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ABSTRACT. We study supervised learning problems using clustering constraints to impose structure on either
features or samples, seeking to help both prediction and interpretation. The problem of clustering features
arises naturally in text classification for instance, to reduce dimensionality by grouping words together and
identify synonyms. The sample clustering problem on the other hand, applies to multiclass problems where
we are allowed to make multiple predictions and the performance of the best answer is recorded. We derive a
unified optimization formulation highlighting the common structure of these problems and produce algorithms
whose core iteration complexity amounts to a k-means clustering step, which can be approximated efficiently.
We extend these results to combine sparsity and clustering constraints, and develop a new projection algorithm
on the set of clustered sparse vectors. We prove convergence of our algorithms on random instances, based on
a union of subspaces interpretation of the clustering structure. Finally, we test the robustness of our methods
on artificial data sets as well as real data extracted from movie reviews.

1. INTRODUCTION

Adding structural information to supervised learning problems can significantly improve prediction per-
formance. Sparsity for example has been proven to improve statistical and practical performance [Bach
et al., 2012]. Here, we study clustering constraints that seek to group either features or samples, to both
improve prediction and provide additional structural insights on the data.

When there exists some groups of highly correlated features for instance, reducing dimensionality by
assigning uniform weights inside each distinct group of features can be beneficial both in terms of prediction
and interpretation [Bondell and Reich, 2008] by significantly reducing dimension. This often occurs in text
classification for example, where it is natural to group together words having the same meaning for a given
task [Dhillon et al., 2003; Jiang et al., 2011].

On the other hand, learning a unique predictor for all samples can be too restrictive. For recommendation
systems for example, users can be partitioned in groups, each having different tastes. Here, we study how to
learn a partition of the samples that achieves the best within-group prediction [Guzman-Rivera et al., 2014;
Zhang, 2003]

These problems can of course be tackled by grouping synonyms or clustering samples in an unsupervised
preconditioning step. However such partitions might not be optimized or relevant for the prediction task.
Prior hypotheses on the partition can also be added as in Latent Dirichlet Allocation [Blei et al., 2003]
or Mixture of Experts [Jordan, 1994]. We present here a unified framework that highlights the clustered
structure of these problems without adding prior information on these clusters. While constraining the
predictors, our framework allows the use of any loss function for the prediction task. We propose several
optimization schemes to solve these problems efficiently.

First, we formulate an explicit convex relaxation which can be solved efficiently using the conditional
gradient algorithm [Frank and Wolfe, 1956; Jaggi, 2013], where the core inner step amounts to solving
a clustering problem. We then study an approximate projected gradient scheme similar to the Iterative
Hard Thresholding (IHT) algorithm [Blumensath and Davies, 2009] used in compressed sensing. While
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constraints are non-convex, projection on the feasible set reduces to a clustering subproblem akin to k-means.
In the particular case of feature clustering for regression, the k-means steps are performed in dimension one,
and can therefore be solved exactly by dynamic programming [Bellman, 1973; Wang and Song, 2011].
When a sparsity constraint is added to the feature clustering problem for regression, we develop a new
dynamic program that gives the exact projection on the set of sparse and clustered vectors.

We provide a theoretical convergence analysis of our projected gradient scheme generalizing the proof
made for IHT. Although our structure is similar to sparsity, we show that imposing a clustered structure,
while helping interpretability, does not allow us to significantly reduce the number of samples, as in the
sparse case for example.

Finally, we describe experiments on both synthetic and real datasets involving large corpora of text from
movie reviews. The use of k-means steps makes our approach fast and scalable while comparing very
favorably with standard benchmarks and providing meaningful insights on the data structure.

2. LEARNING & CLUSTERING FEATURES OR SAMPLES

Given n sample points represented by the matrix X = (x1, . . . , xn)T ∈ Rn×d and corresponding labels
y = (y1, . . . , yn), real or nominal depending on the task (classification or regression), we seek to compute
linear predictors represented by W . Clustering features or samples is done by constraining W and our
problems take the generic form

minimize Loss(y,X,W ) +R(W )
subject to W ∈ W,

in the prediction variable W , where Loss(y,X,W ) is a learning loss (for simplicity, we consider only
squared or logistic losses in what follows), R(W ) is a classical regularizer and W encodes the clustering
structure.

The clustering constraint partitions features or samples into Q groups G1, . . . ,GQ of size s1, . . . , sQ by
imposing that all features or samples within a cluster Gq share a common predictor vector or coefficient
vq, solving the supervised learning problem. To define it algebraically we use a matrix Z that assigns the
features or the samples to the Q groups, i.e. Ziq = 1 if feature or sample i is in group Gq and 0 otherwise.
Denoting V = (v1, . . . , vQ), the prediction variable is decomposed as W = ZV leading to the supervised
learning problem with clustering constraint

minimize Loss(y,X,W ) +R(W )
subject to W = ZV, Z ∈ {0, 1}m×Q, Z1 = 1,

(1)

in variables W , V and Z whose dimensions depend on whether features (m = d) or samples (m = n) are
clustered.

Although this formulation is non-convex, we observe that the core non-convexity emerges from a clus-
tering problem on the predictors W , which we can deal with using k-means approximations, as detailed in
Section 3. We now present in more details two key applications of our formulation: dimensionality reduction
by clustering features and learning experts by grouping samples. We only detail regression formulations,
extensions for classification are given in the Appendix 7.1. Our framework also applies to clustered mul-
titask as a regularization hypothesis, and we refer the reader to the Appendix 7.2 for more details on this
formulation.

2.1. Dimensionality reduction: clustering features. Given a prediction task, we want to reduce dimen-
sionality by grouping together features which have a similar influence on the output [Bondell and Reich,
2008], e.g. synonyms in a text classification problem. The predictor variable W is here reduced to a single
vector, whose coefficients take only a limited number of values. In practice, this amounts to a quantization
of the classifier vector, supervised by a learning loss.
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Our objective is to form Q groups of features G1, . . . ,GQ, assigning a unique weight vq to all features in
group Gq. In other words, we search a predictor w ∈ Rd such that wj = vq for all j ∈ Gq. This problem can
be written

minimize 1
n

∑n
i=1 loss

(
yi, w

Txi
)

+ λ
2‖w‖22

subject to w = Zv, Z ∈ {0, 1}d×Q, Z1 = 1,
(2)

in the variables w ∈ Rd, v ∈ RQ and Z. In what follows, loss(yi, wTxi) will be a squared or logistic loss
that measures the quality of prediction for each sample. Regularization can either be seen as a standard l2
regularization on w with R(w) = λ

2‖w‖22, or a weighted regularization on v, R(v) = λ
2

∑Q
q=1 sq‖vq‖22.

Note that fused lasso [Tibshirani et al., 2005] in dimension one solves a similar problem that also quan-
tizes the regression vector using an `1 penalty on coefficient differences. The crucial difference with our
setting is that fused lasso assumes that the variables are ordered and minimizes the total variation of the
coefficient vector. Here we do not make any ordering assumption on the regression vector.

2.2. Learning experts: clustering samples. Mixture of experts [Jordan, 1994] is a standard model for
prediction that seeks to learn Q predictors called “experts”, each predicting labels for a different group of
samples. For a new sample x the prediction is then given by a weighted sum of the predictions of all experts
ŷ =

∑Q
q=1 pqv

T
q x. The weights pq are given by a prior probability depending on x. Here, we study a slightly

different setting where we also learn Q experts, but assignments to groups are only extracted from the labels
y and not based on the feature variables x as illustrated by the graphical model in Figure 1.
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patients different treatments were given. Since patients are uniformly distributed, the groups cannot
be predicted without supplementary information. We will use the effect of treatments to simultane-
ously retrieve the groups of patients and the associated regression functions. Note that this setting is
different from a mixture of experts model in the sense that the latent cluster assignment variable Z
can only be estimated once y is known and cannot be deduced from the input features X .
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Figure 2: Learning multiple diverse predictors (left), mixture of experts model (right).

Given a regression or multi-classification task, we want to find Q groups of sample points to max-
imize the within-group prediction performance using a group specific predictor. This amount to
producing Q diverse answers per sample point, considering only the best one. We thus learn Q pre-
dictors, each predictor having low error rate on some cluster of points. For simplicity, we illustrate
the case of regression, which can be extended to multi-classification. We minimize the loss incurred
by the best linear predictor fq : x! cT

q x for each point, i.e.

L(V ) = L(CZT ) =
1

n

nX

i=1

min
q2{1,...,Q}

l(yi, c
T
q xi) =

1

n

nX

i=1

l

 
yi,

QX

q=1

Ziqc
T
q xi

!
,

in the matrix variable V 2 Rd⇥n of predictor vectors (one per sample point), where C 2 Rd⇥Q and
Z 2 {0, 1}n⇥Q are the centroid and assignment matrices defined above.

Loss Dim. U, V Predictors Goal
Features 1

n

Pn
i=1 l

⇣PQ
q=1

Pd
j=1 Zjqcqxij

⌘
1⇥ d rows of W regression

Tasks 1
n

PK
k=1

Pn
i=1 l(wT

k xi) d⇥K columns of W classification

Samples 1
n

Pn
i=1 l

⇣PQ
q=1 Ziqc

T
q xi

⌘
d⇥ n W (i) regression

Table 1: Summary of the presented supervised clustering settings.

3 Algorithms

We now present optimization strategies to solve these supervised clustering problems. We begin by
simple greedy procedures, then propose a non-convex projected gradient descent scheme and finally
a more refined convex relaxation solved using conditional gradient and approximations to k-means.

3.1 Simple strategies

A straightforward strategy is to first minimize on predictors, as in a classical supervised learning
problem, and then cluster predictors together using k-means. The procedure can be repeated in the
case of a soft clustering penalty. In the same spirit, when clustering sample points, one can alternate
minimization on the predictors of each group and assignment of each point to the group where
its loss is smallest. These methods are fast but very dependent on the initialization. Alternating
minimization can optionally be used to refine the solution of the more robust algorithms proposed
below.

3.2 Projected gradient descent

A natural strategy is to do a projected gradient descent on the non-convex problems (HSC) or (SSC).
The projection of a matrix V is made by finding

argmin
Z,C

kV � CZT k2F = argmin

QX

q=1

X

i2Cq

kvi � cqk22,

4

FIGURE 1. Learning multiple diverse experts (left), mixture of experts model (right). The
assignment matrix Z gives the assignment to groups, grey variables are observed, arrows
represent dependance of variables.

This means that while we learn several experts (classifier vectors), the information contained in the fea-
tures x is not sufficient to select the best experts. Given a new point x we can only give Q diverse answers
or an approximate weighted prediction ŷ =

∑Q
q=1

sq
n v

T
q x. Our algorithm will thus return several answers

and minimizes the loss of the best of these answers. This setting was already studied by Zhang [2003] for
general predictors, it is also related to subspace clustering [Elhamifar and Vidal, 2009], however here we
already know in which dimension the data points lie.

Given a prediction task, our objective is to find Q groups G1, . . . ,GQ of sample points to maximize
within-group prediction performance. Within each group Gq, samples are predicted using a common linear
predictor vq. Our problem can be written

minimize
1

n

Q∑

q=1

∑

i∈Gq

loss
(
yi, v

T
q xi
)

+
λ

2

Q∑

q=1

sq‖vq‖22 (3)

in the variables V = (v1, . . . , vQ) ∈ Rd×Q and G = (G1, . . . ,GQ) such that G is a partition of the n
samples. As in the problem of clustering features above, loss(yi, vTq xi) measures the quality of prediction
for each sample and R(V ) = λ

2

∑Q
q=1 sq‖vq‖22 is a weighted regularization. Using an assignment matrix

Z ∈ {0, 1}n×Q and an auxiliary variable W = (w1, . . . , wn) ∈ Rd×n such that W = V ZT , which means
3



wi = vq if i ∈ Gq, problem (3) can be rewritten

minimize 1
n

∑n
i=1 loss

(
yi, w

T
i xi
)

+ λ
2

∑n
i=1 ‖wi‖22

subject to W T = ZV T , Z ∈ {0, 1}n×Q, Z1 = 1,

in the variables W ∈ Rd×n, V ∈ Rd×Q and Z. Once again, our problem fits in the general formulation
given in (1) and in the sections that follows, we describe several algorithms to solve this problem efficiently.

3. APPROXIMATION ALGORITHMS

We now present optimization strategies to solve learning problems with clustering constraints. We begin
by simple greedy procedures and a more refined convex relaxation solved using approximate conditional
gradient. We will show that this latter relaxation is exact in the case of feature clustering because the inner
one dimensional clustering problem can be solved exactly by dynamic programming.

3.1. Greedy algorithms. For both clustering problems discussed above, greedy algorithms can be derived
to handle the clustering objective. A straightforward strategy to group features is to first train predictors as
in a classical supervised learning problem, and then cluster weights together using k-means. In the same
spirit, when clustering sample points, one can alternate minimization on the predictors of each group and
assignment of each point to the group where its loss is smallest. These methods are fast but unstable and
highly dependent on initialization. However, alternating minimization can be used to refine the solution of
the more robust algorithms proposed below.

3.2. Convex relaxation using conditional gradient algorithm. Another approach is to relax the problem
by considering the convex hull of the feasible set and use the conditional gradient method (a.k.a. Frank-
Wolfe, [Frank and Wolfe, 1956; Jaggi, 2013]) on the relaxed convex problem. Provided that an affine
minimization oracle can be computed efficiently, the key benefit of using this method when minimizing a
convex objective over a non-convex set is that it automatically solves a convex relaxation, i.e. minimizes
the convex objective over the convex hull of the feasible set, without ever requiring this convex hull to be
formed explicitly.

In our case, the convex hull of the set {W : W = ZV, Z ∈ {0, 1}m×Q, Z1 = 1} is the entire space
so the relaxed problem loses the initial clustering structure. However in the special case of a squared loss,
i.e. loss(y, ŷ) = 1

2(y − ŷ)2, minimization in V can be performed analytically and our problem reduces
to a clustering problem for which this strategy is relevant. We illustrate this simplification in the case of
clustering features for a regression task, detailed computations and explicit procedures for other settings are
given in Appendix 7.3.

Replacing w = Zv in (2), the objective function in problem (2) becomes

φ(v, Z) =
1

2n

n∑

i=1

(
yi − (Zv)T xi

)2
+
λ

2
‖Zv‖22

=
1

2n
vTZTXTXZv +

λ

2
vTZTZv − 1

n
yTXZv +

1

2n
yT y.

Minimizing in v and using the Sherman-Woodbury-Morrison formula we then get

min
v
φ(v, Z) =

1

2n
yT
(
I−XZ(ZTXTXZ + λnZTZ)−1ZTXT

)
y

=
1

2n
yT
(
I +

1

nλ
XZ(ZTZ)−1ZTXT

)−1

y,

and the resulting clustering problem is then formulated in terms of the normalized equivalence matrix

M = Z(ZTZ)−1ZT

such that Mij = 1/sq if item i and j are in the same group Gq and 0 otherwise.
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WritingM = {M : M = Z(ZTZ)−1ZT , Z ∈ {0, 1}d×Q, Z1 = 1} the set of equivalence matrices for
partitions into at most Q groups, our partitioning problem can be written

minimize ψ(M) , yT
(
I + 1

nλXMXT
)−1

y
subject to M ∈M.

in the matrix variable M ∈ Sn. We now relax this last problem by solving it (implicitly) over the convex
hull of the set of equivalence matrices using the conditional gradient method. Its generic form is described
in Algorithm (1), where the scalar product is the canonical one on matrices, i.e. 〈A,B〉 = Tr(ATB). At
each iteration, the algorithm requires solving an linear minimization oracle over the feasible set. This gives
the direction for the next step and an estimated gap to the optimum which is used as stopping criterion.

Algorithm 1 Conditional gradient algorithm
Initialize M0 ∈M
for t = 0, . . . , T do

Solve linear minimization oracle

∆t = argmin
N∈hull(M)

〈N,∇ψ(Mt)〉 (4)

if gap(Mt,M∗) ≤ ε then
return Mt

else
Set Mt+1 = Mt + αt(∆t −Mt)

end if
end for

The estimated gap is given by the linear oracle as

gap(Mt,M∗) , −〈∆t −Mt,∇ψ(Mt)〉.
By definition of the oracle and convexity of the objective function, we have

−〈∆t −Mt,∇ψ(Mt)〉 ≥ −〈M∗ −Mt,∇ψ(Mt)〉 ≥ ψ(Mt)− ψ(M∗).

Crucially here, the linear minimization oracle in (4) is equivalent to a projection step. This projection step is
itself equivalent to a k-means clustering problem which can be solved exactly in the feature clustering case
and well approximated in the other scenarios detailed in the appendix. For a fixed matrix M ∈ hull(M),
we have that

P , −∇ψ(M) =
1

2n2λ
XT (I +

1

nλ
XMXT )−1 y yT (I +

1

nλ
XMXT )−1X

is positive semidefinite (this is the case for all the settings considered in this paper). Writing P
1
2 its matrix

square root we get

argmin
N∈hull(M)

〈N,∇ψ(M)〉 = argmin
N∈M

Tr(NT∇ψ(M))

= argmin
N∈M

−Tr(NP
1
2P

1
2
T

)

= argmin
N∈M

Tr((I−N)P
1
2P

1
2
T

))

= argmin
N∈M

‖P 1
2 −NP 1

2 ‖2F

= argmin
Z

min
V
‖P 1

2 − ZV ‖2F ,
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because N is an orthonormal projection (N2 = N , NT = N ) and so is (I − N). Given a matrix W , we
also have

argmin
Z,V

‖W − ZV ‖2F = argmin

Q∑

q=1

∑

i∈Gq

‖wi − vq‖22, (5)

where the minimum is taken over centroids vq and partition (G1, . . . ,GQ). This means that computing
the linear minimization oracle on ∇ψ(M) is equivalent to solving a k-means clustering problem on P 1/2.
This k-means problem can itself be solved approximately using the k-means++ algorithm which performs
alternate minimization on the assignments and the centroids after an appropriate random initialization. Al-
though this is a non-convex subproblem, k-means++ guarantees a constant approximation ratio on its solu-
tion [Arthur and Vassilvitskii, 2007]. We write k-means(V,Q) the approximate solution of the projection.
Overall, this means that the linear minimization oracle (4) can therefore be computed approximately. More-
over, in the particular case of grouping features for regression, the k-means subproblem is one-dimensional
and can be solved exactly using dynamic programming [Bellman, 1973; Wang and Song, 2011] so that
convergence of the algorithm is ensured.

The complete method is described as Algorithm 2 where we use the classical stepsize for conditional
gradient αt = 2

t+2 . A feasible solution for the original non-convex problem is computed from the solution
of the relaxed problem using Frank-Wolfe rounding, i.e. output the last linear oracle.

Algorithm 2 Conditional gradient on the equivalence matrix
Input: X, y,Q, ε

Initialize M0 ∈M
for t = 0, . . . , T do

Compute the matrix square root P
1
2 of −∇ψ(M0)

Get oracle ∆t = k-means(P
1
2 , Q)

if −Tr(∆t −Mt)
T∇ψ(Mt) ≤ ε then

return Mt

else
Set Mt+1 = Mt + αt(∆t −Mt)

end if
end for
Z∗ is given by the last k-means
V ∗ is given by the analytic solution of the minimization for Z∗ fixed

Output: V ∗, Z∗

3.3. Complexity. The core complexity of Algorithm 2 is concentrated in the inner k-means subproblem,
which standard alternating minimization approximates at cost O(tKQp), where tK is the number of alter-
nating steps,Q is the number of clusters, and p is the product of the dimensions of V . However, computation
of the gradient requires to invert matrices and to compute a matrix square root of the gradient at each iter-
ation, which can slow down computations for large datasets. The choice of the number of clusters can be
done given an a priori on the problem (e.g. knowing the number of hidden groups in the sample points), or
cross-validation, idem for the other regularization parameters.

4. PROJECTED GRADIENT ALGORITHM

In practice, convergence of the conditional gradient method detailed above can be quite slow and we also
study a projected gradient algorithm to tackle the generic problem in (1). Although simple and non-convex
in general, this strategy used in the context of sparsity can produce scalable and convergent algorithms in
certain scenarios, as we will see below.
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4.1. Projected gradient. We can exploit the fact that projecting a matrix W on the feasible set

{W̃ : W̃ = ZV, Z ∈ {0, 1}m×Q, Z1 = 1}
is equivalent to a clustering problem, with

argmin
Z,V

‖W − ZV ‖2F = argmin

Q∑

q=1

∑

i∈Gq

‖wi − vq‖22,

where the minimum is taken over centroids vq and partition (G1, . . . ,GQ). The k-means problem can be
solved approximately with the k-means++ algorithm as mentioned in Section 3.2. We will analyze this
algorithm for clustering features for regression in which the projection can be found exactly. Writing k-
means(V,Q) the approximate solution of the projection, φ the objective function and αt the stepsize, the
full method is summarized as Algorithm 3 and its implementation is detailed in Section 4.3.

Algorithm 3 Proj. Gradient Descent
Input: X, y,Q, ε

Initialize W0 = 0
while |φ(Wt)− φ(Wt−1)| ≥ ε do
Wt+ 1

2
= Wt − αt(∇Loss(y,X,Wt) +∇R(Wt))

[Zt+1, Vt+1] = k-means(Wt+ 1
2
, Q)

Wt+1 = Zt+1Vt+1

end while
Z∗ and V ∗ are given through k-means

Output: W ∗, Z∗, V ∗

4.2. Convergence. We now analyze the convergence of the projected gradient algorithm with a constant
stepsize αt = 1, applied to the feature clustering problem for regression. We focus on a problem with
squared loss without regularization term, which reads

minimize 1
2n‖Xw − y‖22

subject to w = Zv, Z ∈ {0, 1}d×Q, Z1 = 1

in the variables w ∈ Rd, v ∈ RQ and Z. We assume that the regression values y are generated by a linear
model whose coefficients w∗ satisfy the constraints above, up to additive noise, with

y = Xw∗ + η

where η ∼ N (0, σ2). Hence we study convergence of our algorithm to w∗, i.e. to the partition G∗ of its
coefficients and its Q values.

We will exploit the fact that each partition G defines a subspace of vectors w, so the feasible set can be
written as a union of subspaces. Let G be a partition and define

UG = {w : w = Zv, Z ∈ Z(G)},
where Z(G) is the set of assignment matrices corresponding to G. Since permuting the columns of Z
together with the coefficients of v has no impact onw, the matrices inZ(G) are identical up to a permutation
of their columns. So, for Z ∈ Z(G), Z(G) = {ZΠ,Π permutation matrix}, therefore UG is a subspace and
the corresponding assignment matrices are its different basis.

To a feasible vector w, we associate the partition G of its values that has the least number of groups.
This partition and its corresponding subspace are uniquely defined and, denoting P the set of partitions in
at most Q clusters, our problem (6) can thus be written

minimize 1
2n‖Xw − y‖22

subject to w ∈ ⋃G∈P UG .
7



where the variable w ∈ Rd belongs to a union of subspaces UG .
We will write the projected gradient algorithm for (6) as a fixed point algorithm whose contraction factor

depends on the singular values of the design matrix X on collections of subspaces generated by the parti-
tions G. We only need to consider largest subspaces in terms of inclusion order, which are the ones generated
by the partitions into exactly Q groups. Denoting PQ this set of partitions, the collections of subspaces are
defined as

E1 = {UG , G ∈ PQ},
E2 = {UG1 +UG2 , (G1,G2) ∈ PQ},
E3 = {UG1 +UG2 +UG3 , (G1,G2,G3) ∈ PQ}.

Our main convergence result follows. Provided that the contraction factor is sufficient, it states the con-
vergence of the projected gradient scheme to the original vector up to a constant error of the order of the
noise.

Proposition 4.1. Given that projection on
⋃
G∈P UG is well defined, the projected gradient algorithm ap-

plied to (3) converges to the original w∗ as

‖w∗ − wt‖2 ≤ ρt‖w∗‖2 +
1− ρt
1− ρ ν‖η‖2,

where

ρ , 2 max
U∈E3

‖I − 1

n
ΠT
UX

TXΠU‖2

ν ,
2

n
max
U∈E2

‖XΠU‖2

and ΠU is any orthonormal basis of the subspace U .

Proof. To describe the algorithm we define Gt and G∗ as the partitions associated respectively with wt
and w∗ containing the least number of groups and





wt+1/2 = wt −∇Loss(X, y,wt) = wt − 1
nX

TX(wt − w∗) + 1
nX

T η

wt+1 = argminw∈
⋃
G∈P UG ‖w − wt+1/2‖22

U t = UGt
U t,∗ = UGt +UG∗
U t,t+1,∗ = UGt +UGt+1 +UG∗ .

Orthonormal projections on U t, U t,∗ and U t,t+1,∗ are given respectively by Pt, Pt,∗, Pt,t+1,∗. Therefore by
definition wt ∈ U t, (wt, w

∗) ∈ U t,∗ and (wt, wt+1, w
∗) ∈ U t,t+1,∗.

We can now control convergence, with

‖w∗ − wt+1‖2 = ‖Pt+1,∗(w
∗ − wt+1)‖2

≤ ‖Pt+1,∗(w
∗ − wt+1/2)‖2 + ‖Pt+1,∗(wt+1/2 − wt+1)‖2. (6)

In the second term, as w∗ ∈ ⋃G∈P UG and wt+1 = argminw∈
⋃
G∈P UG ‖w − wt+1/2‖2, we have

‖wt+1 − wt+1/2‖22 ≤ ‖w∗ − wt+1/2‖22
which is equivalent to

‖Pt+1,∗(wt+1 −wt+1/2)‖22 + ‖(I − Pt+1,∗)wt+1/2‖22 ≤ ‖Pt+1,∗(w
∗ −wt+1/2)‖22 + ‖(I − Pt+1,∗)wt+1/2‖22

and this last statement implies

‖Pt+1,∗(wt+1 − wt+1/2)‖2 ≤ ‖Pt+1,∗(w
∗ − wt+1/2)‖2.
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This means that we get from (6)

‖w∗ − wt+1‖2 ≤ 2‖Pt+1,∗(w
∗ − wt+1/2)‖2

= 2‖Pt+1,∗(w
∗ − wt −

1

n
XTX(w∗ − wt)−

1

n
XT η)‖2

≤ 2‖Pt+1,∗(I −
1

n
XTX)(w∗ − wt)‖2 +

2

n
‖Pt+1,∗(X

T η)‖2

= 2‖Pt+1,∗(I −
1

n
XTX)Pt,∗(w

∗ − wt)‖2 +
2

n
‖Pt+1,∗(X

T η)‖2

≤ 2‖Pt+1,∗(I −
1

n
XTX)Pt,∗‖2‖w∗ − wt‖2 +

2

n
‖Pt+1,∗X

T ‖2‖η‖2.

Now, assuming

2‖Pt+1,∗(I −
1

n
XTX)Pt,∗‖2 ≤ ρ (7)

2

n
‖Pt+1,∗X

T ‖2 ≤ ν (8)

and summing the latter inequality over t, using that w0 = 0, we get

‖w∗ − wt‖2 ≤ ρt‖w∗‖2 +
1− ρt
1− ρ ν‖η‖2.

We bound ρ and ν using the information of X on all possible subspaces of E2 or E3. For a subspace U ∈ E2

or E3, we define PU the orthonormal projection on it and ΠU any orthonormal basis of it. For (8) we get

‖Pt+1,∗X
T ‖2 = ‖XPt+1,∗‖2 ≤ max

U∈E2
‖XPU‖2 = max

U∈E2
‖XΠU‖2,

which is independent of the choice of ΠU .
For (7), using that U t,∗ ⊂ U t,t+1,∗ and U t+1,∗ ⊂ U t,t+1,∗, we have

‖Pt+1,∗(I −XTX)Pt,∗‖2 ≤ ‖Pt,t+1,∗(I −
1

n
XTX)Pt,t+1,∗‖2

≤ max
U∈E3

‖PU (I − 1

n
XTX)PU‖2

= max
U∈E3

‖ΠU (I − 1

n
ΠT
UX

TXΠU )ΠT
U‖2

= max
U∈E3

‖I − 1

n
ΠT
UX

TXΠU‖2,

which is independent of the choice of ΠU and yields the desired result. We now show that ρ and ν derive

from bounds on the singular values of X on the collections E2 and E3. Denoting smin(A) and smax(A)
respectively the smallest and largest singular values of a matrix A, we have

max
U∈E2

‖XΠU‖2 = max
U∈E2

smax(XΠU ),

and assuming U ∈ E3 and that

1− δ ≤ smin
(
XΠU√
n

)
≤ smax

(
XΠU√
n

)
≤ 1 + δ,

for some δ > 0, then [Vershynin, 2010, Lemma 5.38] shows

‖I − 1

n
ΠT
UX

TXΠU‖2 ≤ 3 max{δ, δ2}.
9



We now show that for isotropic independent sub-Gaussian data xi, these singular values depend on the
number of subspaces of E1, N , their dimension D and the number of samples n. This proposition reformu-
lates results of Vershynin [2010] to exploit the union of subspace structure.

Proposition 4.2. Let E1, E2, E3 be the finite collections of subspaces defined above, letD = maxU∈E1 dim(U)
and N = Card(E1). Assuming that the rows xi of the design matrix are n isotropic independent sub-
gaussian, we have

1√
n

max
U∈E2

‖XΠU‖2 ≤ 1 + δ2 + ε and max
U∈E3

‖I − 1

n
ΠT
UX

TXΠU‖2 ≤ 3 max{δ3 + ε, (δ3 + ε)2},

with probability larger than 1− exp(−cε2n), where δp = C0

√
pD
n +

√
1+p log(N)

cn , ΠU is any orthonormal
basis of U and C0, c depend only on the sub-gaussian norm of the xi.

Proof. Let us fix U ∈ Ep, with p = 2 or 3 and ΠU one of its orthonormal basis. By definition of Ep,
dim(U) ≤ pD. The rows of XΠU are orthogonal projections of the rows of X onto U , so they are still
independent sub-gaussian isotropic random vectors. We can therefore apply [Vershynin, 2010, Theorem
5.39] on XΠU ∈ Rn×dim(U). Hence for any s ≥ 0, with probability at least 1 − 2 exp(−cs2), the smallest
and largest singular values of the rescaled matrix XΠU√

n
written respectively smin(XΠU√

n
) and smax(XΠU√

n
) are

bounded by

1− C0

√
pD

n
− s√

n
≤ smin

(
XΠU√
n

)
≤ smax

(
XΠU√
n

)
≤ 1 + C0

√
pD

n
+

s√
n
, (9)

where c and C0 depend only on the sub-gaussian norm of the xi. Now taking the union bound on all subsets
of Ep, (9) holds for any U ∈ Ep with probability

1− 2

(
N

p

)
exp(−cs2) ≥ 1− 2

(
eN

p

)p
exp(−cs2)

≥ 1− 2 exp(1 + p log(N)− cs2).

Taking s =

√
1+p log(N)

c + ε
√
n, we get for all U ∈ Ep,

1− δp − ε ≤ smin
(
XΠU√
n

)
≤ smax

(
XΠU√
n

)
≤ 1 + δp + ε,

with probability at least 1− exp(−cε2n), where δp = C0

√
pD
n +

√
1+p log(N)

cn . Therefore

1√
n

max
U∈E2

‖XΠU‖2 ≤ 1 + δ2 + ε.

Then [Vershynin, 2010, Theorem 5.39] yields

max
U∈E3

‖I − 1

n
ΠT
UX

TXΠU‖2 ≤ 3 max{δ3 + ε, (δ3 + ε)2},

hence the desired result.

Overall here, Proposition 4.1 shows that the projected gradient method converges when the contraction
factor ρ is strictly less than one. When observations xi are isotropic independent sub-gaussian, this means

C0

√
3D

n
<

1

3
and

√
1 + 3 log(N)

cn
<

1

3

which is also
n = Ω(D) and n = Ω(log(N)) (10)
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The first condition in (10) means that subspaces must be low-dimensional, in our case D = 3Q and we
naturally want the number of groups Q to be small. The second condition in (10) means that the structure
(clustering here) is restrictive enough, i.e. that the number of possible configurations, N , is small enough.

As we show below, in the simple clustering case however, this number of subspaces is quite large, growing
essentially as Qd.

Proposition 4.3. The number of subspaces N in E1 is lower bounded by

N ≥ Qd−Q

Proof. E1 is indexed by the number of partitions in exactly Q clusters, i.e.the Stirling number of second
kind

{
d
Q

}
. Standard bounds on the Stirling number of the second kind give

1

2
(Q2 +Q+ 2)Qd−Q−1 − 1 ≤

{
d

Q

}
≤ 1

2
(ed/Q)QQd−Q. (11)

hence N ≥ Qd−Q.

This last proposition means that although the intrinsic dimension of our variables is of orderD = 3Q, the
number of subspaces N is such that we need roughly n ≥ 3d log(Q), i.e. approximately as many samples
as features, so the clustering structure is not specific enough to reduce the number of samples required by
our algorithm to converge. On the other hand, given this many samples, the algorithm provably converges
to a clustered output, which helps interpretation.

As a comparison, classical sparse recovery problems have the same structure [Rao et al., 2012], as k-
sparse vectors for instance can be described as {w : w = Zv, ZT 1 = 1} and so are part of a “union
of subspaces”. However in the case of sparse vectors the number of subspaces grows as dk which means
recovery requires much less samples than features.

4.3. Implementation and complexity. In our implementation we use a backtracking line search on the
stepsize αt that guarantees decreasing of the objective. At each iteration if

Ŵt+1 = k-means (Wt − αt(∇Loss(y,X,Wt) +∇R(Wt)), Q)

decreases the objective value we take Wt+1 = Ŵt+1 and we increase the stepsize by a constant factor
αt+1 = aαt with a > 1. If Ŵt+1 increases the objective value we decrease the stepsize by a constant factor
αt ← bαt, with b < 1, output a new Ŵt+1 and iterate this scheme until Ŵt+1 decreases the objective value
or the stepsize reaches a stopping value ε. We observed better results with this line search than with constant
stepsize, in particular when the number of samples for clustering features is small.

Complexity of Algorithm 3 is measured by the cost of the projection and the number of iterations until
convergence. If approximated by k-means++ the projection step costs O(tKQp), where tK is the number
of alternating steps, Q is the number of clusters, and p is the product of the dimensions of V . When
clustering features for regression, the dynamic program of Zhang [2003] solving exactly the projection step
is in O(d2Q) and ours for k-sparse vectors, detailed in Section 5.1, is in O(k2Q). We observed convergence
of the projected gradient algorithm in less than 100 iterations which makes it highly scalable. As for the
convex relaxation the choice of the number of clusters is done given an a priori on the problem.

5. SPARSE AND CLUSTERED LINEAR MODELS

Algorithm 3 can also be applied when a sparsity constraint is added to the linear model, provided that the
projection is still defined. This scenario arises for instance in text prediction when we want both to select a
few relevant words and to group them to reduce dimensionality. Formally the problem of clustering features
(2) becomes then

minimize 1
n

∑n
i=1 loss

(
yi, w

Txi
)

+ λ
2‖w‖22

subject to w = SZv, S ∈ {0, 1}d×k, Z ∈ {0, 1}k×Q, ST1 = 1, Z1 = 1,
11



in the variables w ∈ Rd, v ∈ RQ, S and Z, where S is a matrix of k canonical vectors which assigns
nonzero coefficients and Z an assignment matrix of k variables in Q clusters.

We develop a new dynamic program to get the projection on k-sparse vectors whose non-zero coefficients
are clustered in Q groups and apply our previous theoretical analysis to prove convergence of the projected
gradient scheme on random instances.

5.1. Projection on k-sparse Q-clustered vectors. Let W be the set of k-sparse vectors whose non-zero
values can be partitioned in at most Q groups. Given x ∈ Rd, we are interested in its projection on W ,
which we formulate as a partitioning problem. For a feasible w ∈ W , with G0 = {i : wi = 0} and
G1, . . . ,GQ′ , with Q′ ≤ Q, the partition of its non-zero values such that wi = vq if and only if i ∈ Gq, the
distance between x and w is given by

‖x− w‖22 =
∑

i∈G0

x2
i +

Q′∑

q=1

∑

i∈Gq

(xi − vq)2.

The projection is solution of

minimize
∑

i∈G0 x
2
i +

∑Q′

q=1

∑
i∈Gq(xi − vq)2

subject to Card
(⋃Q′

q=1 Gq
)
≤ k, 0 ≤ Q′ ≤ Q, (12)

in the number of groups Q′, the partition G = (G0, . . . ,GQ′) of {1, . . . , d} and v ∈ RQ′ . For a fixed number
of non-zero values k′, the objective is clearly decreasing in the number of groups Q′, which measures the
degrees of freedom of the projection, however it cannot exceed k′. We will use this argument below to get
the best parameter Q′. For a fixed partition G, minimization in v gives the barycenters of the Q′ groups,
µq = 1

sq

∑
i∈Gq xi. Inserting them in (12), the objective can be developed as

∑

i∈G0

x2
i +

Q′∑

q=1

∑

i∈Gq

x2
i + µ2

q − 2µqxi =
d∑

i=1

x2
i −

Q′∑

q=1

sqµ
2
q .

Splitting this objective between positive and negative barycenters, we get that the minimizer of (12) solves

maximize
∑

q : µq<0 sqµ
2
q +

∑
q : µq>0 sqµ

2
q

subject to Card
(⋃Q′

q=1 Gq
)
≤ k, 0 ≤ Q′ ≤ Q, (13)

in the number of groups Q′ and the partition G = (G0, . . . ,GQ′) of {1, . . . , d}, where µq = 1
sq

∑
i∈Gq xi.

We tackle this problem by finding the best balance between the two terms of the objective. We define
f−(j, q) the optimal value of

∑
spµ

2
p when picking j points clustered in q groups forming only negative

barycenters, i.e. the solution of the problem

maximize
∑q

p=1 spµ
2
p

subject to µp = 1
sp

∑
i∈Gp xi < 0

Card
(⋃q

p=1 Gp
)

= j,

(P−(j, q))

in the partition G = {G0, . . . ,Gq} of {1, . . . , d}. We define f+(j, q) similarly except that it constraints
barycenters to be positive. Using remark above on the parameter Q′, problem (13) is then equivalent to

maximize f−(j, q) + f+(k′ − j,Q′ − q)
subject to 0 ≤ k′ ≤ k, 0 ≤ j ≤ k′, Q′ = min(k′, Q), 0 ≤ q ≤ Q′, (14)

in variables j, k′ and q.
Now we show that f− and f+ can be computed by dynamic programming, we begin with f−. Remark

that (P−(j, q)) is a partitioning problem on the j smallest values of x. To see this, let S− ⊂ {1, . . . , d} be
the optimal subset of indexes taken for (P−(j, q)) and i ∈ S−. If there exists j /∈ S− such that xj ≤ xi, then

12



swapping j and i would increase the magnitude of the barycenter of the group that i belongs to and so the
objective. Now for (P−(j, q)) a feasible problem, let G1, . . . ,Gq be its optimal partition whose corresponding
barycenters are in ascending order and xi be the smallest value of x in Gq, then necessarily G1, . . . ,Gq−1

is optimal to solve P−(i − 1, q − 1). We order therefore the values of x in ascending order and use the
following dynamic program to compute f−,

f−(j, q) = max
q≤i≤j

µ(xi,...,xj)<0

f−(i− 1, q − 1) + (j − i+ 1)µ(xi, . . . , xj)
2, (15)

where µ(xi, . . . , xj) = 1
j−i+1

∑j
l=i xl can be computed in constant time using that

µ(xi, . . . , xj) =
xi + (j − i)µ(xi+1, . . . , xj)

j − i+ 1
.

By convention f−(j, q) = −∞ if (15) and so (P−(j, q)) are not feasible. f− is initialized as a grid of k + 1
and Q+ 1 columns such that f−(0, q) = 0 for any q, f−(j, 0) = 0 and f−(j, 1) = jµ(x1, . . . , xj)

2 for any
j ≥ 1. Values of f− are stored to compute (14). Two auxiliary variables I− and µ− store respectively the
indexes of the smallest value of x in group Gq and the barycenter of the group Gq, defined by

I−(j, q) = argmax
q≤i≤j

µ(xi,...,xj)<0

f−(i− 1, q − 1) + (j − i+ 1)µ(xi, . . . , xj)
2,

µ−(j, q) = µ(xi, . . . , xj), i = I−(j, q).

I− and µ− are initialized by I−(j, 1) = 1 and µ−(j, 1) = µ(x1, . . . , xj). The same dynamic program can
be used to compute f+, I+ and µ+, defined similarly as I− and µ−, by reversing the order of the values of
x. A grid search on f(j, q, k′) = f−(j, q) + f+(k′ − j,Q′ − q), with Q′ = min(k′, Q), gives the optimal
balance between positive and negative barycenters. A backtrack on I− and I+ finally gives the best partition
and the projection with the associated barycenters given in µ− and µ+.

Each dynamic program needs only to build the best partitions for the k smallest or largest partitions so
their complexity is in O(k2Q). The complexity of the grid search is O(k2Q) and the complexity of the
backtrack is O(Q). The overall complexity of the projection is therefore O(k2Q).

5.2. Convergence. Our theoretical convergence analysis can directly be applied to this setting for a problem
with squared loss without regularization. The feasible set is again a union of subspaces

w ∈
⋃

S∈{0,1}d×k, ST 1=1

Z∈{0,1}k×Q, Z1=1

{w : w = SZv}.

However the number of largest subspaces in terms of inclusion order is smaller. They are defined by selecting
k features among d and partitioning these k features into Q groups so that their number is N =

(
d
k

){
k
Q

}
.

Using classical bounds on the binomial coefficient and (11), we have for k ≥ 3, Q ≥ 3,

N ≤ dkkQQk−Q.
Our analysis thus predicts that only

n ≥ 36 max

{
QC2

0 ,
1

c
(k log d+Q log(k) + (k −Q) log(Q))

}

isotropic independent sub-Gaussian samples are sufficient for the projected gradient algorithm to converge.
It produces Q + 1 cluster of features, one being a cluster of zero features, reducing dimensionality, while
needing roughly as many samples as non-zero features.
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6. NUMERICAL EXPERIMENTS

We now test our methods, first on artificial datasets to check their robustness to noisy data. We then
test our algorithms for feature clustering on real data extracted from movie reviews. While our approach is
general and applies to both features and samples, we observe that our algorithms compare favorably with
specialized algorithms for these tasks.

6.1. Synthetic dataset.

6.1.1. Clustering constraint on sample points. We test the robustness of our method when the information
of the regression problem leading to the partition of the samples lies in a few features. We generate n
data points (xi, yi) for i = 1, . . . , n, with xi ∈ Rd, d = 8, and yi ∈ R, divided in Q = 3 clusters
corresponding to regression tasks with weight vectors vq. Regression labels for points xi in cluster Gq are
given by yi = vTq xi + ηy, where ηy ∼ N (0, σ2

y). We test the robustness of the algorithms to the addition of
noisy dimensions by completing xi with dn dimensions of noise ηd ∼ N (0, σd). For testing the models we
take the difference between the true label and the best prediction such that the Mean Square Error (MSE) is
given by

Loss(y,X,W ) =
1

2n

n∑

i=1

min
q=1...,Q

(yi − vTq xi)2. (16)

The results are reported in Table 1 where the intrinsic dimension is 10 and the proportion of dimensions
of noise dn/(d + dn) increases. On the algorithmic side, “Oracle” refers to the least-squares fit given the
true assignments, which can be seen as the best achievable error rate, AM refers to alternate minimization,
PG refers to projected gradient with squared loss, CG refers to conditional gradient and RC to regression
clustering as proposed by Zhang [2003], implemented using the Harmonic K-means formulation. PG, CG
and RC were followed by AM refinement. 1000 points were used for training, 100 for testing. The regular-
ization parameters were 5-fold cross-validated using a logarithmic grid. Noise on labels is σy = 10−1 and
noise on added dimensions is σd = 1. Results were averaged over 50 experiments with figures after the ±
sign corresponding to one standard deviation.

p = 0 p = 0.25 p = 0.5 p = 0.75 p = 0.9 p = 0.95
Oracle 0.52±0.08 0.55±0.07 0.55±0.10 0.58±0.09 0.71±0.11 1.17±0.18
AM 0.52±0.08 0.55±0.07 5.57±4.11 6.93±14.39 101.08±55.49 133.48±52.20
PG 1.53±7.13 3.98±17.65 3.20±13.23 5.64±20.50 91.33±39.32 131.48±50.90
CG 0.87±2.45 1.16±4.29 3.64±11.02 5.43±14.33 91.19±53.00 136.57±58.60
RC 0.52±0.08 0.55±0.07 5.59±20.27 13.45±28.76 59.19±37.97 135.77±66.96

TABLE 1. Test MSE given by (16) along proportion of added dimensions of noise p =
dn/(d+ dn).

All algorithms perform similarly, RC and AM get better results without added noise. None of the present
algorithms get a significantly better behavior with a majority of noisy dimensions.

6.1.2. Clustering constraint on features. We test the robustness of our method when with the number of
training samples or the level of noise in the labels. We generate n data points (xi, yi) for i = 1, . . . , n with
xi ∈ Rd, d = 100, and yi ∈ R. Regression weights w have only 5 different values vq for q = 1, . . . , 5,
uniformly distributed around 0. Regression labels are given by yi = wT xi +η, where η ∼ N (0, σ2). We
vary the number of samples n or the level of noise σ and measure ‖w∗ − ŵ‖2, the l2 norm of the difference
between the true vector of weights w∗ and the estimated ones ŵ.

In Table 2 and 3, we compare the proposed algorithms to Least Squares (LS), Least Squares followed by
K-means on the weights (using associated centroids as predictors) (LSK) and OSCAR [Bondell and Reich,
2008]. For OSCAR we used a submodular approach [Bach et al., 2012] to compute the corresponding
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proximal algorithm, which makes it scalable. “Oracle” refers to the Least Square solution given the true
assignments of features and can be seen as the best achievable error rate. Here too, PG refers to projected
gradient with squared loss (initialized with the solution of Least Square followed by k-means), CG refers
to conditional gradient, CGPG refers to conditional gradient followed by PG. When varying the number
of samples, noise on labels is set to σ = 0.5 and when varying level of noise σ number of samples is set
to n = 150. Parameters of the algorithms were all cross-validated using a logarithmic grid. Results were
averaged over 50 experiments and figures after the ± sign correspond to one standard deviation.

n = 50 n = 75 n = 100 n = 125 n = 150
Oracle 0.16±0.06 0.14±0.04 0.10±0.04 0.10±0.04 0.09±0.03
LS 61.94±17.63 51.94±16.01 21.41±9.40 1.02±0.18 0.70±0.09
LSK 62.93±18.05 57.78±17.03 10.18±14.96 0.31±0.19 0.19±0.12
PG 63.31±18.24 52.72±16.51 5.52±14.33 0.14±0.09 0.09±0.04
CG 61.81±17.78 52.59±16.58 17.24±13.87 1.20±1.38 1.05±1.37
CGPG 62.29±18.15 50.15±17.43 0.64±2.03 0.15±0.19 0.17±0.53
OS 61.54±17.59 52.87±15.90 11.32±7.03 1.25±0.28 0.71±0.10

TABLE 2. Measure of ‖w∗ − ŵ‖2, the l2 norm of the difference between the true vector of
weights w∗ and the estimated ones ŵ along number of samples n.

σ = 0.05 σ = 0.1 σ = 0.5 σ = 1
Oracle 0.86±0.27 1.72±0.54 8.62±2.70 17.19±5.43
LS 7.04±0.92 14.05±1.82 70.39±9.20 140.41±18.20
LSK 1.44±0.46 2.88±0.91 19.10±12.13 48.09±27.46
PG 0.87±0.27 1.74±0.52 9.11±4.00 26.23±18.00
CG 23.91±36.51 122.31±145.77 105.45±136.79 155.98±177.69
CGPG 1.52±3.13 140.83±710.32 17.34±53.31 24.80±16.32
OS 14.43±2.45 18.89±3.46 71.00±10.12 140.33±18.83

TABLE 3. Measure of ‖w∗ − ŵ‖2, the l2 norm of the difference between the true vector of
weights w∗ and the estimated ones ŵ along level of noise σ.

We observe that both PG and CGPG give significantly better results than other methods and even reach
the performance of the Oracle for n > d and for small σ, while for n ≤ d results are in the same range.

6.2. Real data.

6.2.1. Predicting ratings from reviews using groups of words. We perform “sentiment” analysis of newspa-
per movie reviews. We use the publicly available dataset introduced by Pang and Lee [2005] which contains
movie reviews paired with star ratings. We treat it as a regression problem, taking responses for y in (0, 1)
and word frequencies as covariates. The corpus contains n = 5006 documents and we reduced the initial
vocabulary to d = 5623 words by eliminating stop words, rare words and words with small TF-IDF mean on
whole corpus. We evaluate our algorithms for regression with clustered features against standard regression
approaches: Least-Squares (LS), and Least-Squares followed by k-means on predictors (LSK), Lasso and
Iterative Hard Thresholding (IHT). We also tested our projected gradient with sparsity constraint, initialized
by the solution of LSK (PGS) or by the solution of CG (CGPGS). Number of clusters, sparsity constraints
and regularization parameters were 5-fold cross-validated using respectively grids going from 5 to 15, d/2
to d/5 and logarithmic grids. Cross validation and training were made on 80% on the dataset and tested
on the remaining 20% it gave Q = 15 number of clusters and d/2 sparsity constraint for our algorithms.
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Results are reported in Table 4, figures after the ± sign correspond to one standard deviation when varying
the training and test sets on 20 experiments.

All methods perform similarly except IHT and Lasso whose hypotheses does not seem appropriate for the
problem. Our approaches have the benefit to reduce dimensionality from 5623 to 15 and provide meaningful
cluster of words. The clusters with highest absolute weights are also the ones with smallest number of
words, which confirms the intuition that only a few words are very discriminative. We illustrate this in
Table 5, picking randomly words of the four clusters within which associated predictor weights vq have
largest magnitude.

LS LSK PG CG CGPG OS
1.51±0.06 1.53±0.06 1.52±0.06 1.58±0.07 1.49±0.08 1.47±0.07

PGS CGPGS IHT Lasso
1.53±0.06 1.49±0.07 2.19±0.12 3.77±0.17

TABLE 4. 100 × mean square errors for predicting movie ratings associated with reviews.

First and Second Cluster bad, awful,
(negative) worst, boring, ridiculous,
sizes 1 and 7 watchable, suppose, disgusting,
Last and Before Last Cluster perfect,hilarious,fascinating,great
(positive) wonderfully,perfectly,goodspirited,
sizes 4 and 40 world, intelligent,wonderfully,unexpected,gem,recommendation,

excellent,rare,unique,marvelous,good-spirited,
mature,send,delightful,funniest

TABLE 5. Clustering of words on movie reviews. We show clusters of words within which
associated predictor weights vq have largest magnitude. First and second one are associated
to a negative coefficient and therefore bad feelings about movies, last and before last ones
to a positive coefficient and good feelings about movies.
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rue Simone Iff, 75012 Paris, France. FB is at the Département d’Informatique at École Normale Supérieure
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7. APPENDIX

7.1. Formulations for classification . We present here formulations of clustering either features or samples
when our task is to classify samples into K classes. For both settings we assume that n sample points are
given, represented by the matrix X = (x1, ..., xn)T ∈ Rn×d and corresponding labels Y = (y1, . . . , yK) ∈
{0, 1}n×K .

7.1.1. Clustering features for classification. Here we search K predictors W = (w1, . . . , wK), each of
them having features clustered in Q groups {G1, . . . ,GQ} such that for any k, wjk = vqk if feature j is in
group q. Partition of the features is shared by all predictors but each has different centroids represented in
the vector vk. Using an assignment matrix Z and the matrix of centroids V = (v1, . . . , vk), our problem can
therefore be written

minimize 1
n

∑n
i=1 loss

(
yi, x

T
i W

)
+ λ

2‖W‖2F
subject to W = ZV, Z ∈ {0, 1}d×Q, Z1 = 1

in variables W ∈ Rd×K , V ∈ RQ×K and Z. loss
(
yi, x

T
i W

)
is a squared or logistic multiclass loss and

regularization can either be seen as a standard `2 regularization on the wk or a weighted regularization on
the centroids vk.

7.1.2. Clustering samples for classification. Here our objective is to form Q groups {G1, . . . ,GQ} of sam-
ple points to maximize the within-group prediction performance. For classification, within each group Gq,
samples are predicted using a common matrix of predictors V q = (vq1, . . . , v

q
K). Our problem can be written

minimize
1

n

∑

i∈Gq

loss
(
yi, x

T
i V

q
)

+
λ

2

Q∑

q=1

sq‖V q‖2F (17)

in the variables V = (V 1, . . . , V Q) ∈ Rd×K×Q and G = (G1, . . . ,GQ) such that G is a partition of the n
samples. loss

(
yi, x

T
i W

)
is a squared or logistic multiclass and λ

2

∑Q
q=1 sq‖V q‖2F is a weighted regulariza-

tion. Using an assignment matrix Z ∈ {0, 1}n×Q and auxiliary variables (W 1, . . . ,Wn) ∈ Rd×K×n such
that W i = V q if i ∈ Gq, problem (17) can be rewritten

minimize 1
n

∑n
i=1 loss

(
yi,W

iTxi

)
+ λ

2

∑n
i=1 ‖W i‖2F

subject to W̃ T = ZṼ T , Z ∈ {0, 1}n×Q, Z1 = 1,

in the variables W ∈ Rd×K×n, V ∈ Rd×K×Q and Z, where W̃ = (Vec(W 1), . . . ,Vec(Wn)), Ṽ =
(Vec(V 1), . . . ,Vec(V Q)) and for a matrix A, Vec(A) concatenates its columns into one vector.

Remark that in that case we must have K > Q otherwise we output more possible answers than classes
(in that case the problem is ill-posed).

7.2. Clustered multitask . Our framework applies also to transfer learning by clustering similar tasks.
Given a set of K supervised tasks like regression or binary classification, transfer learning aims at jointly
solving these tasks, hoping that each task can benefit from the information given by other tasks. For sim-
plicity, we illustrate the case of multi-category classification, which can be extended to the general multitask
setting. When performing classification with one-versus-all majority vote, we train one binary classifier for
each class vs. all others. Using a regularizing penalty such as the squared `2 norm, the problem of multitask
learning can be cast as

minimize 1
n

∑K
k=1

∑n
i=1 loss(y

k
i , w

T
k xi) + λ

∑K
i=1 ‖wk‖22. (18)

in the matrix variable W = (w1, . . . , wk) ∈ Rd×K of classifier vectors (one column per task). We write
Loss(y,X,W ) and R(W ) the first and second term of this problem. Various strategies are used to leverage
the information coming from related tasks, such as low rank Argyriou et al. [2008] or structured norm
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penalties Ciliberto et al. [2015] on the matrix of classifiers W . Here we follow the clustered multitask
setting introduced in Jacob et al. [2009]. Namely we add a penalty Ω on the classifiers (w1, . . . , wK) which
enforce them to be clustered in Q groups G1, . . . ,GQ around centroids V = (v1, . . . , vQ) ∈ Rd×Q. This
penalty can be decomposed in

• A measure of the norm of the barycenter of centers v̄ = 1
K

∑Q
q=1 sqvq

Ωmean(V ) =
λm
2
K||v̄||22

• A measure of the variance between clusters

Ωbetween(V ) =
λb
2

Q∑

q=1

sq||vq − v̄||22

• A measure of the variance within clusters

Ωwithin(W,V ) =
λw
2

Q∑

q=1

∑

i∈Gq

||wi − vq||22

The total penalty Ω(W,V ) = Ωmean(V ) + Ωbetween(V ) + Ωwithin(W,V ) is illustrated in Figure 2.

Ωwithin

Ωbetween
Ωmean

0

FIGURE 2. Decomposed clustering penalty on K classes in the space of classifier vectors.

The clustered multitask learning problem can then be written using an assignment matrix Z and an auxil-
iary variable W Denoting Π = I− 11T

K the centering matrix of the K classes, we develop each term of the
penalty,

Ωmean(V,Z) =
λM
2

Tr(V ZT (I−Π)ZV T ),

Ωbetween(V,Z) =
λB
2

Tr(V ZTΠZV T ),

Ωwithin(W,V,Z) =
λW
2
||W − V ZT ||2F .

Using W̃ = V ZT the total penalty can then be written

Ω(W, W̃ ) =
λM
2

Tr(W̃ (I−Π)W̃ T ) +
λB
2

Tr(W̃ΠW̃ T ) +
λW
2
||W − W̃ ||2F ,

and the problem is

minimize Loss(y,X,W ) +R(W ) + Ω(W, W̃ )

s.t. W̃ T = ZV T , Z ∈ {0, 1}K×Q, Z1 = 1,

in variables W ∈ Rd×K , W̃ ∈ Rd×K , V ∈ Rd×Q and Z.
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7.3. Convex relaxations formulations.

7.3.1. Clustering samples for regression task. We use a squared loss l(ŷ, y) = 1
2(y−ŷ)2 in (3) and minimize

in V to get a clustering problem that we can tackle using Frank-Wolfe method. We fix a partition G and
define for each group Gq = {k1, . . . , ksq} ⊂ {1, . . . , d}, the matrix E ∈ {0, 1}sq×n that picks the sq points
of Gq, i.e. (Eq)ij = 1 if j = ki and 0 otherwise. Therefore yq = Eqy ∈ Rsq and Xq = EqX ∈ Rsq×d
are respectively the vector of labels and the matrix of sample vectors of the group Gq. We naturally have
EqE

T
q = I as rows of Eq are orthonormal and ETq Eq is a diagonal matrix where Zq = diag(ETq Eq) ∈

{0, 1}n is the assignment vector in group Gq, i.e. (Zq)j = 1 if j ∈ Gq and 0 otherwise. Z = (Z1, . . . , ZQ)
is therefore an assignment matrix for the partition G.

Minimizing in v and using the Sherman-Woodbury-Morrison formula, we obtain a function of the parti-
tion

ψ̃(G) = min
v1,...,vQ

1

2n

Q∑

q=1

‖yq −Xqvq‖22 +
λ

2

Q∑

q=1

sq‖vq‖22

=
1

2n

Q∑

q=1

‖yq‖22 − yTq Xq(sqλnI +XT
q Xq)

−1XT
q yq

=
1

2n

Q∑

q=1

yTq (I +
1

sqλn
XqX

T
q )−1yq.

Formulating terms of the sum as solutions of an optimization problem, we get

ψ̃(G) =
1

2n

Q∑

q=1

max
αq∈Rsq

−αTq (I +
1

sqλn
XqX

T
q )αq + 2yTq αq

=
1

2n
max

α=(α1;...;αQ)
αq∈Rsq

Q∑

q=1

−αTq (I +
1

sqλn
XqX

T
q )αq + 2yTq αq,

where (α1; . . . ;αQ) = (αT1 , . . . , α
T
Q)T stacks vectors αq in one vector of size

∑Q
q=1 sq = n. Using that

E = (E1; . . . ;EQ) = (ET1 , . . . , E
T
Q)T ∈ {0, 1}n×n is an orthonormal matrix, we make the change of

variable β = ETα (and so α = Eβ) such that for α = (α1; . . . ;αQ), αq ∈ Rsq , αq = Eqβ. Decomposing
Xq and yq and using ETq Eq = diag(Zq), we get

ψ̃(G) =
1

2n
max
β∈Rn

Q∑

q=1

−βTETq (I +
1

sqλn
XqX

T
q )Eqβ + 2yTq Eqβ

=
1

2n
max
β∈Rn

Q∑

q=1

−βTETq (I +
1

sqλn
EqXX

TETq )Eqβ + 2yTETq Eqβ

=
1

2n
max
β∈Rn

Q∑

q=1

−βT diag(Zq)β −
1

sqλn
βT diag(Zq)XX

T diag(Zq)β + 2yT diag(Zq)β.

For q fixed,
(

1
sq

diag(Zq)XX
T diag(Zq)

)
ij

= 1
sq
xTi xj if (i, j) ∈ Gq and 0 otherwise. So

Q∑

q=1

1

sq
diag(Zq)XX

T diag(Zq) = XXT ◦M,
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where M = Z(ZTZ)−1ZT is the normalized equivalence matrix of the partition G and ◦ denotes the
Hadamard product. Using

∑Q
q=1 diag(Zq) = I, we finally get a function of the equivalence matrix

ψ(M) =
1

2n
max
β∈Rn

−βT (I +
1

λn
XXT ◦M)β + 2yTβ

=
1

2n
yT (I +

1

λn
XXT ◦M)−1y.

Its gradient is given by

∇ψ(M) = − 1

2λn2
XXT ◦

(
(I +

1

λn
XXT ◦M)−1yyT (I +

1

λn
XXT ◦M)−1

)
.

Algorithm 2 can be applied to minimize ψ. The linear oracle can indeed be computed with k-means using
that the gradient is negative semi-definite. For a fixed Z, the linear predictors vq for each cluster of points
are given by

vq = (nλsqI +XT
q Xq)

−1XT
q yq

= (nλsqI +XTETq EqX)−1XTETq Eqy

= (nλsqI +XT diag(Zq)X)−1XT diag(Zq)y.

7.3.2. Convex relaxations for classification. We observe that convex relaxations for classification derive
from computations of the convex relaxations for regression by replacing vector of labels y by the corre-
sponding matrix of labels Y .
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