

αk

, i ∈ {1, . . . , N − 1} ,

λ∗,i =

2αi
N∑
k=1

αk(
2
N∑
k=1

αk −
i∑

k=1

αk

)(
2
N∑
k=1

αk −
i−1∑
k=1

αk

) , i ∈ {1, . . . , N} ,

τ =
1

4
N∑
k=1

αk

,

and λij = 0 otherwise. First, we clearly have λij ≥ 0 and some basic computations
allow us to verify that the equality constraints from (PPA-dPEP) are satisfied:

λ∗,1 − λ1,2 = 0, λ∗,i + λi−1,i − λi,i+1 = 0 (i ∈ {2, . . . , N − 1}), λ∗,N + λN−1,N = 1.
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It remains to show that the corresponding dual matrix S is positive semidefinite.

2S =

N−1∑
i=1

2αi+1λi,i+1ei+1e
>
i+1 + 2τeN+1e

>
N+1

+

N∑
i=1

λ∗,i

ei(−eN+1 +

i∑
k=1

αkek

)>
+

(
−eN+1 +

i∑
k=1

αkek

)
e>i

 .
In order to reduce the number of indices to be used, we will note λi = λi,i+1 and
µi = λ∗,i. Then, using the equality constraints, we arrive at the following dual
matrix:

2S =



2α1λ1 α1µ2 α1µ3 . . . α1µN−1 α1µN −µ1

α1µ2 2α2λ2 α2µ3 . . . α2µN−1 α2µN −µ2

α1µ3 α2µ3 2α3λ3 . . . α3µN−1 α3µN −µ3

...
. . .

. . .
...

...
α1µN−1 α2µN−1 α3µN−1 . . . 2αN−1λN−1 αN−1µN −µN−1
α1µN α2µN α3µN . . . αN−1µN 2αN −µN
−µ1 −µ2 −µ3 . . . −µN−1 −µN 2τ


.

In order to prove S � 0, we first use a Schur complement and then show that the
resulting matrix is diagonally dominant with positive diagonal elements. After taking
the Schur complement (with respect to the lower right scalar component 2τ), we

obtain the matrix S̃:

S̃ =



2α1λ1 α1µ2 α1µ3 . . . α1µN−1 α1µN
α1µ2 2α2λ2 α2µ3 . . . α2µN−1 α2µN
α1µ3 α2µ3 2α3λ3 . . . α3µN−1 α3µN

...
. . .

. . .
...

α1µN−1 α2µN−1 α3µN−1 . . . 2αN−1λN−1 αN−1µN
α1µN α2µN α3µN . . . αN−1µN 2αN


− 1

2τ


µ1

µ2

...
µN



µ1

µ2

...
µN


>

.

The first step to show the diagonally dominant character of S̃ is to note that every
nondiagonal element of S̃ is nonpositive: αjµi − µiµj

2τ ≤ 0 ∀i 6= j. Indeed, this is
equivalent to writing this in the following form (µi > 0):

αj −
µj
2τ

= αj


(

2
∑N
k=1 αk −

∑i
k=1 αk

)(
2
∑N
k=1 αk −

∑i−1
k=1 αk

)
−
(

2
∑N
k=1 αk

)2(
2
∑N
k=1 αk −

∑i
k=1 αk

)(
2
∑N
k=1 αk −

∑i−1
k=1 αk

)
 ≤ 0,

since αk ≥ 0 by assumption. This allows us to discard the absolute values in the diag-
onal dominance criteria. Then, using the equality constraints, we obtain an expression
for the sum of all nondiagonal elements of line i of S̃:

µi

i−1∑
j=1

αj + αi

N∑
j=i+1

µj −
µi
2τ

∑
j 6=i

µj

=


µi

i−1∑
j=1

αj + αi(1− λi)− 1
2τ µi(1− µi) if i < N,

µN
N−1∑
j=1

αj − 1
2τ µN (1− µN ) if i = N.
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Using the values of µi, λi, and τ along with elementary computations allows us to
verify that ∀i ∈ {1, . . . , N},

−(µi
i−1∑
j=1

αj + αi(1− λi)− 1
2τ µi(1− µi)) = 2αiλi − µ2

i

2τ if i = 1, . . . , N − 1,

−(µi
i−1∑
j=1

αj − 1
2τ µi(1− µi)) = 2αi − µ2

i

2τ if i = N,

which implies diagonal dominance of S̃ (even more: the sum of the elements of each
line equals 0).
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