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Recruiting postdocs (one or two years) at Ecole Normale Superieure in Paris.
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Mandatory joke

Chuck Norris’ cowboy boots are made from real cowboys...

Alex d’Aspremont Simons Institute, Berkeley, September 2013, 3/29



Seriation

The Seriation Problem.

� We’re given pairwise similarity information Aij on n variables.

� We suppose that the data has a serial structure, i.e. there is an underlying
order π such that

Aπ(i)π(j) decreases with |i− j| (R-matrix)

Can we recover π?
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Seriation

The Continuous Ones Problem.

� We’re given a rectangular binary {0, 1} matrix.

� Can we reorder its columns so that the ones in each row are contiguous (C1P)?

Input matrix Ordered C1P matrix CTC (overlap)

Lemma [Kendall, 1969]

Seriation and C1P. Suppose there exists a permutation such that C is C1P, then
CΠ is C1P if and only if ΠTCTCΠ is an R-matrix.
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Shotgun Gene Sequencing

C1P has direct applications in shotgun gene sequencing.

� Genomes are cloned multiple times and randomly cut into shorter reads
(∼ 400bp), which are fully sequenced.

� Reorder the reads to recover the genome.

(from Wikipedia. . . )
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Shotgun Gene Sequencing

C1P formulation.

� Scan the reads for k-mers (short patterns of bases).

� Form a read × k-mer matrix A, such that Aij = 1 if k-mer j is in read i.

� Reorder the matrix A so that its columns are C1P.

(from [Gilchrist, 2010]). Only noiseless if the reads all have the same length.
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Outline

� Introduction

� Spectral solution

� Combinatorial solution

� Convex relaxation

� Numerical experiments
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A Spectral Solution

Spectral Seriation. Define the Laplacian of A as LA = diag(A1)−A, the
Fiedler vector of A is written

f = argmin
1Tx=0,
‖x‖2=1

xTLAx.

and is the second smallest eigenvector of the Laplacian. (Mathematical) miracles
do happen. . .

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins et al., 1998]

Spectral seriation. Suppose A ∈ Sn is a pre-R matrix, with a simple Fiedler value
whose Fiedler vector f has no repeated values. Suppose that Π ∈ P is such that
the permuted Fielder vector Πv is monotonic, then ΠAΠT is an R-matrix.
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Spectral Solution

A solution in search of a problem. . .

� What if the data is noisy and outside the perturbation regime? The spectral
solution is only stable when the noise ‖∆L‖2 ≤ (λ2 − λ3)/2.

� What if we have additional structural information?

Write seriation as an optimization problem?
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Seriation

Combinatorial problems.

� Ordering in 1D. Given an increasing sequence a1 ≤ . . . ≤ an, solve

min
π∈P

n∑
i=1

aibπ(i)

Trivial solution: set π such that bπ is decreasing.

� 2D version. The 2-SUM problem, written

min
π∈P

n∑
i,j=1

Aπ(i)π(j)(i− j)2 = (π−1)TLA(π−1)

where LA is the Laplacian of A. The 2-SUM problem is NP-Complete for
generic matrices A.
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Seriation and 2-SUM

Combinatorial Solution. For certain matrices A, 2-SUM ⇐⇒ seriation.

Decompose the matrix A. . .

� Define CUT(u,v) matrices as elementary {0, 1} R-matrices (one constant
symmetric square block), with

CUT (u, v) =

{
1 if u ≤ i, j ≤ v
0 otherwise,

� The combinatorial objective πTLAπ for A = CUT (u, v), is

n∑
i,j=1

Aij(yi − yj)2 = yTLAy = (v − u+ 1)2 var(y[u,v])

it measures the variance of y[u,v].
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Seriation and 2-SUM

Combinatorial Solution. Solve

min
π∈P

n∑
i,j=1

Aij(π(i)− π(j))2 = πTLAπ

� For CUT matrices, contiguous sequences have low variance.

� All contiguous solutions have the same variance here.

� Simple graphical example with A = CUT (5, 8). . .
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yTLAy = var(y[5,8]) = 1.6 yTLAy = var(y[5,8]) = 5.6
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Seriation and 2-SUM

Combinatorial Solution.

Lemma [Fogel, Jenatton, Bach, and d’Aspremont, 2013]

CUT decomposition. If A is pre-R (or pre-P), then ATA =
∑
iA

T
i Ai is a sum

of CUT matrices.

Lemma [Fogel et al., 2013]

Contiguous 2-SUM solutions. Suppose A = CUT (u, v), and write z = yπ the
optimal solution to minπ yπLAyπ. If we call I = [u, v] and Ic its complement in
[1, n], then

zj /∈ [min(zI),max(zI)], for all j ∈ Ic,
in other words, the coefficients in zI and zIc belong to disjoint intervals.
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Seriation and 2-SUM

Combinatorial Solution. Solving 2-SUM

min
π∈P

n∑
i,j=1

Aij(π(i)− π(j))2 = πTLAπ (1)

when yi = i, i = 1, . . . , n and A is a conic combination of CUT matrices.

Laplacian operator is linear, yπ monotonic optimal for all CUT components.

Proposition [Fogel et al., 2013]

Seriation and 2-SUM. Suppose C ∈ Sn is a {0, 1} pre-R matrix and yi = i for
i = 1, . . . , n. If Π is such that ΠCΠT (hence ΠAΠT ) is an R-matrix, then the
permutation π solves the combinatorial minimization problem (1) for A = C2.
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Convex Relaxation

What’s the point?

� Gives a spectral (hence polynomial) solution for 2-SUM on some R-matrices
([Atkins et al., 1998] mention both problems, but don’t show the connection).

� Write seriation as an optimization problem.

� Write a convex relaxation for 2-SUM and seriation.

◦ Spectral solution scales very well (cf. Pagerank, spectral clustering, etc.)

◦ Not very robust. . .

◦ Not flexible. . . Hard to include additional structural constraints.
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Convex Relaxation

� Write Dn the set of doubly stochastic matrices, where

Dn = {X ∈ Rn×n : X > 0, X1 = 1, XT1 = 1}

is the convex hull of the set of permutation matrices.

� Also P = D ∩O, i.e. Π permutation matrix if and only Π is both doubly
stochastic and orthogonal.

� We solve
minimize Tr(Y TΠTLAΠY )− µ‖PΠ‖2F
subject to eT1 Πg + 1 ≤ eTnΠg,

Π1 = 1, ΠT1 = 1,
Π ≥ 0,

(2)

in the variable Π ∈ Rn×n, where P = I− 1
n11

T and Y ∈ Rn×p is a matrix
whose columns are small perturbations of g = (1, . . . , n)T .

Alex d’Aspremont Simons Institute, Berkeley, September 2013, 18/29



Convex Relaxation

Objective. Tr(Y TΠTLAΠY )− µ‖PΠ‖2F

� 2-SUM term Tr(Y TΠTLAΠY ) =
∑p
i=1 y

T
i ΠTLAΠyi where yi are small

perturbations of the vector g = (1, . . . , n)T .

� Orthogonalization penalty −µ‖PΠ‖2F , where P = I− 1
n11

T .

◦ Among all DS matrices, rotations (hence permutations) have the highest
Frobenius norm.

◦ Setting µ ≤ λ2(LA)λ1(Y Y
T ), keeps the problem a convex QP.

Constraints.

� eT1 Πg + 1 ≤ eTnΠg breaks degeneracies by imposing π(1) ≤ π(n). Without it,
both monotonic solutions are optimal and this degeneracy can significantly
deteriorate relaxation performance.

� Π1 = 1, ΠT1 = 1 and Π ≥ 0, keep Π doubly stochastic.
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Convex Relaxation

� A lot of work on relaxations for orthogonality constraints, e.g. SDPs in
[Nemirovski, 2007, Coifman et al., 2008, So, 2011]. All of this could be used
here.

� Very high complexity, e.g. O(n9) for naive IP implementations of [So, 2011]

� Our relaxation is a simpler QP.

� However, no approximation bounds at this point.
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Semi-Supervised Seriation

Convex Relaxation.

� Semi-Supervised Seriation. We can add structural constraints to the
relaxation, where

a ≤ π(i)− π(j) ≤ b is written a ≤ eTi Πg − eTj Πg ≤ b.

which are linear constraints in Π.

� Sampling permutations. We can generate permutations from a doubly
stochastic matrix D

◦ Sample monotonic random vectors u.

◦ Recover a permutation by reordering Du.

� Algorithms. Large QP, projecting on doubly stochastic matrices can be done
very efficiently, using block coordinate descent on the dual. We use accelerated
first-order methods.
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Numerical results

Dead people. Row ordering, 70 artifacts × 59 graves matrix [Kendall, 1971].
Find the chronology of the 59 graves by making artifact occurrences contiguous in
columns.

Kendall Spectral Semi-Superv. Seration

The Hodson’s Munsingen dataset: row ordering given by Kendall (left), Fiedler
solution (center), best unsupervised QP solution from 100 experiments with
different Y , based on combinatorial objective (right).
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Numerical results

Dead people.

Kendall [1971] Spectral QP Reg QP Reg + 0.1% QP Reg + 47.5%

Kendall τ 1.00±0.00 0.75±0.00 0.73±0.22 0.76±0.16 0.97±0.01

Spearman ρ 1.00±0.00 0.90±0.00 0.88±0.19 0.91±0.16 1.00±0.00

Comb. Obj. 38520±0 38903±0 41810±13960 43457±23004 37602±775
# R-constr. 1556±0 1802±0 2021±484 2050±747 1545±43

Performance metrics (median and stdev over 100 runs of the QP relaxation).
We compare Kendall’s original solution with that of the Fiedler vector, the
seriation QP in (2) and the semi-supervised seriation QP with 0.1% and 24%
pairwise ordering constraints specified.

Note that the semi-supervised solution actually improves on both Kendall’s
manual solution and on the spectral ordering.
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Numerical results

Markov chain. Observe random permutations from a Markov chain.

� Gaussian Markov chain written Xi+1 = biXi + εi with εi ∼ N(0, σ2
i ).

� Mutual information matrix decreasing with |i− j| when ordered according to
the true Markov chain [Cover and Thomas, 2012], it is a pre-R matrix.

True Spectral Unsupervised QP

Markov Chain experiments: true Markov chain order (left), Spectral solution
(center), best unsupervised QP solution from 100 experiments with different Y ,
based on combinatorial objective (right).
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Numerical results

Markov chain.

No noise Noise within spectral gap Large noise

Spectral 1.00±0.00 0.86±0.14 0.41±0.25

QP Reg 0.50±0.34 0.58±0.31 0.45±0.27

QP + 0.2% 0.65±0.29 0.40±0.26 0.60±0.27

QP + 4.6% 0.71±0.08 0.70±0.07 0.68±0.08

QP + 54.3% 0.98±0.01 0.97±0.01 0.97±0.02

Kendall’s τ between true Markov chain ordering, Fiedler vector, seriation QP and
semi-supervised seriation QP with some pairwise orders specified.

We observe:

� The randomly ordered model covariance matrix (no noise).

� The sample covariance matrix with enough samples so the error is smaller than
half of the spectral gap (noise within spectral gap).

� A sample covariance computed using much fewer samples so the spectral
perturbation condition fails (large noise).
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Numerical results

DNA. Reorder the read similarity matrix to solve C1P on 250 000 reads from
human chromosome 22.

# reads×# reads matrix measuring the number of common k-mers between
read pairs, reordered according to the spectral ordering.

The matrix is 250 000 × 250 000, we zoom in on two regions.
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Numerical results

DNA. 250 000 reads from human chromosome 22.
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Spectral Spectral + QP

Recovered read position versus true read position for the spectral solution and
the spectral solution followed by semi-supervised seriation.

We see that the number of misplaced reads significantly decreases in the
semi-supervised seriation solution.
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Conclusion

Results.

� Equivalence 2-SUM ⇐⇒ seriation.

� QP relaxation for semi supervised seriation.

� Good performance on shotgun gene sequencing.

Open problems.

� Approximation bounds.

� Large-scale QPs (without spectral preprocessing).

� Impact of similarity measures.
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