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Abstract. We consider the problem of computing upper and lower bounds on the price of
an European basket call option, given prices on other similar options. Although this problem
is very hard to solve exactly in the general case, we show that in some instances the upper
and lower bounds can be computed via simple closed-form expressions, or linear programs.
We also introduce an efficient linear programming relaxation of the general problem based on
an integral transform interpretation of the call price function. We show that this relaxation is
tight in some of the special cases examined before.
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Notation

For two n-vectors x, y, x ≥ y (resp. x < y) means xi ≥ yi (resp. xi < yi),
i = 1, . . . , n; x+ denotes the positive part of x, which is the vector with com-
ponents max(xi, 0). e is the n-vector with all components equal to one, and ei

is the i-th unit vector of Rn. The set Rn
+ denotes the set of n-vectors with

non-negative components, and Rn
++ its interior. The cone of nonnegative mea-

sures with support included in Rn
+ is denoted by K. For w ∈ Rm, K ∈ R and

g ∈ Rm+1, the notation 〈g, (w,K)〉 denotes the scalar product g̃Tw + gm+1K,
where g̃ contains the first m elements of g.
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1. Introduction

1.1. Problem setup

Let p ∈ Rm
+ , K0 ∈ R+, w0 ∈ Rn

++ and Ki ∈ R+, wi ∈ Rn, for i = 1, . . . ,m.
We consider the problem of computing upper (resp. lower) bounds on the price
of an European basket call option with maturity T , strike K0 and weight vector
w0:

max./min. Eπ(wT
0 x−K0)+

subject to Eπ(wT
i x−Ki)+ = pi, i = 1, . . . ,m,

(1)

over all probability distributions π ∈ K on the asset price vector x, consistent
with a given set of observed prices pi of options on other baskets. Note that
we implicitly assume that all the options have the same maturity, and that,
without loss of generality, the risk-free interest rate is zero (we compare prices
in the forward market).

We seek non-parametric bounds, that is, we do not assume any specific model
for the underlying asset prices; our sole assumption is the absence of a static
or “buy-and-hold” arbitrage today (i.e. an arbitrage that only requires trading
today and at the option maturity). The primary objective of these bounds is
not to detect and exploit arbitrage opportunities in the basket option market,
illiquidity issues are likely to make those opportunities hard to exploit. However,
the data on basket prices (index options in equity markets or swaptions in fixed
income) is very sparse and traders often rely on intuitive guesses to extrapolate
the remaining points, using these prices to calibrate models and evaluate more
complex derivatives. Our results aim to provide an efficient method to check the
validity of these extrapolated prices where they are the most likely to create
static arbitrage opportunities, i.e. very far in or out of the money.

From a financial point of view, our approach can be seen as a one-period,
non-parametric computation of the upper and lower hedging prices defined in
El Karoui and Quenez ([EKQ91] and [EKQ95], see also [KS98]). The necessary
conditions we detail in section 2 have been extensively used in the unidimensional
case to infer information on the state-price density given option prices (see [BL78]
or [LL00] among others), we study here a multidimensional generalization.

From an optimization point of view, problems such as the one above have
received a significant amount of attention in various forms. First, we can think
of problem (1) as a linear semi-infinite program, i.e. a linear program with a
finite number of linear constraints on an infinite dimensional variable. We use
this interpretation and the related duality results to compute closed-form solu-
tions in some particular cases. Secondly, we can see (1) as a generalized moment
problem. This approach was successfully used in dimension one by Bertsimas and
Popescu [BP02], who solve the one dimensional problem completely and show
that the multidimensional extension is NP-Hard. However, their relaxation al-
gorithm requires the solution of a number of linear programs that is potentially
exponential in n, the number of assets. This makes the method prohibitive for
large-scale problems. Finally, as in Henkin and Shananin [HS90], one can think
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of (1) as an integral transform inversion problem. This is the approach we adopt
to design an efficient relaxation in the general case.

The contribution of this work is twofold. First, exploiting the necessary con-
vexity of arbitrage free call prices

C(w,K) = Eπ(wTx−K)+,

where C(w,K) is the price of a basket call option with weights w and strike
K, we detail a relaxation technique providing upper (resp. lower) bounds on the
solution to (1). The resulting infinite dimensional linear program on the call price
function can be solved exactly. Compared to the decomposition method proposed
by [BP02], this relaxation technique has the advantage of being polynomial-time
in the number of assets and constraints.

Secondly, in some particular cases, we provide exact solutions to (1) that
have a polynomial complexity in the number of assets and constraints. We also
obtain expressions for the corresponding pricing measures, and use them later
on to prove tightness of the linear programming relaxation in the general case.
Recently, [LW03] and [LW04] provided equivalent upper bounds in the same
particular cases and exact lower bounds in dimension 2.

Finally, using results by [HLW04] who compute an optimal solution to (1)
in the particular case where one seeks an upper bound on the price of a basket
option with positive weights given only single asset option prices:

maximize Eπ(wT
0 x−K0)+

subject to Eπ(xi −Kj
i )+ = pj

i , i = 1, . . . ,m, j = 1, . . . , J i,
(2)

we show that our linear programming relaxation for this upper bound is tight.
Our paper is organized as follows. We begin in section 1.2 by a brief reminder

of the fundamental duality between pricing measures and positive portfolios. In
section 2 we detail a relaxation for problem (1) using shape constraints on the
call price C(w,K) as a function of the weight vector w and the strike price
K. Using linear programming duality arguments, we obtain in section 3 closed-
form formulas (or simple linear programs) giving upper and lower bounds in
some particular cases. In section 4, using [HLW04] we show that the linear
programming relaxation derived in section 2 is tight in the particular case (2)
above. Finally, section 5 provides some numerical examples.

1.2. Semi-infinite programming duality

We begin by detailing a key duality result linking the existence of a pricing
measure (or state price density in [Duf96]) and the absence of an arbitrage
portfolio. In the general case, we can write the upper bound problem as a semi-
infinite program:

psup := sup
π∈K

∫

Rn
+

ψ(x)π(x)dx subject to

∫

Rn
+

φ(x)π(x)dx = p,

∫

Rn
+

π(x)dx = 1,

(3)
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where

ψ(x) := (wT
0 x−K0)+, φi(x) := (wT

i x−Ki)+, i = 1, . . . ,m.

We define the Lagrangian (on K × Rm+1):

L(π, λ, λ0) =

∫

Rn
+

ψ(x)π(x)dx+λT

(

p−

∫

Rn
+

φ(x)π(x)dx

)

+λ0(1−

∫

Rn
+

π(x)dx),

and, as in [HK93], we can write the dual of (3) as:

dsup := inf
λ0,λ

: λT p+ λ0 : λTφ(x) + λ0 ≥ ψ(x) for every x ∈ Rn
+

= inf
λ

: sup
x≥0

: λT p+ ψ(x) − λTφ(x).
(4)

Both primal and dual problems have very intuitive financial interpretations. The
primal problem looks for a pricing measure that maximizes the target option
price while satisfying the pricing constraints imposed by the current market
conditions. The dual problem looks for the least expensive portfolio of options
and cash, λTφ(x) + λ0, that dominates the option payoff ψ(x). Of course, the
dual problem above yields an upper bound on the upper bound.

Similarly, the computation of the lower bound involves

pinf := inf
π∈K

∫

Rn
+

ψ(x)π(x)dx subject to

∫

Rn
+

φ(x)π(x)dx = p,

∫

Rn
+

π(x)dx = 1,

(5)
whose dual is

dinf := sup
λ0,λ

: λT p+ λ0 : λTφ(x) + λ0 ≤ ψ(x) for every x ∈ Rn
+

= sup
λ

: inf
x≥0

: λT p+ ψ(x) − λTφ(x).
(6)

Here, the dual problem provides a lower bound on the lower bound.
General results on semi-infinite linear programs establish the equivalence be-

tween the primal and dual formulations. We cite here a sufficient constraint
qualification condition for perfect duality from [HK93], which makes an assump-
tion about the support of optimal distributions. (We focus now on the lower
bound; a similar result holds for the upper bound problem.)

Proposition 1. Assume that in problem (6), the support of the asset price dis-
tribution can be restricted to a given compact set B ⊂ Rn

+. Assume further that
there exists a pair (λ0, λ) ∈ Rn+1 such that:

λTφ(x) + λ0 < ψ(x) for all x ∈ B.

Then if dinf is finite, perfect duality holds, namely dinf = pinf .
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Proof. See [HK93]. ⊓⊔

This constraint qualification condition trivially holds when φ(x) and ψ(x)
are Call option payoffs hence we have dinf = pinf , provided that the support of
distributions feasible for our problem can be restricted to some compactB ⊂ Rn

+.
However, this is often not the case for the bounds detailed in section 3 and we
will prove perfect duality directly whenever possible.

2. Relaxation for the general case using an integral transform

2.1. The Radon transform

Let us come back to problem (1), for p ∈ Rm
+ , K ∈ Rm

+ , w0 ∈ Rn
++, wi ∈ Rn,

i = 1, ...,m and K0 ≥ 0, we seek to compute upper and lower bounds on the
price of a European call basket option with strike K0 and weight vector w0:

Eπ(wT
0 x−K0)+,

with respect to all probability distributions π ∈ K on the asset price vector x,
consistent with a given set of m observed prices pi of options on other baskets
and forward prices qi = Eπxj , that is, given

Eπ(wT
i x−Ki)+ = pi, i = 1, . . . ,m and Eπxj = qj , j = 1, . . . , n.

Extending to basket options the results of [BL78], we write, for some π ∈ K:

C(w,K) = Eπ(wTx−K)+

=

∫

Rn
+

(wTx−K)+dπ(x),

we can think of C(w,K) as a particular integral transform of the measure π and
we can try to compute its inverse. If we assume that the measure π is absolutely
continuous with respect to the Lebesgue measure with density π(x), then for
almost all K we have:

∂2C(w,K)

∂K2
=

∫

Rn
+

δ(wTx−K)π(x)dx,

where δ(x) is the Dirac Delta function. This means that ∂2C(w,K)/∂K2 is the
Radon transform of the measure π (see [Hel99] for example). In this setting, the
general pricing problem above can then be rewritten as the following infinite
dimensional problem:

min./max. f(w0,K0)
subject to f(wi,Ki) = pj , j = 1, . . . ,m

f(ei, 0) = qi, i = 1, . . . , n
f(w,K) ∈ RC ,



6 Alexandre d’Aspremont, Laurent El Ghaoui

where ei is the Euclidean basis in Rn and RC is the range of the (linear) integral
transform

C : K → RC

π 7→ C(w,K) =
∫

Rn
+

(wTx−K)+dπ(x).

Thus, the problem of finding all possible arbitrage-free option prices becomes
equivalent to that of characterizing the range of the Radon transform on the
set of nonnegative measures K. This has been done by [HS90] in the context of
production functions (which can be thought of as Put options). As in [HS90],
we denote by C∞{0,Rn

+} the set of functions f such that for any k there is a
polynomial Pk(x) of degree k such that:

f(x) − Pk(x) = o(|x|k), as |x| → 0, x ∈ Rn
+.

Using Call-Put parity, we can directly derive from [HS90, theorem 3.2] the fol-
lowing result:

Proposition 2. A function C(w,K), with w ∈ Rn
+ and K > 0 belongs to RC ,

i.e. it can be represented in the form

C(w,K) =

∫

Rn
+

(wTx−K)+dπ(x),

where π is a nonnegative measure on a compact of Rn
+, if and only if the following

conditions hold.

– C(w,K) is convex and homogenous of degree one;
– for every w ∈ Rn

++, we have

lim
K→∞

C(w,K) = 0 and lim
K→0+

∂C(w,K)

∂K
= −1;

– if we write Dξ =
∑

i ξi∂/∂xi, the function

F (w) =

∫ ∞

0

e−Kd

(

∂C(w,K)

∂K

)

belongs to C∞{0,Rn
+} and for some w̃ ∈ Rn

+ the inequalities:

(−1)
k+1

Dξ1
...Dξk

F (λw̃) ≥ 0

hold for all positive integers k and λ ∈ R++ and all ξ1, ..., ξk in Rn
+.

Proof. See [HS90]. ⊓⊔

This result generalizes the necessary conditions for the absence of arbitrage used
by [BL78], [LL00] or [BP02] in dimension one.
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2.2. Linear programming relaxation

The conditions above are not tractable in the general case but we can formulate
a relaxation of the original program by replacing the last (moment) condition
with weaker monotonicity and linearity conditions. We then get an upper bound
on the upper bound (resp. a lower bound on the lower bound) solution by com-
puting:

sup / inf C(w0,K0)
subject to C(w,K) (jointly) convex in (w,K)

C(w,K) homogeneous of degree 1
−1 ≤ ∂C(w,K)/∂K ≤ 0 and C(w,K) nondecreasing in w
C(wi, 0) = wT

i q, i = 1, ...,m
C(wi,Ki) = pi, i = 1, ...,m.

(7)

where the variable is here C(w,K) ∈ C
(

Rn+1 → R+

)

. As we show below, this
infinite program can be reduced to a finite LP. If we define pm+i = wT

i q and
Km+i = 0 for i = 1, ...,m and p2m+1 = wT

0 q with K2m+1 = 0, we can show the
following result:

Proposition 3. If the following finite LP:

max./min. p0

subject to 〈gi, (wj ,Kj) − (wi,Ki)〉 ≤ pj − pi, i, j = 0, ..., 2m+ 1
gi,j ≥ 0,−1 ≤ gi,n+1 ≤ 0, i = 0, ..., 2m+ 1, j = 1, ..., n
〈gi, (wi,Ki)〉 = pi, i = 0, ..., 2m+ 1,

(8)

in the variables p0 ∈ R+ and gi ∈ Rn+1 for i = 0, ..., 2m+ 1, is strictly feasible
and its optimal value is finite, the infinite program (7) and its discretization
(8) have the same optimal value. Furthermore, an optimal point of (7) can be
constructed from the solution to (8).

Proof. As in [BV04], we first notice that as a discretization of the infinite pro-
gram (7), the finite LP will compute a lower (or upper) bound on its optimal
value. Let us now show that this bound is in fact equal to the optimal value of

(7). If we note z∗ =
[

p∗0, g
∗T
0 , . . . , g∗T

k

]T
the optimal solution to the LP problem

above and if we define:

C(w,K) = max
i=0,...,2m+1

{p∗i + 〈g∗i , (w,K) − (wi,Ki)〉} ,

where p∗i = pi for i = 1, . . . , 2m+ 1. C(w,K) satisfies

C(wi,Ki) = pi, i = 1, . . . ,m+ n+ 1,

and, by construction, C(w0,K0) attains the lower bound p0 computed in the
finite LP. Also, C(w,K) is convex as the pointwise maximum of affine functions
and is piecewise affine with gradient gi, which implies that it also satisfies the
convexity and monotonicity conditions in (7), hence it is a feasible point of the
infinite dimensional problem. This means that both problems have the same
optimal value and C(w,K) is an optimal solution to the infinite dimensional
program in (7). ⊓⊔
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3. Exact upper and lower bounds using LP duality

In this section, we address the problem of computing exact bounds in some par-
ticular cases using linear programming duality. We first consider the case when
the observed data set corresponds to option and forward prices on each indi-
vidual asset since in practice, observations always include the forward contract
prices Eπxi = qi, i = 1, . . . , n (forward contracts exist whenever options do). The
expressions derived in these simple particular cases will be used in the section 4
to show tightness of the upper bound relaxation in the general case.

We first examine the problem of computing upper and lower bounds on

Eπ(wTx−K0)+,

given the 2n constraints

Eπ(xi −Ki)+ = pi, Eπxi = qi, i = 1, . . . , n, (9)

where K0 > 0 and w,K, p, q are given vectors of Rn
++. We will assume that

0 ≤ p < q ≤ p+K, which is a necessary and sufficient condition for the problem
above to be feasible. We show sufficiency by constructing a discrete asset price
distribution that matches these prices. Let us define marginal distributions πi(xi)
such that

xi =

{

0 with probability πi(0) = 1 − qi−pi

Ki
qiKi

qi−pi
with probability πi(

qiKi

qi−pi
) = qi−pi

Ki

(10)

and because 0 ≤ p < q ≤ p+K, we know that

0 <
qi − pi

Ki

≤ 1.

Using Sklar’s theorem, we can then construct an asset π(x) distribution with
marginals πi(xi) (i.e. matching the market prices of single asset options) hence
the market is arbitrage free. From the form of the constraints in (9), we also
observe that the constraints 0 ≤ p < q ≤ p+K are necessary.

3.1. Upper bound

3.1.1. One forward and one option price constraint per asset Here, we apply
the semi-infinite duality result to the upper bound problem described in (9) to
show the following result:

Proposition 4. Let p, q ∈ Rn
+, K0 ∈ R+, w ∈ Rn

++ and Ki ∈ R+ for i =
1, . . . , n, with 0 ≤ pi < qi ≤ pi +Ki. An upper bound on the optimal value of the
problem:

maximize Eπ(wTx−K0)+
subject to Eπ(xi) = qi

Eπ(xi −Ki)+ = pi, i = 1, . . . , n,
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is given by:

dsup = max
0≤j≤n+1

wT p+
∑

i

wi min(qi − pi, βjKi) − βjK0, (11)

with βj := (qj − pj)/Kj ∈ [0, 1], j = 1, . . . , n and the convention β0 = 0,
βn+1 = 1.

Proof. In view of the general result (4), the dual problem can be expressed as

dsup = inf
λ+µ≥w

sup
x≥0

λT p+ µT q + (wTx−K0)+ − λT (x−K)+ − µTx, (12)

where, without loss of generality, we have included the constraint λ + µ ≥ w,
in order to ensure that the inner supremum is finite. We introduce a partition
of Rn

+ as follows. To a given subset I of {1, . . . , n}, we associate a subset DI of
Rn

+, defined by

DI = {x : xi > Ki, i ∈ I, 0 ≤ xi ≤ Ki, i ∈ Ic} ,

where Ic denotes the complement of I in {1, . . . , n}. For z ∈ Rn, let zI be the
vector formed with the elements (zi)i∈I , in the ascending order of indices in I.

We have for

dsup = inf
λ+µ≥w

: max
t∈{0,1},I⊆{1,...,n}

: sup
x∈DI

: λT p+ µT q

+t(wTx−K0) − λT
I (xI −KI) − µTx

= inf
λ+µ≥w

: max
t∈{0,1}I⊆{1,...,n}

: λT p+ µT q + h(λ, µ, I, t),

where h(λ, µ, I, t) is given by

h(λ, µ, I, t) := sup
x∈DI

: t(wTx−K0) − λT
I (xI −KI) − µTx

= sup
0≤xIc≤KIc

: (twIc − µIc)TxIc − tK0 + λT
I KI

+ sup
xI>KI

: (twI − µI − λI)
TxI

=

{

(twIc − µIc)T
+KIc − tK0 + (twI − µI)

TKI if λI + µI ≥ twI ,
+∞ otherwise.

We note that finiteness of h(λ, µ, I, t) is guaranteed by λ + µ ≥ w and 0 ≤
t ≤ 1. When these conditions hold, the maximum value of h(λ, µ, I, t) over
I ⊆ {1, . . . , n} is obtained when the complement Ic is the full set, that is, when
I is empty. We obtain

max
I⊆{1,...,n}

h(λ, µ, I, t) = (tw − µ)T
+K − tK0.

Optimizing over t, we obtain

max
t∈{0,1}

max
I⊆{1,...,n}

h(λ, µ, I, t) = max
(

(−µ)T
+K, (w − µ)T

+K −K0

)

.
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This results in the following expression for dsup:

dsup = inf
λ+µ≥w

λT p+ µT q + max
(

(−µ)T
+K, (w − µ)T

+K −K0

)

= inf
µ
wT p+ µT (q − p) + max

(

(−µ)T
+K, (w − µ)T

+K −K0

)

, (13)

which admits the following linear programming representation:

dsup = inf
µ,t,v,z

: wT p+ µT (q − p) + t t ≥ vTK, v ≥ 0, v + µ ≥ 0

t ≥ zTK −K0, z ≥ 0, z + µ ≥ w.

The problem is feasible, and is thus equivalent to its dual. After some elimination
of dual variables, the dual writes

dsup = max
y,β

wT p+ wT y − βK0 : (1 − β)K ≥ q − p− y ≥ 0
βK ≥ y ≥ 0.

We remark that the above problem is feasible if and only if p < q ≤ p+K. We
thus recover the primal feasibility condition mentioned before. This condition
ensures that the dual bound dsup is finite. The above further reduces to the
one-dimensional problem:

dsup = max
0≤β≤1

: wT p+
∑

i

wi min(qi − pi, βKi) − βK0. (14)

The above problem is the maximization of a piecewise linear concave function
of one variable, thus the maximum is attained at one of the break points βj :=
(qj − pj)/Kj ∈ [0, 1], j = 1, . . . , n, or for β = 0, 1. This way, we can obtain a
closed-form expression for the upper bound, namely

dsup = max
0≤j≤n+1

wT p+
∑

i

wi min(qi − pi, βjKi) − βjK0,

with the convention β0 = 0, βn+1 = 1, which is the desired result. ⊓⊔

Remark that, when the price of forwards is not given , the upper bound is readily
obtained by setting the variable µ, which is the variable dual to the constraint
Eπx = q, to zero in the expression (13). We get the simple closed-form expression

dsup = wT p+ (wTK −K0)+, (15)

which can be obtained as a direct consequence of Jensen’s inequality applied to
the function x → x+. We can check that the above bound satisfies some basic
properties: it is convex in w and concave in p, q. Also, when w = ei (the i-th unit
vector), and K0 = Ki, we obtain dsup = pi, while for Ki = 0 (i.e. the options
are in fact forward contracts), we obtain dsup = pi(= qi).
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3.1.2. Two option price constraints per asset Using [HLW04], the result we
just obtained can directly be extended to the (slightly) more general case where
two option price constraints are given for each asset (but no forward price is
specified). We will use this technical result to show tightness of the LP relaxation
in section 4.

We let p1, p2 ∈ Rn
+, K0 ∈ R+, w ∈ Rn

++ and K1,K2 ∈ Rn
+ (with K2 > K1).

An upper bound on the optimal value of the problem:

maximize Eπ(wTx−K0)+
subject to Eπ(xi) = qi

Eπ(xi −Kj
i )+ = pj

i , i = 1, . . . , n, j = 1, 2.

where q ∈ Rn
+ is here a variable. From (7), to preclude arbitrage between options

and forwards, we must impose:

q
i
= p1

i +K1
i

p1
i − p2

i

K2
i −K1

i

≤ qi ≤ p1
i +K1

i = qi, i = 1, . . . , n.

As in [HLW04], for each asset xi, we can then form C̄(i)(Kj
i ), the largest de-

creasing convex function such that C̄(i)(0) = p1
i + K1

i and C̄(i)(Kj
i ) = pj

i for
i = 1, . . . , n, j = 1, 2. Then, the largest decreasing convex function C(i)(k)
matching the market prices can be written for as a function of q as:

C(i)(k) = C̄(i)(k) − (p1
i +K1

i − qi)
(K1

i − k)+
K1

i

, i = 1, . . . , n.

From [HLW04], we know that for a given q the upper bound on (3.1.2) can be
written:

inf
λ≥0, λT e=1

n
∑

i=1

wiC
(i)(

λi

wi

K0)

this means that an upper bound on the solution to (3.1.2) for all possible values
of q can be found by solving:

sup
{q

i
≤qi≤qi}

inf
{λ≥0, λT e=1}

n
∑

i=1

wiC̄
(i)

(

λi

wi

K0

)

− (p1
i +K1

i − qi)
(K1

i − ( λi

wi
K0))+

K1
i

and because both C̄(i) and (K1
i − ( λi

wi
K0))+ are convex functions of λ, this is

also:

inf
{λ≥0, λT e=1}

sup
{q

i
≤qi≤qi}

n
∑

i=1

wiC̄
(i)

(

λi

wi

K0

)

− (p1
i +K1

i − qi)
(K1

i − ( λi

wi
K0))+

K1
i

.

The inner supremum is reached for qi = p1
i + Ki and we get the solution to

(3.1.2) as:

inf
{λ≥0, λT e=1}

n
∑

i=1

wiC̄
(i)

(

λi

wi

K0

)

.
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If qi = p1
i + Ki, the corresponding measure in [HLW04] places no weight on

values of xi smaller than K1
i , hence the problem with two options:

maximize Eπ(wTx−K0)+
subject to Eπ(xi −Kj

i )+ = pj
i , i = 1, . . . , n, j = 1, 2.

is equivalent to the following problem (setting x = K1 + y):

maximize Eπ(wT y − (K0 − wTK1))+
subject to Eπ(yi) = p1

i

Eπ(yi − (K2
i −K1

i ))+ = p2
i , i = 1, . . . , n.

where one forward and one option price constraint are given per asset.

3.2. Perfect duality: upper bound

We first compute the optimal probability measures corresponding to the upper
bound result with option and forward price constraints obtained in section 3.1.1.
We can recover an optimal distribution, or a sequence of distributions which
achieve the bound in the limit. This provides a direct proof of the fact that
psup = dsup, i.e. that the upper bound computed in Proposition 4 is tight.

Without loss of generality, we assume eTw = 1. In (14) we obtained:

dsup = sup
0≤β≤1

: wT p+
∑

i

wi min(qi − pi, βKi) − βK0,

which can be rewritten (the min is taken elementwise):

sup
0≤β≤1

wT min{q − βK0e, p+ β (K −K0)},

or again:

sup
0≤β≤1

inf
t∈[0,1]m

wT ((e− t)(q − βK0e) + t(p+ β (Ki −K0))).

Using LP duality we know that this is also equal to (with eTw = 1):

inf
t∈[0,1]m

sup
0≤β≤1

β
(

wT tK −K0

)

+ wT (e− t)q + wT tp.

We express the above as

inf
t∈[0,1]m

wT (e− t)q + wT tp+
(

wT tK −K0

)

+
.

This problem can be solved exactly as a finite linear program, and we obtain t∗

such that:

dsup = wT ((e− t∗)q + t∗p) +
(

wT t∗K −K0

)

+
. (16)
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We recognize here the expression of the upper bound on the price of a basket,
where we are only given the following option price constraints:

Eπ(xi − K̂i)+ = p̂i, i = 1, . . . , n,

where K̂ := t∗K and p̂ := (e − t∗)q + t∗p. In other words, as in [HLW04], this
upper bound is equal to the bound we would obtain given only one (synthetic)
call price p̂i per asset corresponding to a strike price K̂i.

Suppose first that (wTK ≤ K0), in this case we have t∗ = e and dsup = wT p,
and as in [HLW04, p.15, Case 3] we can construct a sequence of distributions
converging to the optimal value. If however (wTK > K0) and p > 0, then using
[HLW04, p.14, Case 2], we know that the bound is attained by a distribution
with finite support. Finally, if (wTK > K0) and p = 0, [HLW04, p.12, Case 1]
shows that a similar result holds.

Finally, using the result above, we know that this result is still valid when
we replace the option and forward price constraints with two option price con-
straints.

3.3. Lower bound

We can obtain a similar result for the lower bound problem. In this case however
the solution is not in closed form and involves solving a (polynomial size) linear
program.

Proposition 5. Let p, q ∈ Rn
+, K0 ∈ R+, w ∈ Rn

++ and Ki ∈ R+ for i =
1, . . . , n, with 0 ≤ pi < qi ≤ pi +Ki. A lower bound on the optimal value of the
problem:

minimize Eπ(wTx−K0)+
subject to Eπ(xi) = qi

Eπ(xi −Ki)+ = pi, i = 1, . . . , n,

can be computed by solving the following linear program:

dinf = sup
λ,µ,α0,...,αn

λT p+ µT (q −K) + h

subject to λ+ µ ≤ w
h ≤ α0(w

TK −K0) − (α0w − µ)T
+K, 0 ≤ α0 ≤ 1

∀i : h ≤ αi(w
TK −K0) −

∑

j 6=i(αiwj − µj)+Kj

(λi + µi)+/wi ≤ αi ≤ 1,

(17)

which has 3n+ 2 variables and 3n+ 4 constraints.

Proof. In the lower bound case, the dual problem is

dinf = sup
λ+µ≤w

inf
x≥0

λT p+ µT q + (wTx−K0)+ − λT (x−K)+ − µTx,

where we exploited the fact that the inner infimum is −∞ unless λ+ µ ≤ w.
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Let us use the same notation as before. We have

dinf = sup
λ+µ≤w

: min
I⊆{1,...,n}

: inf
x∈DI

: λT p+ µT q

+(wTx−K0)+ − λT
I (xI −KI) − µTx

= sup
λ+µ≤w

: min
I⊆{1,...,n}

: λT p+ µT q + h(λ, µ, I),

where

h(λ, µ, I) = inf
x,y0

y0 − λT
I (xI −KI) − µTx : x ∈ DI , y0 ≥ wTx−K0, y0 ≥ 0.

We have by linear programming duality

h(λ, µ, I) = sup (αw− µ)TK − αK0 − (αwIc − µIc)T
+KIc : αwI − λI − µI ≥ 0

0 ≤ α ≤ 1

Thus
dinf = sup

λ+µ≤w

λT p+ µT (q −K) + min
I⊆{1,...,n}

f(λ, µ, I),

where

f(λ, µ, I) := sup
α(λ,µ,I)≤α≤1

α(wTK −K0) − (αwIc − µIc)T
+KIc ,

and

α(λ, µ, I) := max
i∈I

(λi + µi)+
wi

,

with the convention that α(λ, µ, I) = 0 when I is empty.
Let I be a non-empty subset of {1, . . . , n}. Let i ∈ arg maxi∈I(λi + µi)+/wi.

We observe that

α(λ, µ, I) = α(λ, µ, {i}),

and

f(λ, µ, I) ≥ f(λ, µ, {i}),

which dramatically reduces the complexity of the minimization subproblem: in-
stead of computing the minimum over all 2n sets I ⊆ {1, . . . , n} it is sufficient
to pick I in the set of singletons of {1, . . . , n}, or I = ∅. Therefore, the problem
reads as a linear program

dinf = sup
λ,µ,α0,...,αn

λT p+ µT (q −K) + h

subject to λ+ µ ≤ w
h ≤ α0(w

TK −K0) − (α0w − µ)T
+K, 0 ≤ α0 ≤ 1

∀i : h ≤ αi(w
TK −K0) −

∑

j 6=i(αiwj − µj)+Kj

(λi + µi)+/wi ≤ αi ≤ 1,

(18)

and can be solved efficiently, since it has O(n) constraints and variables. ⊓⊔
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3.4. Perfect duality: lower bound without forwards

Here we study a particular case of the lower bound problem discussed in sec-
tion 3.3 where we are not given information on forward prices. We can’t prove
perfect duality in the setting of section 3.3 but prove it below in a more restric-
tive case. Without information on the forward prices, we simply set the dual
variable µ to zero in expression (18) to obtain:

dinf = sup
0≤ξ≤e

wT pξ + h : h ≤ 0, h ≤ ξi(wiKi −K0), 1 ≤ i ≤ n. (19)

We note that dinf can now be expressed as the solution of a non-linear, convex
optimization problem:

dinf = sup
ξ

wT pξ − max
1≤i≤n

ξi(K0 − wiKi)+ : 0 ≤ ξ ≤ e, (20)

or from its dual:

dinf = inf
ν

n
∑

i=1

(piwi − νi(K0 − wiKi)+)+ : νT e = 1, ν ≥ 0. (21)

We can reduce again this optimization problem to a line search over a scalar
parameter, by elimination of the variable ξ. We obtain

dinf =
∑

i : Kiwi≥K0

piwi + sup
v≥0

∑

i : Kiwi<K0

piwi min(1,
v

K0 −Kiwi

) − v.

The minimization above can be further reduced to a closed-form expression by
noting that the piecewise-linear function (of v) involved has break points at
γi = K0 − Kiwi (for i such that γi > 0) and 0. We obtain as before a lower
bound on the minimization problem

minimize Eπ(wTx−K0)+
subject to Eπ(xi −Ki)+ = pi, i = 1, . . . , n,

as:

dinf =
∑

i : Kiwi≥K0

piwi

+ max
j : Kjwj<K0

(

∑

i : Kiwi<K0

piwi min(1,
K0 −Kjwj

K0 −Kiwi

) −K0 + wjKj

)

+

.

Now, the linear programming expression (21) allows us to recover an optimal
asset price distribution or a sequence of distributions that are optimal in the
limit, as follows. Let ν be an optimal vector for problem (21). Let I be the
set of indices i such that K0 > wiKi. We note that i 6∈ I implies νi = 0. For
simplicity we assume that I = {1, . . . ,m}, where 0 ≤ m ≤ n (the choice m = 0
corresponding to empty I).
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First we examine the case when m = 0, that is, I is empty. In other words,
mini w(i)Ki ≥ K0, and therefore dinf = pTw. For ǫ > 0, we can define an asset
price distribution πǫ such that

x =

{

ǫ−1p+K with probability πǫ = ǫ
0 with probability π=1 − ǫ

(22)

which satisfies the pricing constraints and:

Eπǫ
[(wT

0 x−K0)+] = wT p+ ǫ(K −K0),

we recover the lower bound by taking the limit when ǫ goes to zero.
Next, we assume m ≥ 1. Let α = (n−m)/m. For ǫ such that

ǫ < α−1 min
1≤i≤m

νi(6= 0),

we define the vector ν(ǫ) by

νi(ǫ) =

{

νi − αǫ if 1 ≤ i ≤ m,
ǫ otherwise.

Since ǫ is small enough, vector ν(ǫ) satisfies the constraints of problem (21). We
now define a distribution πǫ on the asset price vector x as follows.

x = xǫ(i) with probability νi(ǫ),

where

xǫ
j(i) =

{ pj

νj(ǫ)
+Kj if j = i,

0 otherwise.

Note that xǫ
j(i) is always well-defined, since νj(ǫ) > 0 for every j.

Let us check that the distribution πǫ of asset prices satisfies the constraints
in (1). For every j, 1 ≤ j ≤ n, we have

Eπǫ
(xj −Kj)+ =

∑n
i=1 νi(ǫ)(x

ǫ
j(i) −Kj)+

= νj(ǫ)(x
ǫ
j(j) −Kj)+

= pj .

We also check that with this choice of asset price distribution, the objective in
(1) attains the lower bound dinf , when we let ǫ→ 0. We have

Eπǫ
(wTx−K0)+ =

∑n
i=1 νi(w

Txǫ(i) −K0)+
=
∑n

i=1 νi(ǫ)(
∑n

j=1 wjx
ǫ
j(i) −K0)+

=
∑n

i=1 νi(ǫ)(wix
ǫ
i(i) −K0)+

=
∑n

i=1 νi(ǫ)(wi(
pi

νi(ǫ)
+Ki) −K0)+

=
∑n

i=1(wipi − νi(ǫ)(K0 − wiKi))+.

Letting ǫ→ 0, we obtain

limǫ→0Eπǫ
(wTx−K0)+ =

∑m
i=1(wipi − νi(K0 − wiKi))+ +

∑n
i=m+1 wipi

=
∑n

i=1(wipi − νi(K0 − wiKi)+)+
= dinf ,

as claimed. This shows that dinf = pinf and that the lower bound computed in
(3.4) is tight in the absence of constraints on forward prices.
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4. Tightness of the integral transform based LP relaxation

In this section, using results from [HLW04] and section 3 we show that the linear
programming relaxation derived in Proposition 3 is tight, i.e. yields the exact
solution to problem (1) in the particular case considered in [HLW04] where only
market prices of single asset options are given for many strikes.

Proposition 6. Let pj
i ∈ R+, Kj ∈ R+ for j = 1, . . . , J i, K0 ∈ R+ and

w0 ∈ Rn
++ for i = 1, . . . ,m. The problems

maximize Eπ(wT
0 x−K0)+

subject to Eπ(xi −Kj
i )+ = pj

i , i = 1, . . . , n, j = 1, . . . , J i,
(23)

and

maximize p0

subject to
〈

gi
k, (w

j
l ,K

j
l ) − (wi

k,K
i
k)
〉

≤ pj
l − pi

k i, j = 0, . . . , n, k, l = 1, . . . , J i,

gi,i ≥ 0,−1 ≤ gi,n+1 ≤ 0, k = i, . . . , n
〈gi, (wi,Ki)〉 = pi, i = 0, . . . , n, j = 1, . . . , J i

where wj
i = ei for j = 1, . . . , J i and J0 = 2, have the same optimal value.

Proof. Let us first focus on the particular case where only the forward price
and one option price are given per asset, i.e. K1

i = 0 and J i = 2 for i = 1, . . . , n.
As in section 3, we write qi = p1

i and in order for our problem to be feasible, we
assume 0 ≤ p < q ≤ p+K.

We first show that the LP in (8) is feasible. Indeed, we can form a piecewise
affine function that is feasible for (7) by taking C(w0,K0) = Eπ(wT

0 x −K0)+,
where π is the probability measure defined in (10). By construction, this function
corresponds to a feasible point of (8) and the variables gi in (8) are simply the
subgradients of C(w0,K0) at the data points. Finally, the LP in (8) is finite,
since we always have 0 ≤ Eπ(wT

0 x −K0)+ ≤ wT
0 q and the feasible set of (8) is

compact. This means that the optimum in (8) is attained.

We then prove tightness of the LP relaxation in the case when forward price
information is ignored, i.e. assuming that m = n, and w0 ∈ Rn

+. We note ei, the
i-th unit vector. Without loss of generality, we set wT

0 e = 1. Since the function
C(w0,K0) = wT

0 p+
(

wT
0 K −K0

)

+
is a feasible point of the infinite LP (7), if we

call V LP the upper bound computed by the linear program (8), we must have:

V LP ≥ wT
0 p+

(

wT
0 K −K0

)

+
.

Now, using the necessary conditions in (7) and the convexity of

Eπε

(

wTx−K
)

+
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in (w,K) we can write

Eπε

(

wT
0 x−K0

)

+
= Eπε

(

wT
0 x−

(

wT
0 K +

(

K0 − wT
0 K
)))

+

≤
n
∑

i=1

w0,iEπε

(

xi −
(

Ki +
(

K0 − wT
0 K
)))

+

=

n
∑

i=1

w0,iC
(

ei,Ki +
(

K0 − wT
0 K
))

.

The conditions on the slope of the function C(w,K) imply

n
∑

i=1

w0,iC
(

ei,Ki +
(

K0 − wT
0 K
))

≤ wT
0 p+

(

wT
0 K −K0

)

+
.

Hence, V LP ≤ wT
0 p+

(

wT
0 K −K0

)

+
and finally

V LP = wT
0 p+

(

wT
0 K −K0

)

+
, (24)

where we recover the expression found in (15). This means that the upper bound
computed by the LP relaxation is tight in the particular case considered above.

Now we turn to the case when forward price constraints Eπxi = qi for
i = 1, . . . , n, are included. As already observed in 3.1.1, the function

dsup(w0,K0) = max
0≤j≤n+1

: wT
0 p+

∑

i

w0,i min(qi − pi, βjKi) − βjK0,

is convex in (w0,K0). Also, when w0 = ei, and K0 = Ki, we obtain dsup = pi,
while for Ki = 0, we obtain dsup = qi. This means that dsup(w,K) is a feasible
point of the infinite program (7) and hence V LP ≥ dsup(w0,K0).

Since the finite LP (8) is attained, at a point denoted by

z∗ =
[

p∗0, g
∗T
0 , . . . , g∗T

k

]T
,

we can define the call price function

dLP(w,K) = max
i=0,...,m+n+1

{p∗i + 〈g∗i , (w,K) − (wi,Ki)〉} ,

corresponding to the strike prices K̂ = t∗K and option prices p̂ = (1− t∗)q+ t∗p,
as in 3.2. By convexity of dLP(w,K), we have dLP(ei, K̂) ≤ p̂i for i = 1, . . . , n.
We know then from (24) that dLP(w0,K0) = V LP ≤ dsup(w0,K0), hence finally
dLP(w0,K0) = dsup(w0,K0). This shows that the LP relaxation of the upper
bound is tight when the input is composed of forwards and one option price per
asset.

Now, from section 3.1.2, we know that the upper bound problem given two
option prices per asset can be reduced to an upper bound problem given forwards
and one option price per asset. This means that the LP relaxation of the upper
bound problem is also tight in the case where two option prices are given for
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each asset. Finally, we conclude by remarking that [HLW04, Th. 4.1] show that
the optimal upper bound involves at most two option prices per asset, hence we
can reduce the problem of finding an upper bound in the general problem (23),
i.e. given option prices for many strikes, reduces to an upper bound problem
given only two options per asset, for which the LP relaxation is tight. ⊓⊔

One of the (hopefully rare) unfortunate aspects of the relaxation we obtain
in section 2 is that it treats the upper and lower bound problems in a completely
symmetric way. This does not at all reflect the inherent complexity of the exact
problems. In the upper bound case, we are essentially lucky and we can find,
in most cases, discrete distributions with compact support matching the upper
bounds, hence we very often get perfect duality (most notably in the special case
discussed in this section). This is not true for the lower bound and we almost
never get perfect duality in general.

5. Numerical results

In this section, we first show how a variant to program (3) can efficiently “clean”
the market data on single asset option prices to remove the non convexities due
to noise. We then focus on an equity market example and compare the upper
bound computed using the linear programming relaxation in (3) and the bounds
obtained in [HLW04] on the data set described in [HLW04, Table 2]. We then
show that this same relaxation is not tight in the lower bound case by exhibiting
an example where the lower bound computed in section 3.3 is larger than the
relaxation’s result. Finally, we test our relaxation technique in the general case
using a simplified interest rate data set taken from [BM01] and show how the
lower and upper bound perform in the general setting of computing bounds on
the price of a basket given other basket prices.

5.1. Basket bounds given single asset option prices

5.1.1. Market data In Figure (1), we show the market price on Mar. 17 2004 of
a certain number of basket call options on the Dow Jones index, with maturity
Apr. 16 2004, for various strikes (the underlying asset of this option is here the
Dow Jones index divided by 100). We notice that the convexity requirement with
respect to the strike price in Proposition 2 is violated between strikes 95 and 103
for example. Since prices in this plot are last quotes, this does not necessarily
mean that an arbitrage is present. In practice, options with strikes far away from
the forward price (here equal to 103) tend to be somewhat illiquid and their last
quoted price can be an unreliable indication of the price at which they would
trade today. However, since this option price data is used to calibrated pricing
models, being able to detect such anomalies in the data efficiently is crucial. We
can use the result of Proposition 3 to clean the input data on single asset option
prices. We know from [LL00] that the relaxation in 3 is always exact in dimension
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Fig. 1. Dow Jones index call option prices on Mar. 17 2004, with maturity Apr. 16 2004, for
various strikes. The vertical dotted line is at the forward price.

one and we look for a decreasing, convex approximation of the market data. Let
pi be the market prices of calls on an asset x with strikes Ki, for i = 1, . . . ,m,
we can find the closest (in the l1 norm sense) arbitrage free approximation of
the market prices by solving:

minimize
∑m

i=1 |yi − pi|
subject to 〈gi, (0,Kj −Ki)〉 ≤ yj − yi

gi,1 ≥ 0, − 1 ≤ gi,2 ≤ 0
〈gi, (1,Ki)〉 = yi, i, j = 1, . . . ,m,

(25)

which is a linear program in the variables gi ∈ R2 and yi ∈ R, for i = 1, . . . ,m.

5.1.2. Upper bound with many strikes Here we test empirically the result de-
tailed in (6) using the data set in [HLW04, Table 2]. This data set still contains
minor non convexities (on the BA option prices for example) and we first clean it
using the procedure described in (25) above. We than compare the upper bound
on the price of a basket option with uniform weights 0.071 obtained using the re-
laxation in (3) with those detailed in [HLW04, Table 3]. The results are detailed
in Table 1. As expected from the result in Proposition 6, the bounds match up to
a small numerical error that is most likely due to differences in the data cleaning
procedure.

Intuitively, tightness in this setting stems from the fact that the convex func-
tion C(w,K) which is the optimal solution to (3) coincides on each axis with the
convex envelope of the single asset option prices in the data set (the functions
C̄(i) in [HLW04, p. 12]). Unfortunately, this does not happen in the more general
case where the data consists of basket option prices.
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Strikes DJX price LP relax. U.B.

52 47.10 47.13 47.09
56 43.10 43.14 43.10
60 39.10 39.15 39.11
64 35.10 35.16 35.11
68 31.10 31.17 31.12
70 29.10 29.18 29.13
72 27.10 27.19 27.14
76 23.10 23.21 23.15
80 19.10 19.25 19.18
84 15.20 15.37 15.24
88 11.30 11.63 11.42
90 9.40 9.80 9.61
92 7.50 8.08 7.90
94 5.80 6.49 6.32
95 4.95 5.73 5.57
96 4.15 5.01 4.85
97 3.35 4.33 4.19
98 2.73 3.71 3.58
99 2.13 3.14 3.02
100 1.60 2.64 2.53
102 0.78 1.82 1.73
103 0.50 1.48 1.42
104 0.33 1.22 1.16
105 0.15 1.00 0.95
106 0.15 0.80 0.75
107 0.15 0.64 0.59

Table 1. This table displays for various strikes: the market price (DJX) of a basket option
with uniform weights, the upper bound (LP relax.) computed using the relaxation in §2 and
the upper bound (U.B.) computed in [HLW04].

Strike price 0.0384 0.0432 0.0480 0.0528 0.0576

Upper bound (relax.) 0.0171 0.0137 0.0103 0.0103 0.0103
Upper bound (from §3) 0.0171 0.0137 0.0103 0.0103 0.0103
Lower bound (from §3) 0.0096 0.0048 0.0009 0.0000 0.0000

Lower bound (relax.) 0.0096 0.0048 0.0000 0.0000 0.0000

Table 2. Lower and upper bounds on the price of a basket given single asset forward prices
and one option price per asset. We compare the lower bounds produced in §3 with those
produced by the linear programming relaxation §2.

5.1.3. Lower bound We can also test the tightness of the various bounds ob-
tained above on a simulated data set and compare these bounds with actual
prices. The forward prices are given by q = {0.7, 0.5, 0.4, 0.4, 0.4}. We set K =
{0.7, 0.5, 0.4, 0.4, 0.4} and p = {0.0161, 0.0143, 0.0093, 0.0070, 0.0047}. Using the
results of section 3, we get bounds on the price of a basket option with w0 =
{0.2, 0.2, 0.2, 0.2, 0.2} which are detailed in Table 2.

We notice that the lower bound computed using (18) is tighter than that
provided by the LP relaxation in (8) for at least one strike price. In this case,
the LP relaxation is equal to the trivial lower bound given by the intrinsic value
of the option.
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5.2. Basket bounds given basket option prices

Here, we test the relaxation (3) on a simplified data set taken from [BM01].
Our objective here is to look for bounds on the price of a swaption given other
swaption prices in a simplified setting. We refer the reader to [Reb98] and [d’A03]
for further details.

We compute market prices by simulation. The underlying asset prices fol-
low lognormal dynamics as in[BS73]. The forwards are given here by F =
{0.03, 0.04, 0.04, 0.05, 0.05} (these are forward interest rates), and the covariance
matrix C is taken from [BM01, pp. 301, 311]:

C =











0.034 0.032 0.026 0.021 0.018
0.032 0.035 0.019 0.026 0.011
0.026 0.019 0.024 0.010 0.019
0.021 0.026 0.010 0.020 0.004
0.018 0.011 0.019 0.004 0.017











We look for upper and lower bounds on the price of a basket option (a yield
curve option here) with weight vector w0 = {.2, .1, .2, .1, .2} for various strikes,
given the simulated price of other at the money basket options (swaptions) with
weights vectors given by the lines of the matrix:

W =











1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1











and the at the money price of a basket option with weights w0 (which is usually
liquid). we are looking for bounds on basket options with weight w0 with strike
prices ±10% away from the forward. The resulting price bounds are plotted in
Figure 2 in terms of implied volatility.
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