Regularized Nonlinear Acceleration.

Alexandre d'Aspremont, CNRS & D.I. ENS.

with Damien Scieur & Francis Bach.

Support from ERC SIPA and ITN MacSeNet.

Generic convex optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

Algorithms produce a **sequence** of iterates.

We only keep the last (or best) one. . .

Aitken's Δ^2 [Aitken, 1927]. Given a sequence $\{s_k\}_{k=1,...} \in \mathbb{R}^{\mathbb{N}}$ with limit s_* , and suppose

$$s_{k+1} - s_* = a(s_k - s_*), \text{ for } k = 1, \dots$$

We can compute a using

$$s_{k+1} - s_k = a (s_k - s_{k-1})$$
 \Rightarrow $a = \frac{s_{k+1} - s_k}{s_k - s_{k-1}}$

and get the limit s^* by solving

$$s_{k+1} - s^* = \frac{s_{k+1} - s_k}{s_k - s_{k-1}} (s_k - s^*)$$

which yields

$$s^* = \frac{s_{k-1}s_{k+1} - s_k^2}{s_{k+1} - 2s_k + s_{k-1}}$$

This is **Aitken's** Δ^2 and allows us to **compute** s_* from $\{s_{k+1}, s_k, s_{k-1}\}$.

Aitken's Δ^2 [Aitken, 1927], again. Given a sequence $\{s_k\}_{k=1,...} \in \mathbb{R}^{\mathbb{N}}$ with limit s_* , and suppose that for k=1,...,

$$a_0(s_k - s_*) + a_1(s_{k+1} - s_*) = 0$$
 and $a_0 + a_1 = 1$ (normalization)

We have

$$\underbrace{(a_0 + a_1)}_{=1} \quad s_* = a_0 s_{k-1} + a_1 s_k$$
$$0 = a_0 (s_k - s_{k-1}) + a_1 (s_{k+1} - s_k)$$

We get s^* using

$$\begin{bmatrix} 0 & s_{k+1} - s_k & s_k - s_{k-1} \\ -1 & s_k & s_{k-1} \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} s^* \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \Leftrightarrow \quad s^* = \frac{\begin{vmatrix} s_{k+1} - s_k & s_k - s_{k-1} \\ s_k & s_{k-1} \\ \hline \begin{vmatrix} s_{k+1} - s_k & s_k - s_{k-1} \\ \hline s_{k+1} - s_k & s_k - s_{k-1} \\ \hline 1 & 1 \end{bmatrix}$$

Same formula as before, but generalizes to higher dimensions.

Convergence acceleration. Consider

$$s_k = \sum_{i=0}^k \frac{(-1)^i}{(2i+1)} \xrightarrow{k \to \infty} \frac{\pi}{4} = 0.785398\dots$$

we have

$\underline{}$	$\frac{(-1)^k}{(2k+1)}$	$\sum_{i=0}^{k} \frac{(-1)^i}{(2i+1)}$	Δ^2
0	1	1.0000	_
1	-0.33333	0.66667	_
2	0.2	0.86667	0.7 9167
3	-0.14286	0.7 2381	0.78 333
4	0.11111	0.83492	0.78 631
5	-0.090909	0.7 4401	0.78 492
6	0.076923	0.82093	0.785 68
7	-0.066667	0.7 5427	0.785 22
8	0.058824	0.81309	0.785 52
9	-0.052632	0.7 6046	0.7853 1

Convergence acceleration.

Similar results apply to sequences satisfying

$$\sum_{i=0}^{k} a_i (s_{n+i} - s_*) = 0$$

using Aitken's ideas recursively.

- This produces Wynn's ε -algorithm [Wynn, 1956].
- See [Brezinski, 1977] for a survey on acceleration, extrapolation.
- Directly related to the Levinson-Durbin algo on AR processes.
- Vector case: focus on Minimal Polynomial Extrapolation [Sidi et al., 1986].

Overall: a simple **postprocessing** step.

Outline

- Introduction
- Minimal Polynomial Extrapolation
- Regularized MPE
- Numerical results

Minimal Polynomial Extrapolation

Quadratic example. Minimize

$$f(x) = \frac{1}{2} ||Bx - b||_2^2$$

using the basic gradient algorithm, with

$$x_{k+1} := x_k - \frac{1}{L}(B^T B x_k - b).$$

we get

$$x_{k+1} - x^* := \underbrace{\left(\mathbf{I} - \frac{1}{L}B^TB\right)}_{A}(x_k - x^*)$$

since $B^T B x^* = b$.

This means $x_{k+1} - x^*$ follows a vector autoregressive process.

Minimal Polynomial Extrapolation

We have

$$\sum_{i=0}^{k} c_i(x_i - x^*) = \sum_{i=1}^{k} c_i A^i(x_0 - x^*)$$

and setting $\mathbf{1}^T c = 1$, yields

$$\left(\sum_{i=0}^{k} c_i x_i\right) - x^* = p(A)(x_0 - x^*), \text{ where } p(v) = \sum_{i=1}^{k} c_i v^i$$

■ Setting c such that $p(A)(x_0 - x^*) = 0$, we would have

$$\mathbf{x}^* = \sum_{\mathbf{i}=0}^{\mathbf{k}} \mathbf{c_i} \mathbf{x_i}$$

- Get the limit by averaging iterates (using weights depending on x_k).
- We typically do not observe A (or x^*).
- ullet How do we extract c from the iterates x_k ?

Minimal Polynomial Extrapolation

We have

$$x_k - x_{k-1} = (x_k - x^*) - (x_{k-1} - x^*)$$
$$= (A - \mathbf{I})A^{k-1}(x_0 - x^*)$$

hence if p(A) = 0, we must have

$$\sum_{i=1}^{k} c_i(x_i - x_{i-1}) = (A - \mathbf{I})p(A)(x_0 - x^*) = 0$$

so if $(A - \mathbf{I})$ is nonsingular, the coefficient vector c solves the **linear system**

$$\begin{cases} \sum_{i=1}^{k} c_i(x_i - x_{i-1}) = 0 \\ \sum_{i=1}^{k} c_i = 1 \end{cases}$$

and $p(\cdot)$ is the **minimal polynomial** of A w.r.t. $(x_0 - x^*)$.

Approximate MPE.

For k smaller than the degree of the minimal polynomial, we find c that minimizes the residual

$$\|(A - \mathbf{I})p(A)(x_0 - x^*)\|_2 = \left\| \sum_{i=1}^k c_i(x_i - x_{i-1}) \right\|_2$$

■ Setting $U \in \mathbb{R}^{n \times k+1}$, with $U_i = x_{i+1} - x_i$, this means solving

$$c^* \triangleq \underset{\mathbf{1}^T c = 1}{\operatorname{argmin}} \|Uc\|_2 \tag{AMPE}$$

in the variable $c \in \mathbb{R}^{k+1}$.

■ Also known as Eddy-Mešina method [Mešina, 1977, Eddy, 1979] or Reduced Rank Extrapolation with arbitrary k (see [Smith et al., 1987, $\S 10$]).

Uniform Bound

Chebyshev polynomials. Crude bound on $||Uc^*||_2$ using Chebyshev polynomials, to bound error as a function of k, with

$$\left\| \sum_{i=0}^{k} c_{i}^{*} x_{i} - x^{*} \right\|_{2} = \left\| (I - A)^{-1} \sum_{i=0}^{k} c_{i}^{*} U_{i} \right\|_{2}$$

$$\leq \left\| (I - A)^{-1} \right\|_{2} \left\| p(A)(x_{1} - x_{0}) \right\|_{2}$$

We have

$$||p(A)(x_1 - x_0)||_2 \le ||p(A)||_2 ||(x_1 - x_0)||_2$$
$$= \max_{i=1,\dots,n} |p(\lambda_i)| ||(x_1 - x_0)||_2$$

where $0 \le \lambda_i \le \sigma$ are the eigenvalues of A. It suffices to find $p(\cdot) \in \mathbb{R}_k[x]$ solving

$$\inf_{\{p \in \mathbb{R}_k[x]: p(1)=1\}} \sup_{v \in [0,\sigma]} |p(v)|$$

Explicit solution using modified Chebyshev polynomials.

Uniform Bound using Chebyshev Polynomials

Chebyshev polynomials $T_3(x,\sigma)$ and $T_5(x,\sigma)$ for $x \in [0,1]$ and $\sigma = 0.85$. The maximum value of T_k on $[0,\sigma]$ decreases geometrically fast when k grows.

Proposition [Scieur, d'Aspremont, and Bach, 2016]

AMPE convergence. Let A be symmetric, $0 \leq A \leq \sigma I$ with $\sigma < 1$ and c^* be the solution of (AMPE). Then

$$\left\| \sum_{i=0}^{k} c_i^* x_i - x^* \right\|_2 \le \kappa (A - I) \frac{2\zeta^k}{1 + \zeta^{2k}} \|x_0 - x^*\|_2 \tag{1}$$

where $\kappa(A-I)$ is the condition number of the matrix A-I and ζ is given by

$$\zeta = \frac{1 - \sqrt{1 - \sigma}}{1 + \sqrt{1 - \sigma}} < \sigma,\tag{2}$$

Typically, $\sigma=1-\mu/L$ (gradient method) so the convergence rate is

$$\left\| \sum_{i=0}^{k} c_i^* x_i - x^* \right\|_2 \le \kappa (A - I) \left(\frac{1 - \sqrt{\mu/L}}{1 + \sqrt{\mu/L}} \right)^k \|x_0 - x^*\|_2$$

AMPE versus Nesterov, conjugate gradient.

- Key difference with conjugate gradient: we do not observe $A.\ .\ .$
- Chebyshev polynomials satisfy a two-step recurrence. For quadratic minimization using the gradient method:

$$\begin{cases} z_{k-1} = y_{k-1} - \frac{1}{L}(By_{k-1} - b) \\ y_k = \frac{\alpha_{k-1}}{\alpha_k} \left(\frac{2z_{k-1}}{\sigma} - y_{k-1} \right) - \frac{\alpha_{k-2}}{\alpha_k} y_{k-2} \end{cases}$$

where
$$\alpha_k = \frac{2-\sigma}{\sigma}\alpha_{k-1} - \alpha_{k-2}$$

Nesterov's acceleration recursively computes a similar polynomial with

$$\begin{cases} z_{k-1} = y_{k-1} - \frac{1}{L}(By_{k-1} - b) \\ y_k = z_{k-1} + \beta_k(z_{k-1} - z_{k-2}), \end{cases}$$

see also [Hardt, 2013].

Accelerating optimization algorithms. For gradient descent, we have

$$\tilde{x}_{k+1} := \tilde{x}_k - \frac{1}{L} \nabla f(\tilde{x}_k)$$

■ This means $\tilde{x}_{k+1} - x^* := A(\tilde{x}_k - x^*) + O(\|\tilde{x}_k - x^*\|_2^2)$ where

$$A = I - \frac{1}{L} \nabla^2 f(x^*),$$

meaning that $||A||_2 \leq 1 - \frac{\mu}{L}$, whenever $\mu I \leq \nabla^2 f(x) \leq LI$.

Approximation error is a sum of three terms

$$\left\| \sum_{i=0}^k \tilde{c}_i \tilde{x}_i - x^* \right\|_2 \leq \underbrace{\left\| \sum_{i=0}^k c_i x_i - x^* \right\|_2}_{\text{AMPE}} + \underbrace{\left\| \sum_{i=0}^k (\tilde{c}_i - c_i) x_i \right\|_2}_{\text{Stability}} + \underbrace{\left\| \sum_{i=0}^k \tilde{c}_i (\tilde{x}_i - x_i) \right\|_2}_{\text{Nonlinearity}}$$

Stability is key here.

Stability.

The iterations span a Krylov subspace

$$\mathcal{K}_k = \text{span} \{U_0, AU_0, ..., A^{k-1}U_0\}$$

so the matrix U in AMPE is a Krylov matrix.

- Similar to **Hankel or Toeplitz** case. U^TU has a condition number typically growing exponentially with dimension [Tyrtyshnikov, 1994].
- In fact, the Hankel, Toeplitz and Krylov problems are directly connected, hence the link with Levinson-Durbin [Heinig and Rost, 2011].
- For generic optimization problems, eigenvalues are perturbed by deviations from the linear model, which can make the situation even worse.

Be wise, regularize . . .

Outline

- Introduction
- Minimal Polynomial Extrapolation
- Regularized MPE
- Numerical results

Regularized AMPE. Add a regularization term to AMPE.

Regularized formulation of problem (AMPE),

minimize
$$c^T(U^TU + \lambda I)c$$
 subject to $\mathbf{1}^Tc = 1$ (RMPE)

• Solution given by a linear system of size k+1.

$$c_{\lambda}^* = \frac{(U^T U + \lambda I)^{-1} \mathbf{1}}{\mathbf{1}^T (U^T U + \lambda I)^{-1} \mathbf{1}}$$

$$\tag{3}$$

Regularized AMPE.

Proposition [Scieur et al., 2016]

Stability Let c_{λ}^* be the solution of problem (RMPE). Then the solution of problem (RMPE) for the perturbed matrix $\tilde{U} = U + E$ is given by $c_{\lambda}^* + \Delta c_{\lambda}$ where

$$\|\Delta c_{\lambda}\|_{2} \leq \frac{\|P\|_{2}}{\lambda} \|c_{\lambda}^{*}\|_{2}$$

with $P = \tilde{U}^T \tilde{U} - U^T U$ the perturbation matrix.

RMPE algorithm.

Input: Sequence $\{x_0, x_1, ..., x_{k+1}\}$, parameter $\lambda > 0$

- 1: Form $U = [x_1 x_0, ..., x_{k+1} x_k]$
- 2: Solve the linear system $(U^TU + \lambda I)z = \mathbf{1}$
- 3: Set $c=z/(z^T\mathbf{1})$

Output: Return $\sum_{i=0}^{k} c_i x_i$, approximating the optimum x^*

Regularized AMPE. Define

$$S(k,\alpha) \triangleq \min_{\{q \in \mathbb{R}_k[x]: q(1)=1\}} \left\{ \max_{x \in [0,\sigma]} ((1-x)q(x))^2 + \alpha ||q||_2^2 \right\},\,$$

Proposition [Scieur et al., 2016]

Error bounds Let matrices $X = [x_0, x_1, ..., x_k]$, $\tilde{X} = [x_0, \tilde{x}_1, ..., \tilde{x}_k]$ and scalar $\kappa = \|(A - I)^{-1}\|_2$. Suppose \tilde{c}^*_{λ} solves problem (RMPE) and assume $A = g'(x^*)$ symmetric with $0 \leq A \leq \sigma I$ where $\sigma < 1$. Let us write the perturbation matrices $P = \tilde{U}^T \tilde{U} - U^T U$ and $\mathcal{E} = (X - \tilde{X})$. Then

$$\|\tilde{X}\tilde{c}_{\lambda}^* - x^*\|_2 \le C(\mathcal{E}, P, \lambda) \ S(k, \lambda / \|x_0 - x^*\|_2^2)^{\frac{1}{2}} \ \|x_0 - x^*\|_2$$

where

$$C(\mathcal{E}, P, \lambda) = \left(\kappa^2 + \frac{1}{\lambda} \left(1 + \frac{\|P\|_2}{\lambda}\right)^2 \left(\|\mathcal{E}\|_2 + \kappa \frac{\|P\|_2}{2\sqrt{\lambda}}\right)^2\right)^{\frac{1}{2}}$$

On the gradient method. Setting for instance L=100, $\mu=10$, $M=10^{-1}$, $\|x_0-x^*\|_2=10^{-4}$ and finally $\lambda=\|P\|_2$.

Left: Relative value for the regularization parameter λ used in the theoretical bound. Right: Convergence speedup relative to the gradient method, for Nesterov's accelerated method and the theoretical RMPE.

Proposition [Scieur et al., 2016]

Asymptotic acceleration Using the gradient method with stepsize in $]0, \frac{2}{L}[$ on a L-smooth, μ -strongly convex function f with Lipschitz-continuous Hessian of constant M.

$$\|\tilde{X}\tilde{c}_{\lambda}^* - x^*\|_2 \le \kappa \left(1 + \frac{(1 + \frac{1}{\beta})^2}{4\beta^2}\right)^{1/2} \frac{2\zeta^k}{1 + \zeta^{2k}} \|x_0 - x^*\|$$

with

$$\zeta = \frac{1 - \sqrt{\mu/L}}{1 + \sqrt{\mu/L}}$$

for $||x_0 - x^*||$ small enough, where $\lambda = \beta ||P||_2$ and $\kappa = \frac{L}{\mu}$ is the condition number of the function f(x).

We (asymptotically) recover the accelerated rate in [Nesterov, 1983].

Complexity, online mode.

■ Cholesky updates. Given the Cholesky factorization $LL^T = \tilde{U}^T \tilde{U} + \lambda I$ and a new vector u_+ ,

$$L_{+}L_{+}^{T} = \begin{bmatrix} L & 0 \\ a^{T} & b \end{bmatrix} \begin{bmatrix} L^{T} & a \\ 0 & b \end{bmatrix} = \begin{bmatrix} \tilde{U}^{T}\tilde{U} + \lambda I & \tilde{U}^{T}u_{+} \\ (\tilde{U}^{T}u_{+})^{T} & u_{+}^{T}u_{+} + \lambda \end{bmatrix}.$$

the solutions a and b are

$$a = L^{-1}\tilde{U}^T u_+, \quad b = a^T a + \lambda.$$

■ The complexity of an update at iteration i is $O(in+i^2)$, so the overall complexity after k iterations is

$$O(nk^2 + k^3)$$

In the experiments that follow, k is typically 5. . .

Smooth functions. Suppose f is not strongly convex.

The function

$$\min_{x \in \mathbb{R}^n} f_{\varepsilon}(x) \triangleq f(x) + \frac{\varepsilon}{2D^2} ||x||_2^2$$

has a Lipschitz continuous gradient with parameter $L+\varepsilon/D^2$ and is strongly convex with parameter ε/D^2 .

Accelerated algorithm converge with a linear rate, with a bound equivalent to

$$\sqrt{1 + \frac{LD^2}{\varepsilon}},$$

which matches the optimal complexity bound for smooth functions.

Handling the strongly convex case, allows us to produce bounds in the smooth case, on paper. . .

Outline

- Introduction
- Minimal Polynomial Extrapolation
- Regularized MPE
- Numerical results

Numerical Results

Logistic regression with ℓ_2 regularizartion, on *Madelon Dataset* (500 features, 2000 data points), solved using several algorithms. The penalty parameter has been set to 10^2 in order to have a condition number equal to 1.2×10^9 .

Numerical Results

Logistic regression on Sido0 Dataset (4932 features, 12678 data points). Penalty parameter $\tau=10^2$, so the condition number is equal to 1.5×10^5 .

Numerical Results

Logistic regression on *Madelon UCI Dataset*, solved using the gradient method, Nesterov's method and AMPE (i.e. RMPE with $\lambda=0$). The condition number is equal to 1.2×10^9 . We see that without regularization, AMPE becomes unstable as $||(\tilde{U}^T\tilde{U})^{-1}||_2$ gets too large.

Conclusion

Postprocessing works.

- Simple postprocessing step.
- Marginal complexity, can be performed in parallel.
- Significant convergence speedup over optimal methods.
- Adaptive. Does not need knowledge of smoothness parameters.

Work in progress. . .

- Extrapolating accelerated methods.
- Constrained problems.
- Better handling of smooth functions.
-

Open problems

- **Regularization.** How do we account for the fact that we are estimating the limit of a VAR sequence with a fixed point?
- ullet The VAR matrix A is formed implicitly, but we have some information on its spectrum through smoothness.
- Explicit bounds on the regularized Chebyshev problem,

$$S(k,\alpha) \triangleq \min_{\{q \in \mathbb{R}_k[x]: q(1)=1\}} \left\{ \max_{x \in [0,\sigma]} ((1-x)q(x))^2 + \alpha ||q||_2^2 \right\}.$$

Preprint on ArXiv:1606.04133 and NIPS 2016.

References

Alexander Craig Aitken. On Bernoulli's numerical solution of algebraic equations. *Proceedings of the Royal Society of Edinburgh*, 46:289–305, 1927.

- C Brezinski. Accélération de la convergence en analyse numérique. Lecture notes in mathematics (ISSN 0075-8434, (584), 1977.
- RP Eddy. Extrapolating to the limit of a vector sequence. *Information linkage between applied mathematics and industry*, pages 387–396, 1979.
- M. Hardt. The zen of gradient descent. Mimeo, 2013.
- Georg Heinig and Karla Rost. Fast algorithms for Toeplitz and Hankel matrices. Linear Algebra and its Applications, 435(1):1-59, 2011.
- M Mešina. Convergence acceleration for the iterative solution of the equations x = ax + f. Computer Methods in Applied Mechanics and Engineering, 10(2):165–173, 1977.
- Y. Nesterov. A method of solving a convex programming problem with convergence rate $O(1/k^2)$. Soviet Mathematics Doklady, 27(2): 372–376, 1983.
- D. Scieur, A. d'Aspremont, and F. Bach. Regularized Nonlinear Acceleration. NIPS, 2016.
- Avram Sidi, William F Ford, and David A Smith. Acceleration of convergence of vector sequences. *SIAM Journal on Numerical Analysis*, 23 (1):178–196, 1986.
- David A Smith, William F Ford, and Avram Sidi. Extrapolation methods for vector sequences. SIAM review, 29(2):199-233, 1987.
- Evgenij E Tyrtyshnikov. How bad are Hankel matrices? *Numerische Mathematik*, 67(2):261–269, 1994.
- Peter Wynn. On a device for computing the $e_m(s_n)$ transformation. Mathematical Tables and Other Aids to Computation, 10(54):91–96, 1956.