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Introduction

Generic convex optimization problem

min f(z)

Alex d'Aspremont Turing Institute, May 2017. 2/33



Introduction

Algorithms produce a sequence of iterates.

We only keep the last (or best) one. . .
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Introduction

Aitken’s A? [Aitken, 1927]. Given a sequence {si}r=1.... € R with limit s,,
and suppose
Spi1— S« = a (S — Sy), fork=1,...

We can compute a using

Sk+1 — Sk
Skt1— Sk = a (Sk — Sk—1) = a=
Sk — Sk—1
and get the limit s* by solving
Sk+1 — Sk
* *
Spr1— S = (s —s™)
Sk — Sk—1
which yields
2

Sk4+1 — 28k + Sk—1
This is Aitken’s A? and allows us to compute s, from {s; 1,5, 55 1}
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Introduction

Aitken’s A? [Aitken, 1927], again. Given a sequence {s}r=1... € R with
limit s,, and suppose that for k =1,...,

ag (Sk — Sx) + a1 (Ska1 —Sx) =0 and ag+a; =1 (normalization)
We have

(ao+a1) s« = aosk—1+ aisg

~"

0 = ao(sx— Sk—1) + a1(Sk+1 — Sk)

We get s* using

- T - - Sk+1 — Sk Sk — Sk—1
0  Sgy1— Sk Sk — Sk—1 S 0 51 Sh 1
—1 Sk Sk_1 - lai| = |0 & s =
0 1 1 ao 1 3k:+11_ Sk Sk _13k—1

Same formula as before, but generalizes to higher dimensions.
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Introduction

Convergence acceleration. Consider

we have

Alex d'Aspremont

k

Z koo T 0.785398 . .
— (27 4 1 4

(—nk koo (=1)! 2
k' G 2icomirny A
0 1 1.0000 _
1 -0.33333  0.66667 _
2 0.2 0.86667 0.79167
3 -0.14286  0.72381 0.78333
4 011111  0.83492 0.78631
5 -0.000900 0.74401 0.78492
6 0.076923  0.82093 0.78568
7 -0.066667 0.75427 0.78522
8 0.058824  0.81309 0.78552
0 -0.052632 0.76046 0.78531
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Introduction

Convergence acceleration.

m Similar results apply to sequences satisfying

using Aitken's ideas recursively.
= This produces Wynn’s e—algorithm [Wynn, 1956].
m See [Brezinski, 1977] for a survey on acceleration, extrapolation.
m Directly related to the Levinson-Durbin algo on AR processes.

= Vector case: focus on Minimal Polynomial Extrapolation [Sidi et al., 1986].

Overall: a simple postprocessing step.
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Minimal Polynomial Extrapolation

Quadratic example. Minimize

1 2

f(@) = | Bx — b

using the basic gradient algorithm, with

1
Lhk4+1 - — Tk — Z(BTBxk — b)

we get

A
since BT Bx* = b.

This means x;11 — x* follows a vector autoregressive process.

Alex d’'Aspremont Turing Institute, May 2017. 9/33



Minimal Polynomial Extrapolation

We have
k k

Z ci(x; —x*) = Z c;iAY(xo — x¥)
i=0 i=1
and setting 1%¢c = 1, yields

k
(Z cz-.ri> —x" =p(A)(xg — ™), where p(v) = Zle c;v"

1=0

m Setting ¢ such that p(A)(xo — z*) = 0, we would have
k
X" = Z CiXj
i=0

= Get the limit by averaging iterates (using weights depending on xy).
= We typically do not observe A (or x*).

m How do we extract ¢ from the iterates z.?
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Minimal Polynomial Extrapolation

We have

T —Tp—1 = (rp—2a") — (xp_1 — ")

= (A-DA" Yzo—2%)

hence if p(A) = 0, we must have

k
Z cilxi—xi1) = (A—Dp(A)(zg—2") =0

1=1

so if (A —I) is nonsingular, the coefficient vector ¢ solves the linear system

)
Zf 16’0(3j ri—1) =0

k
\ D ie1Ci =1

and p(-) is the minimal polynomial of A w.r.t. (xg — x¥).
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Approximate Minimal Polynomial Extrapolation

Approximate MPE.

m For k smaller than the degree of the minimal polynomial, we find ¢ that
minimizes the residual

1A = Dp(A)(zo — 27)||l2 =

k
Z Cz'(l’z' — 5137;—1)
i=1

2

» Setting U € R™***1 with U; = 2,41 — x;, this means solving

c* = argmin [|Uc||» (AMPE)

17c=1

in the variable ¢ € RF L.

= Also known as Eddy-Mesina method [Mesina, 1977, Eddy, 1979] or Reduced
Rank Extrapolation with arbitrary & (see [Smith et al., 1987, §10]).
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Uniform Bound

Chebyshev polynomials. Crude bound on ||Uc*||2 using Chebyshev polynomials,
to bound error as a function of &k, with

= |-k U

k * *
sz':ocixi_x )

(I — A7, lp(A) (21 — 20)]l2

2

IA

We have

Ip(A)l2 lI(z1 = z0)l2

= max [p(A)] [[(z1 —zo)|]2

Ip(A)(z1 = z0) |2

IA

where 0 < \; < o are the eigenvalues of A. It suffices to find p(-) € Rg|z] solving

inf sup  |p(v
{peRy[z]: p(1)=1} ,e0,0] p(v)

Explicit solution using modified Chebyshev polynomials.
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Uniform Bound using Chebyshev Polynomials

0.9
0.8
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-0.1, 1

Tk(CIZ, O')

Chebyshev polynomials T5(x, o) and T5(x,0) for x € [0,1] and o = 0.85.
The maximum value of T on [0, o] decreases geometrically fast when k grows.

Alex d'Aspremont Turing Institute, May 2017. 14/33



Approximate Minimal Polynomial Extrapolation

Proposition [Scieur, d’Aspremont, and Bach, 2016]

AMPE convergence. Let A be symmetric, 0 < A =< ol with o <1 and c* be
the solution of (AMPE). Then

k

* *
E C;Ti— X

1=0

2¢k
1 + C2k

< k(A =1T) lzo — 272 (1)

2

where k(A — I) is the condition number of the matrix A — I and ( is given by

1—\/1—0<
p— O‘7
1++v1—0

¢ (2)

Typically, 0 = 1 — /L (gradient method) so the convergence rate is

< K(A— 1) (W)k o — 2

1++/ /L

k’ *k *k
HDZO C, Ly — X

2
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Approximate Minimal Polynomial Extrapolation

AMPE versus Nesterov, conjugate gradient.

m Key difference with conjugate gradient: we do not observe A. ..

m Chebyshev polynomials satisfy a two-step recurrence. For quadratic
minimization using the gradient method:

[ Zk_1 = Ye—1 — %(Byk—l —b)

) g1 (22k—1 ) Qg2
Yk = —Yk—-1 | — Yk—2
\ QL o 0953

where o, = Q?T"ozk_l — Qf—9

m Nesterov's acceleration recursively computes a similar polynomial with
Rk—1 = Yk—1 — %(Byk—1 — b)
Yk = 2k—1 + Br(2p—1 — 21-2),

see also [Hardt, 2013].
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Approximate Minimal Polynomial Extrapolation

Accelerating optimization algorithms. For gradient descent, we have

1

53k:-|—1 = Tk — zvf(i’k)

m This means Ty, 1 — 2% 1= A(Zp — 2%) + O(||Z — *||5) where
A=p- 2 V2 f(x*)
p— L €T .

meaning that || A||2 <1 — £, whenever uI < V?f(z) < LI.

m Approximation error is a sum of three terms

k k k

k
Z 52532 —z" S Z C;l; — x* + Z(éz — CZ')ZC Z 5

1=0 2 J=0 2, =0 1=0 2,

AMPE Stability Nonlinearity

Stability is key here.
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Approximate Minimal Polynomial Extrapolation

Stability.

m The iterations span a Krylov subspace
le — Spal {U(), AU(), ceey Ak_on}

so the matrix U in AMPE is a Krylov matrix.

= Similar to Hankel or Toeplitz case. U?'U has a condition number typically
growing exponentially with dimension [Tyrtyshnikov, 1994].

m In fact, the Hankel, Toeplitz and Krylov problems are directly connected, hence
the link with Levinson-Durbin [Heinig and Rost, 2011].

m For generic optimization problems, eigenvalues are perturbed by deviations
from the linear model, which can make the situation even worse.

Be wise, regularize . . .
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Regularized Minimal Polynomial Extrapolation

Regularized AMPE. Add a regularization term to AMPE.

= Regularized formulation of problem (AMPE),

minimize ¢ (UTU + \I)c

subject to 1'c=1 (RMPE)
m Solution given by a linear system of size k£ + 1.
. (UTU + XD~ 11
Cx = ~ (3)
17(UTU + A1)~ 11
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Regularized Minimal Polynomial Extrapolation

Regularized AMPE.

Proposition [Scieur et al., 2016]

Stability Let ¢ be the solution of problem (RMPE). Then the solution of
problem (RMPE) for the perturbed matrix U = U + E is given by c} + Acy where

1Pl
A\

|Acxlle < lexllz

with P = UTU — UTU the perturbation matrix.
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Regularized Minimal Polynomial Extrapolation

RMPE algorithm.

Input: Sequence {xg, x1, ..., Tx11}, parameter A > 0
1. Form U = [x1 — xg, ..., Tha1 — Tk
2. Solve the linear system (UXU + M)z =1
3. Set ¢ = 2/(211)

Output: Return Zf:o c;x;, approximating the optimum x*
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Regularized Minimal Polynomial Extrapolation

Regularized AMPE. Define

{q€Rg([z]: q z€|0,0]

Sty 2 ain e (- 2)a() +alal )

Proposition [Scieur et al., 2016]

Error bounds Let matrices X = [z, %1,...,%x], X = [€o, %1, ..., Zk] and scalar
k= |[(A—1)"1||2. Suppose ¢ solves problem (RMPE) and assume A = g'(z*)
symmetric with 0 < A < ol Where o < 1. Let us write the perturbation matrices

P=UTU — UTU and € = (X — X). Then
ok * * z G
IXé& —z*|l2 < C(E,P,A) S(k, M |lzo — x*(|3)? |lzo — =*[|2
where
1

C(E,P,\) = (%24— 3 <1+ ||f;\||2> (||g”2+/€|2{)/|;>2>2
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Regularized Minimal Polynomial Extrapolation

On the gradient method. Setting for instance L = 100, u = 10, M = 1071,
|z — z*||]2 = 10~* and finally A\ = || P||2.

10 2 :
N == Grad.
— Nest.
= — == RMPE
O 15¢
| -5 +
10 ¢ (@)
o T
= Y
Ny Q1 = " " " ”
< :
D
S5 10° 0]
o
G:); W) 0.5¢
“©
> -7
10 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
k k

Left: Relative value for the regularization parameter \ used in the theoretical
bound. Right: Convergence speedup relative to the gradient method, for
Nesterov's accelerated method and the theoretical RMPE.
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Regularized Minimal Polynomial Extrapolation

Proposition [Scieur et al., 2016]

Asymptotic acceleration Using the gradient method with stepsize in |0, %[ on

a L-smooth, u-strongly convex function f with Lipschitz-continuous Hessian of
constant M .

lzo — 27|

1/2
ok * (1+%)2 QCk
X2 — 2 < <1+ T e

with

Czl—\/,u/L
1++/u/L

for ||xo — a*|| small enough, where A = || P||2 and r = <% is the condition number
of the function f(x).

We (asymptotically) recover the accelerated rate in [Nesterov, 1983].
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Regularized Minimal Polynomial Extrapolation

Complexity, online mode.

s Cholesky updates. Given the Cholesky factorization LLT = UTU + A\ and a
new vector u,

. UT(7+>\I ﬁTU_|_

T, LT: L 0 LT a _ -~
+ al” bl |0 b (UTup)t wduy + A

the solutions a and b are
a=L"0%,, b=aTa+

= The complexity of an update at iteration i is O(in + i?), so the overall
complexity after k iterations is

O(nk* + k%)

In the experiments that follow, k& is typically 5. . .
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Regularized Minimal Polynomial Extrapolation

Smooth functions. Suppose f is not strongly convex.

m [he function -
min f-(x) £ f(2) + 5l
has a Lipschitz continuous gradient with parameter L + ¢/D? and is strongly

convex with parameter £/D?.

m Accelerated algorithm converge with a linear rate, with a bound equivalent to

\/ LD?2
1+ ,
g

which matches the optimal complexity bound for smooth functions.

Handling the strongly convex case, allows us to produce bounds in the smooth
case, on paper. . .
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Numerical Results

0L 0L
—~ 10 —~ 10
3 )
=3¢ Gradient =3¢ Gradient
= =lt= Nesterov = =3it= Nesterov
| == Nest. + backt. | <= Nest. + backt.
Py -0~ RMPE 5 g -0~ RMPE 5 >
<2 5|/~ RMPE 5 + LS < 5 == RMPE 5 + LS
8 10 8 107
N—" N—"
S— S—
: x : O—{}———{1-
0 2 4 6 8 10 0 500 1000 1500
: x10* _
Gradient oracle calls CPU Time (sec.)

Logistic regression with /5 regularizartion, on Madelon Dataset (500 features,
2000 data points), solved using several algorithms. The penalty parameter has
been set to 10? in order to have a condition number equal to 1.2 x 10”.
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Numerical Results

—~ T
< :\/ =3¢ Gradient
== Nesterov
| | == Nest. + backt.
s ) Py =0- RMPE 5
gﬂ 10 < 1073 == RMPE 5 + LS |
N =3¢ Gradient \.H/
S~ =it= Nesterov S~
== Nest. + backt.
-0~ RMPE 5
1070 {[-o- RMPE 5+ LTS 10710
0 200 400 600 800 1000 0 20 40 60 80 100
Gradient oracle calls CPU Time (sec.)

Logistic regression on Sido0 Dataset (4932 features, 12678 data points). Penalty
parameter 7 = 10?, so the condition number is equal to 1.5 x 10°.
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Numerical Results

|
10° |
~—~
*
=
N——"
S~
| 10° ¢}
~—~
gﬁ Gradient
~— Nesterov
R 107 RMPE 5
AMPE 5
0 2 4 6 8 10

4
Gradient oracle calls **°

Logistic regression on Madelon UCI Dataset, solved using the gradient method,
Nesterov's method and AMPE (i.e. RMPE with A = 0). The condition number is
equal to 1.2 x 102. We see that without regularization, AMPE becomes unstable
as [[(UTU)Y||, gets too large.
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Conclusion

Postprocessing works.

s Simple postprocessing step.
m Marginal complexity, can be performed in parallel.
m Significant convergence speedup over optimal methods.

m Adaptive. Does not need knowledge of smoothness parameters.

Work in progress. . .

m Extrapolating accelerated methods.
m Constrained problems.
m Better handling of smooth functions.
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Open problems

m Regularization. How do we account for the fact that we are estimating the
limit of a VAR sequence with a fixed point?

m The VAR matrix A is formed implicitly, but we have some information on its
spectrum through smoothness.

m Explicit bounds on the regularized Chebyshev problem,

S(k,a) = min {max 1 —x)q(x 2—|—aq2}.
(k, ) e D) A (1 —z)q(z))” + aflql2

Preprint on ArXiv:1606.04133 and NIPS 2016.
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