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Abstract

The problem of estimating Wasserstein distances in high-dimensional spaces suffers
from the curse of dimensionality: One needs an exponential (w.r.t. dimension)
number of samples for the distance between two measures to be comparable to
that evaluated using i.i.d samples. Therefore, using the optimal transport (OT)
geometry in machine learning involves regularizing it, one way or another. One
of the greatest achievements of the OT literature in recent years lies in regularity
theory: one can prove under suitable hypothesis that the OT map between two
measures is Lipschitz, or, equivalently when studying 2-Wasserstein distances, that
the Brenier convex potential (whose gradient yields an optimal map) is a smooth
function. We propose in this work to go backwards, and adopt instead regularity as
a regularization tool. We propose algorithms working on discrete measures that can
recover nearly optimal transport maps that have small distortion, or, equivalently,
nearly optimal Brenier potential that are strongly convex and smooth. For univariate
measures, we show that computing these potentials is equivalent to solving an
isotonic regression problem under Lipschitz and strong monotonicity constraints.
For multivariate measures the problem boils down to a non-convex QCQP problem,
which can be relaxed to a semidefinite program. Most importantly, we recover
as the result of this optimization the values and gradients of the Brenier potential
on sampled points, but show how that they can be more generally evaluated on
any new point, at the cost of solving a QP for each new evaluation. Building on
these two formulations we propose practical algorithms to estimate and evaluate
transport maps with desired smoothness/strong convexity properties, illustrate their
statistical performance and visualize maps on a color transfer task.

1 Introduction

Optimal transport (OT) has found practical applications in areas as diverse as supervised machine
learning [21, 1, 13], graphics [33, 8], generative models [6, 30], NLP [22, 3], biology [23, 32]
or imaging [28, 15]. OT theory is useful for these applications because it provides tools that can
quantify the closeness between probability measures even when they do not have overlapping
supports, and more generally because it defines tools to infer maps that can push-forward (or morph)
one measure onto another. There is, however, an important difference between the OT definitions
introduced in textbooks such as the celebrated references by Villani [36, 37] or more recently in the
exhaustive presentation by Santambrogio [31], and those used in the works cited above. In all of these
applications, some form of regularization is needed to ensure computations are not only tractable but
also meaningful, in the sense that the naive implementation of linear programs to solve OT on discrete
histograms/measures are not only too costly but also suffer from the curse of dimensionality [17][26,
§3]. Regularization, defined explicitly or implicitly as an approximation algorithm, is therefore
crucial to ensure that OT is meaningful and can work at scale.
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Brenier Potentials and Regularity theory. In the OT literature, regularity has a distinct meaning,
one that is usually associated to the properties of the optimal Monge map [37, §9-10] pushing forward
a measure µ onto ν with a small average cost. When that cost is the quadratic Euclidean distance,
the Monge map is necessarily the gradient∇f of a convex function f . This major result, known as
the Brenier [9] theorem, states that the OT problem between µ and ν is solved as soon as there exists
a convex function f such that∇f]µ = ν. In that context, regularity in OT is usually understood as
the property that the map ∇f is Lipschitz, a seminal result due to Caffarelli [10] who proved that the
Brenier map can be guaranteed to be 1-Lipschitz when transporting a “fatter than Gaussian” measure
µ ∝ eV γd towards a “thinner than Gaussian” ν ∝ e−W γd (here γd is the Gaussian measure on Rd,
γd ∝ e−‖·‖
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, and V,W are two convex potentials). Equivalently, this result shows that the Monge
map is the gradient of a Brenier [9] potential that is 1-smooth.

Contributions. Our goal in this work is to translate the idea that the OT map between sufficiently
well-behaved distributions should be regular into an estimation procedure. More specifically,
1. Given two probability measures µ, ν ∈ P(Rd), a L-smoooth and `-strongly convex function f

such that∇f]µ = ν may not always exist. We relax this equality and look instead for a smooth
strongly convex function f that minimizes the Wasserstein distance between∇f]µ and ν. We call
such potential nearest-Brenier because they provide the “nearest” way to transport µ to a measure
like ν using a smooth and strongly convex potential. We show that nearest-Brenier potentials can
be recovered as the solution of a bilevel QCQP/Wasserstein optimization problem.

2. In the univariate case, we show that computing the nearest-Brenier potential is equivalent to
solving a variant of the isotonic regression problem in which the map (the derivative of a convex
function) must be strongly increasing and Lipschitz. A projected gradient descent approach can
be used to solve this problem efficiently.

3. In the multivariate case, we show that the QCQP problem can be relaxed as a SDP, using recent
advances in mathematical programming to quantify the worst-case performance of first order
methods when used on smooth strongly convex functions [35, 16].

4. We exploit the solutions to both these optimization problems to extend the Brenier potential and
Monge map at any point. We show this can be achieved by solving a QP for each new point.

5. We implement and test these algorithms on various tasks, in which smooth strongly convex
potentials add statistical stability, and illustrate them on a color transfer task.

2 Regularity in Optimal Transport

For d ∈ N, we write JdK = {1, ..., d} and L d for the Lebesgue measure in Rd. We write P2(Rd)
for the set of Borel probability measures with finite second-order moment.

Wasserstein distances, Kantorovich and Monge Formulations. For two probability measures
µ, ν ∈P2(Rd), we write Π(µ, ν) for the set of couplings

Π(µ, ν) = {π ∈P(Rd×Rd) s.t. ∀A,B ⊂ Rd Borel, π(A×Rd) = µ(A), π(Rd×B) = ν(B)},
and define their 2-Wasserstein distance has the solution of the Kantorovich problem [37, §6]:

W2(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
‖x− y‖22 dπ(x, y)

)1/2

.

For Borel sets X ,Y ⊂ Rd, Borel map T : X → Y and µ ∈ P(X ), we denote by T]µ ∈ P(Y)
the push-forward of µ under T , i.e. the measure such that for any A ⊂ Y , T]µ(A) = µ

(
T−1(A)

)
.

The Monge [25] formulation of OT is, when this minimization is feasible, equivalent to that of
Kantorovich, namely

W2(µ, ν) =

(
inf

T :T]µ=ν

∫
‖x− T (x)‖2 dµ(x)

)1/2

.

Convexity and Wasserstein: Brenier Theorem. Let µ ∈ P2(Rd) and f : Rd → R convex and
differentiable µ-a.e. Then ∇f , as a map from Rd to Rd is optimal for the Monge formulation of OT
between the measures µ and ∇f]µ. The Brenier theorem [9] shows that if µ = pL d (µ is absolutely
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continuous w.r.t. L d with density p) and ν ∈ P2(Rd), there always exists a convex f such that
∇f]µ = ν, i.e. there exists an optimal Monge map sending µ to ν that is the gradient of a convex
function f . Such a convex function f is called a Brenier potential between µ and ν. If moreover
ν = qL d, that is ν has density q, a change of variable formula shows that f should be solution to
the Monge-Ampère [37, Eq.12.4] equation det(∇2f) = p

q◦∇f . The study of the Monge-Ampère
equation is the key to obtain regularity results on f and ∇f , see the recent survey by Figalli [20].

Regularity of OT maps We recall that a differentiable convex function f is called L-smooth if its
gradient function is L-Lipschitz, namely for all x, y ∈ Rd we have ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.
It is called `-strongly convex if f − (`/2)‖ · ‖2 is convex. Given a partition E = (E1, . . . , EK) of
Rd, we will more generally say that f is E-locally `-strongly convex and L-smooth if the inequality
above only holds for pairs (x, y) taken in the interior of any of the subsets Ek. We write F`,L,E for
the set of such functions.

Results on the regularity of the Brenier potential were first obtained by Caffarelli [10]. For measures
µ = eV γd and ν = e−W γd, where V,W : Rd → R are convex and γd is the standard Gaussian
measure on Rd, the Caffarelli contraction theorem states that the optimal Brenier potential f∗ (defined
up to a constant) between µ and ν is 1-smooth. Although global smoothness is not always verified,
the following theorem by Figalli [19] shows that local regularity holds in a general setting:
Theorem 1 (Theorem 3.5 in [19]). Suppose µ, ν ∈ P2(Rd) have compact support and densities
f, g w.r.t L d bounded away from zero and infinity, and denote by T the optimal Monge map
sending µ to ν. Then there exist two negligible sets X ⊂ supp(µ), Y ⊂ supp(ν) such that
T : suppµ \X → supp ν \ Y is locally α-Hölder for some α > 0.

3 Regularity as Regularization

Contrary to the viewpoint adopted in the OT literature [11, 20], we consider here regularity
(smoothness) and curvature (strong convexity), as desiderata, namely conditions that must be
enforced when estimating OT, rather than properties that can be proved under suitable assump-
tions on µ, ν. Note that if a convex potential is `-strong and L-smooth, the map ∇f has distortion
`‖x− y‖ ≤ ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. When ` = L = 1, ∇f must be a translation. Lifting
the assumption that f is convex, one would recover the case where∇f is an isometry [12, 4, 3].
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gi := rf(xi)

Figure 1: Points xi mapped onto points gi := ∇f(xi) for a
function f that is locally smooth strongly convex. SSNB po-
tentials are such that the measure of endpoints gi are as close
as possible (in Wasserstein sense) to the measure supported
on th yj . Here this would be the sum of the squares of the
length of these orange sticks.

Near-Brenier smooth strongly con-
vex potentials. We will seek func-
tions f that are ` strongly convex and
L-smooth (or, alternatively, locally so)
while at the same time such that∇f]µ
is as close as possible to the target ν.
If ∇f]µ were to be exactly equal to
ν, such a function would be called a
Brenier potential. We quantify that
nearness in terms of the Wasserstein
distance between the push-foward of
µ and ν to define:
Definition 1. Let E be a partition
of Rd and 0 ≤ ` ≤ L. For
µ, ν ∈ P2(Rd), we call f∗ a L-
smooth `-strongly convex nearest Bre-
nier (SSNB) potential between µ and
ν if

f∗ ∈ arg min
f∈F`,L,E

W2 [∇f]µ, ν] .

Remark 1. For a SSNB potential
we consider the associated transport
value between µ and its nearest ap-
proximation of ν:

W2

(
µ,∇f∗]µ

)
=

[∫
‖x−∇f∗(x)‖2 dµ(x)

]1/2

.
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This quantity cannot define a metric between µ and ν because it is not symmetric in the formulation
above and W2(µ,∇f∗]µ) = 0 6⇒ µ = ν (take any ν that is not a Dirac and µ = δE[ν]).
Remark 2. The existence of an SSNB potential is proved in the supplementary material. When
E = {Rd}, a SSNB potential defines an optimal transport between µ and ∇f∗]µ. For more general
partitions E one only has that property locally, and f∗ can therefore be interpreted as a piecewise
convex potential, giving rise to piecewise optimal transport maps, as illustrated in Figure 1.

Algorithmic formulation as a bilevel QCQP/Wasserstein Problem. We will work from now
on with two discrete measures µ =

∑n
i=1 aiδxi

and ν =
∑m
j=1 bjδyj , with supports defined as

x1, . . . xn ∈ Rd, y1, . . . ym ∈ Rd, and a = (a1, . . . , an) and b = (b1, . . . , bm) are probability
weight vectors. We write U(a,b) for the transportation polytope with marginals a and b, namely
the set of n ×m matrices with nonnegative entries such that their row-sum and column-sum are
respectively equal to a and b. Set a desired smoothness L > 0 and strong-convexity parameter ` ≤ L,
and choose a partition E of Rd (in our experiments E is either {Rd}, or computed using a K-means
partition of µ). For k ∈ JKK, we write Ik = {i ∈ JnK s.t. xi ∈ Ek}. The infinite dimensional
optimization problem introduced in Definition 1 can be reduced to a QCQP that only focuses on
the values and gradients of f at the points xi. This result follows from the literature in the study
of first order methods, which consider optimizing over the set of convex functions with prescribed
smoothness and strong-convexity constants (see for instance [34, Theorem 3.8 and Theorem 3.14]).
We exploit such results to show that an SSNB f can not only be estimated at those points xi, but also
more generally recovered at any arbitrary point in Rd.
Theorem 2. The n values ui := f(xi), and gradients zi := ∇f(xi) of a SSNB potential f ∈ F`,L,E
can be recovered as:

min
z1,...zn∈Rd

u∈Rn

W 2
2

(
n∑
i=1

aiδzi , ν

)
:= min

P∈U(a,b)

∑
i,j

Pij‖zi − yj‖2 (1)

s.t. ∀k ≤ K,∀i, j ∈ Ik, ui ≥ uj + 〈zj , xi − xj 〉

+
1

2(1− `/L)

(
1

L
‖zi − zj‖2 + `‖xi − xj‖2 − 2

`

L
〈zj − zi, xj − xi 〉

)
.

Moreover, for x ∈ Ek, v := f(x) and g := ∇f(x) can be recovered as:

min
v∈R, g∈Rd

v (2)

s.t.∀i ∈ Ik, v ≥ ui + 〈zi, x− xi 〉

+
1

2(1− `/L)

(
1

L
‖g − zi‖2 + `‖x− xi‖2 − 2

`

L
〈zi − g, xi − x 〉

)
.

We refer to the supplementary material for the proof.

4 One-Dimensional Case and the Link with Constrained Isotonic Regression

We consider first SSNB potentials in arguably the simplest case, namely that of distributions on the
real line. We use the definition of the “barycentric projection” of a coupling [5, Def.5.4.2], which is
the most geometrically meaningful way to recover a map from a coupling.
Definition 2 (Barycentric Projection). Let µ, ν ∈ P2(Rd), and take π an optimal transport plan
between µ and ν. The barycentric projection of π is defined as the map π : x 7→ E(X,Y )∼π[Y |X = x].

Theorem 12.4.4 in [5] shows that π is the gradient a convex function. It is then admissible for the
SSNB optimization problem defined in Theorem 2 as soon as it verifies regularity (Lipschitzness) and
curvature (strongly increasing). Although the barycentric projection map is not optimal in genera, the
following proposition shows that it is however optimal for univariate measures:
Proposition 1. Let µ, ν ∈P2(R) and 0 ≤ ` ≤ L. Suppose µ�L 1, or is purely atomic. Then the
set of SSNB potentials between µ and ν is the set of solutions to

min
f∈F`,L,E

‖f ′ − π‖2L2(µ)

where π is the unique optimal transport plan between µ and ν given by [31, Theorem 2.9].
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Discrete computations. Suppose µ =
∑n
i=1 aiδxi is discrete with x1 ≤ . . . ≤ xn, and ν is arbitrary.

Let us denote by Qν the (generalized) quantile function of ν. Writing π for the optimal transport
plan between µ and ν, the barycentric projection π is explicit. Writing α0 := 0 αi :=

∑i
k=1 ak, one

has π(xi) = 1
ai

∫ αi

αi−1
Qν(t) dt (proof in the supplementary material).

x1

x2

x3y1 y2

y3 y4

x1

x2

x3
y1 y2

y3 y4

w3
w2w1

x1

x2

x3 w3
w2w1 z1

z2 z3

Figure 2: Top: optimal transport between two discrete mea-
sure µ, ν. Middle: the barycentric projection w of points
x is displayed and corresponds to a Monge map (no mass
splitting). Considering here for instance ` = 0.5 and L = 1,
the map that associates xi to wi is not 1-Lipschitz at pairs
(1, 2) or (1, 3) and over-contracting in pair (2, 3). Bottom:
To compute points zi that minimize their transport cost to the
wi (pink curves) while still ensuring xi 7→ zi is L-Lipschitz
and strongly increasing amounts to solving the L-Lipschitz
`-strongly increasing isotonic regression problem (3).

If ν is also discrete, with weights
b = (b1, . . . , bm) and sorted sup-
port y = (y1, . . . , ym) ∈ Rm, where
y1 ≤ · · · ≤ ym, one can recover the
coordinates of the vector (π(xi))i of
barycentric projections as

w := diag(a−1)NW(a,b)y,

where NW(a,b) is the so-called
North-west corner solution [27,
§3.4.2] obtained in linear time w.r.t
n,m by simply filling up greedily the
transportation matrix from top-left
to down-right. We can deduce
from Proposition 1 that a SSNB
potential can be recovered by solving
a weighted (and local, according to
the partition E) constrained isotonic
regression problem (see Fig. 2):

min
z∈Rn

n∑
i=1

ai(zi − wi)2 (3)

s.t. ∀k ≤ K, ∀i, i+ 1 ∈ Ik, `(xi+1 − xi) ≤ zi+1 − zi ≤ L(xi+1 − xi).
The gradient of a SSNB potential f∗ can then be retrieved by taking an interpolation of xi 7→ zi that
is piecewise affine.

Figure 3: Take measures µ = ν = U([0, 1]). For
several n, we consider µ̂n, ν̂n empirical measures
over n iid samples from µ, ν, from which we com-
pute a SSNB potential f̂n with different values L,
and ` = min{1, L} (and ` = 0 if L = ∞). We
plot the error |W 2

2 (µ̂n, ζ̂n) −W 2
2 (µ, ν)| depend-

ing on n and L, averaged over 100 runs, where
ζ̂n = 1

n

∑n
i=1 δzi . If L is chosen smaller than

Lip(Id) = 1, the error does not converge to 0. Oth-
erwise, the convergence is faster when L is closer
to 1. The case L =∞ corresponds to the classical
OT estimator ζ̂n = ν̂n.

Algorithms solving the Lipschitz isotonic regres-
sion were first designed by [38] with a O(n2)
complexity. [2, 24] developed O(n log n) algo-
rithms. A Smooth NB potential can therefore be
exactly computed in O(n log n) time, which is
the same complexity as of optimal transport in
one dimension. Adding up the strongly increas-
ing property, Problem (3) can also be seen as
least-squares regression problem with box con-
straints. Indeed, introducing m variables vi ≥ 0,
and defining zi as the partial sum v, namely
zi =

∑i
j=1 vj (or equivalently vi = zi − zi−1

with z0 := 0), and writing u−i = `(xi+1 − xi),
u+
i = L(xi+1−xi) one aims to find v that min-

imizes ‖Av−w‖2a s.t. u− ≤ v ≤ u+, whereA
is the lower-triangular matrix of ones and ‖ · ‖a
is the Euclidean norm weighted by a. In our
experiments, we have found that a projected gra-
dient descent approach to solve this problem
performed in practice as quickly as more spe-
cialized algorithms and was easier to parallelize
when comparing a measure µ to several measures ν.

5 Semidefinite Relaxations in the Higher-dimensional Case

In this section, we provide algorithms to compute a SSNB potential in dimension d ≥ 2 when µ, ν
are discrete measures. In order to solve Problem (1), we will alternate between minimizing over
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(z1, . . . , zn, u) and computing a coupling P solving the OT problem. The OT computation can be
efficiently carried out using Sinkhorn’s algorithm [14]. The other minimization is a non-convex
QCQP, separable in K, that we lift as semidefinite program (SDP).

Initialize z1, . . . , zn ∈ Rd
repeat

C ←
(
‖zi − yj‖2

)
ij

P ← OT(a, b, C)
for k = 1, . . . ,K do
{zi | i ∈ Ik} ← SDPk(P )

end
until convergence;
Algorithm 1: Alternate Minimization
for SSNB computation. SDPk(P ) im-
plements a SDP solver for problem (4).

SDP relaxation Let k ∈ JKK and write nk = |Ek|. For
z1, . . . , znk

∈ Rd, we define G ∈ R(2nk+m)×(2nk+m)

to be the Gram matrix associated with points xi ∈ Ek,
z1, . . . , znk

and y1, . . . , ym. To simplify notations, we
will writeG(αi, βj) for the coefficient inG corresponding
to 〈αi, βj 〉 where α, β ∈ {x, y, z}.
To relax the original problem, we can do a change of vari-
ables, introducing the matrix variables Zi = ziz

T
i . This

is of course a nonconvex constraint in (zi, Zi) but we can
relax it to zizTi � Zi which is a Schur complement. By
construction, we also have trace(Zi) = G(zi, zi), hence
‖zi‖22 ≤ G(zi, zi).

The locations xi ∈ Ek, y1, . . . , ym are known and fixed, the terms G(yj , zi) and G(xj , zi) are linear,
written G(yj , zi) = zTi yj and G(xj , zi) = zTi xj for zi ∈ Rd. Overall, for a fixed transport plan
P ∈ U(a, b), we have to solve the following SDPs (one for each k ∈ JKK):

min
G�0,u∈RIk

∑
i∈Ik

m∑
j=1

Pi,j [G(yj , yj) +G(zi, zi)− 2G(yj , zi)]

 (4)

s.t. ∀i, j ∈ Ik, ui ≥ uj +G(zj , xi)−G(zj , xj)

+
1

2(1− `/L)

(
1

L
[G(zi, zi) +G(zj , zj)− 2G(zi, zj)]

+`‖xi − xj‖2 − 2
`

L
[G(zj , xj)−G(zj , xi)−G(zi, xj) +G(zi, xi)]

)
∀i ∈ Ik, ‖zi‖22 ≤ G(zi, zi), ∀j ∈ JmK, G(yj , zi) = zTi yj , G(xj , zi) = zTi xj .

This semidefinite relaxation will be tight when the ambient dimension d is of the same order as the
number of points [35]. When d is smaller, there is a gap between the optimum of the SDP and that of
the QCQP, and we need to find (or approximate) a low rank solution.

6 Estimation of Wasserstein Distance and Monge Map

Data: µ̂n, ν̂n, partition E , N MC iterations
(ui, zi)i≤n ← solve SSNB (1) using Algo 1
for j ∈ JNK do

Draw x̂j ∼ µ
Find k s.t. x̂j ∈ Ek (k-means)
∇f̂n(x̂j)← solve QP (2)

end
return
Ŵ =

[
(1/N)

∑N
j=1 ‖x̂j −∇f̂n(x̂j)‖2

]1/2
Algorithm 2: Monte-Carlo (MC) approximation
of the SSNB estimator.

Let µ, ν ∈ P2(Rd) be compactly supported
measures with densities w.r.t the Lebesgue mea-
sure in Rd. Let f∗ be an optimal Brenier po-
tential such that ∇f∗]µ = ν. Our goal is
twofold: estimate the map∇f∗ and the value of
W2(µ, ν).

Draw n i.i.d samples x1, . . . , xn ∼ µ and
y1, . . . , yn ∼ ν, and let µ̂n := 1

n

∑n
i=1 δxi and

ν̂n := 1
n

∑n
i=1 δyi .

Let f̂n be a SSNB potential with E = {Rd}.
Then for x ∈ suppµ a natural estimator of
∇f∗(x) is given by a solution ∇f̂n(x) of (2).
This defines an estimator∇f̂n : Rd → Rd of ∇f∗, that we use to estimate W2(µ, ν):

Definition 3. We define the SSNB estimator Ŵ2(µ, ν) of W2(µ, ν) as W2(µ,∇f̂n]µ).

Since ∇f̂n is the gradient of a convex Brenier potential when E = Rd, it is optimal between µ
and ∇f̂n]µ. Then W 2

2 (µ,∇f̂n]µ) =
∫
‖x−∇f̂n(x)‖2 dµ(x) can be computed using Monte-Carlo

integration, whose estimation error does not depend upon the dimension d.
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If E 6= {Rd},∇f̂n is the gradient of a locally convex Brenier potential, and not necessarily globally
optimal. In that case

∫
‖x−∇f̂n(x)‖2 dµ(x) is an approximate upper bound of W 2

2 (µ,∇f̂n]µ).

Proposition 2. Choose E = {Rd}, 0 ≤ ` ≤ L. If f∗ ∈ F`,L,E :∣∣∣W2(µ, ν)−W2(µ, (∇f̂n)]µ)
∣∣∣ ≤W2

(
(∇f̂n)]µ, ν

)
≤ ‖∇f̂n −∇f∗‖L2(µ) −→

n→∞
0 a.s.

The study of the theoretical rate of convergence of this estimator is left for future work. Numerical
simulations (see Figure 4,right) seem to indicate a faster rate of convergence compared to the classical
W2(µ̂n, ν̂n), even in the case where ∇f∗ is only locally Lipschitz and E 6= {Rd}. If L < Lip(∇f∗),
the SSNB estimator Ŵ2(µ, ν) is not consistent, as can be seen in Figure 3.

Note that in practice, the real values of ` and L are unknown. They can estimated by computing the
optimal assignment σ∗ ∈ arg minσ:JnK→JnK

∑n
i=1 ‖xi − yσ(i)‖2 and looking at the minimum and

maximum values of ‖yσ(i) − yσ(j)‖/‖xi − xj‖.

7 Experiments

All the computations were performed on a Mac Book Pro, using MOSEK as a SDP and QP solver.

7.1 Estimation of a Locally Lipschitz Monge Map

In this experiment, we consider µ the uniform measure over the unit ball in Rd, and ν = T]µ where
T (x1, . . . , xd) = (x1 + 2 sign(x1), x2, . . . , xd). As can be seen in Figure 4 (upper left), T splits the
unit ball into two semi-balls. T is a subgradient of the convex function f : x 7→ 1

2‖x‖2 + 2|x1|, so it
is the optimal transport map. Clearly, f is ` = 1-strongly convex, but is not smooth: ∇f is not even
continuous. However, f is L = 1-smooth by part.

In Figure 4 (bottom left), we consider empirical measures µ̂n, ν̂n over n = 1000 points. We run a
k-means over suppµ to compute K = 400 clusters E1, . . . , EK . We run algorithm 1 to compute
a SSNB potential f̂n. For several random points x ∈ suppµ that are not in the support of µ̂n, we
compute the estimated SSNB map∇f̂n(x) by solving the QP (2).

In Figure 4 (right), we consider empirical measures µ̂n, ν̂n for different values of dimension d ∈
{2, 20, 100} and of number of points n ∈ {10, 50, 100, 500}. We plot the estimation error of the
SSNB estimator with ` = 0 and L = 1 (with K = 0.4n k-means clusters and N = 50 Monte-Carlo
samples) and of the classical discrete OT estimator. The SSNB estimator seems to converge faster
than the classical discrete OT estimator.

Figure 4: (Top left) Measures µ, ν. (Bottom left) Empirical measures µ̂n, ν̂n on n = 1000 points.
The black segments correspond to the displacement vectors ∇f̂n(x)− x for several unseen points
x ∈ suppµ. (Right) Estimation error |W2(µ, ν)−Ŵ2(µ, ν)| (blue line) and |W2(µ, ν)−W2(µ̂n, ν̂n)|
(red dotted) depending on the number of points n and dimension d ∈ {2, 20, 100}, averaged over
100 samples. The shaded areas show the 25%-75% percentiles over the runs.
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7.2 Color Transfer

Given a source and a target image, the goal of color transfer is to transform the colors of the source
image so that it looks similar to the target image color palette. Optimal Transport has been used to
carry out such a task, see e.g. [7, 18, 29]. Each image is represented by a point cloud in the RGB
color space identified with [0, 1]3. The optimal transport plan π between the two point clouds give,
up to a barycentric projection, a transfer color mapping.

It is natural to ask that similar colors are transferred to similar colors, and that different colors are
transferred to different colors. These two demands translate into the smoothness and strong convexity
of the Brenier potential from which derives the color transfer mapping. We therefore propose to
compute a SSNB potential and map between the source and target distributions in the color space.

In order to make to computations tractable, we compute a k-means clustering with 30 clusters for
each point cloud, and compute the SSNB potential using the two empirical measures on the centroids.

We then recompute a k-means clustering of the source point cloud with 1000 clusters. For each of the
1000 centroids, we compute its new color solving QP (2). A pixel in the original image then sees its
color changed according to the transformation of its nearest neighbor among the 1000 centroids.

In Figure 5, we show the color-transferred results using OT, or SSNB potentials for different values
of parameters ` and L. Larger images are available in the supplementary material.

(a) Original
Image

(b) Target Image (c) Classical OT,
W ≈ 0.

(d) ` = 0, L = 1,
W ≈ 1.10−2

(e) ` = .5, L = 1,
W ≈ 1.10−2

(f) ` = 1, L = 1,
W ≈ 2.10−2

(g) ` = 0, L = 2,
W ≈ 4.10−3

(h) ` = .5, L = 2,
W ≈ 5.10−3

(i) ` = 1, L = 2,
W ≈ 2.10−2

(j) ` = 0, L = 5,
W ≈ 2.10−4

(k) ` = .5, L = 5,
W ≈ 1.10−3

(l) ` = 1, L = 5,
W ≈ 2.10−2

Figure 5: (a) Schiele’s portrait. (b) Van Gogh’s portrait. (c) Color transfer using classical OT. (c)-(l)
Color transfer using SSNB map, for ` ∈ {0, 0.5, 1} and L ∈ {1, 2, 5}. The value W corresponds to
the Wasserstein distance between the color distribution of the image and the color distribution of Van
Gogh’s portrait. The smaller W , the greater the fidelity to Van Gogh’s portrait colors. Smaller L
values give more uniform colors, while larger ` values give more contrast.

Conclusion. We have proposed in this work the first computational procedure to estimate optimal
transport that incorporates smoothness and strongly convex (local) constraints on the Brenier poten-
tial, or, equivalently, that ensures that the optimal transport map has (local) distortion that is both
upper and lower bounded. These assumptions are natural for several problems, both high and low
dimensional, can be implemented practically and advance the current knowledge on handling the
curse of dimensionality in optimal transport.

8



References
[1] Soroosh Shafieezadeh Abadeh, Peyman Mohajerin Mohajerin Esfahani, and Daniel Kuhn.

Distributionally robust logistic regression. In Advances in Neural Information Processing
Systems, pages 1576–1584, 2015.

[2] Pankaj K Agarwal, Jeff M Phillips, and Bardia Sadri. Lipschitz unimodal and isotonic regression
on paths and trees. In Latin American Symposium on Theoretical Informatics, pages 384–396.
Springer, 2010.

[3] Jean Alaux, Edouard Grave, Marco Cuturi, and Armand Joulin. Unsupervised hyperalignment
for multilingual word embeddings. Proceedings of ICLR, arXiv preprint arXiv:1811.01124,
2018.

[4] Helmut Alt and Leonidas J Guibas. Discrete geometric shapes: Matching, interpolation, and
approximation. In Handbook of computational geometry, pages 121–153. Elsevier, 2000.

[5] L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space of
Probability Measures. Springer, 2006.

[6] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. Proceedings of the 34th International Conference on Machine Learning, 70:214–223,
2017.

[7] Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon wasser-
stein barycenters of measures. Journal of Mathematical Imaging and Vision, 51(1):22–45,
2015.

[8] Nicolas Bonneel, Gabriel Peyré, and Marco Cuturi. Wasserstein barycentric coordinates:
histogram regression using optimal transport. ACM Transactions on Graphics, 35(4):71:1–
71:10, 2016.

[9] Yann Brenier. Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R.
Acad. Sci. Paris Sér. I Math., 305(19):805–808, 1987.

[10] Luis A Caffarelli. Monotonicity properties of optimal transportation and the fkg and related
inequalities. Communications in Mathematical Physics, 214(3):547–563, 2000.

[11] Luis A Caffarelli, Sergey A Kochengin, and Vladimir I Oliker. Problem of reflector design
with given far-field scattering data. In Monge Ampère equation: applications to geometry and
optimization, volume 226, page 13, 1999.

[12] Scott Cohen and Leonidas Guibas. The earth mover’s distance under transformation sets. In
Proceedings of the Seventh IEEE International Conference on Computer vision, volume 2,
pages 1076–1083. IEEE, 1999.

[13] Nicolas Courty, Rémi Flamary, Devis Tuia, and Thomas Corpetti. Optimal transport for
data fusion in remote sensing. In 2016 IEEE International Geoscience and Remote Sensing
Symposium, pages 3571–3574. IEEE, 2016.

[14] Marco Cuturi. Sinkhorn distances: lightspeed computation of optimal transport. In Advances in
Neural Information Processing Systems 26, pages 2292–2300, 2013.

[15] Marco Cuturi and Gabriel Peyré. A smoothed dual approach for variational Wasserstein
problems. SIAM Journal on Imaging Sciences, 9(1):320–343, 2016.

[16] Yoel Drori and Marc Teboulle. Performance of first-order methods for smooth convex mini-
mization: a novel approach. Mathematical Programming, 145(1-2):451–482, 2014.

[17] RM Dudley. The speed of mean glivenko-cantelli convergence. The Annals of Mathematical
Statistics, 40(1):40–50, 1969.

[18] Sira Ferradans, Nicolas Papadakis, Gabriel Peyré, and Jean-François Aujol. Regularized discrete
optimal transport. SIAM Journal on Imaging Sciences, 7(3):1853–1882, 2014.

9



[19] Alessio Figalli. The optimal partial transport problem. Archive for Rational Mechanics and
Analysis, 195(2):533–560, 2010.

[20] Alessio Figalli. The Monge–Ampère equation and its applications. 2017.

[21] Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya, and Tomaso A Poggio.
Learning with a Wasserstein loss. In Advances in Neural Information Processing Systems, pages
2053–2061, 2015.

[22] Edouard Grave, Armand Joulin, and Quentin Berthet. Unsupervised alignment of embeddings
with wasserstein procrustes. 2019.

[23] Tatsunori Hashimoto, David Gifford, and Tommi Jaakkola. Learning population-level diffusions
with generative RNNs. In International Conference on Machine Learning, pages 2417–2426,
2016.

[24] Sham M Kakade, Varun Kanade, Ohad Shamir, and Adam Kalai. Efficient learning of general-
ized linear and single index models with isotonic regression. In Advances in Neural Information
Processing Systems, pages 927–935, 2011.

[25] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie
Royale des Sciences, pages 666–704, 1781.

[26] Victor M. Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual
Review of Statistics and Its Application, 6(1):405–431, 2019.

[27] Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends in
Machine Learning, 11(5-6):355–607, 2019. ISSN 1935-8237. doi: 10.1561/2200000073.

[28] Julien Rabin and Nicolas Papadakis. Convex color image segmentation with optimal transport
distances. In International Conference on Scale Space and Variational Methods in Computer
Vision, pages 256–269. Springer, 2015.

[29] Julien Rabin, Sira Ferradans, and Nicolas Papadakis. Adaptive color transfer with relaxed
optimal transport. In 2014 IEEE International Conference on Image Processing (ICIP), pages
4852–4856. IEEE, 2014.

[30] Tim Salimans, Han Zhang, Alec Radford, and Dimitris Metaxas. Improving GANs using
optimal transport. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=rkQkBnJAb.

[31] Filippo Santambrogio. Optimal transport for applied mathematicians. Birkhauser, 2015.

[32] Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh
Solomon, Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, et al. Optimal-transport analysis
of single-cell gene expression identifies developmental trajectories in reprogramming. Cell, 176
(4):928–943, 2019.

[33] Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy
Nguyen, Tao Du, and Leonidas Guibas. Convolutional Wasserstein distances: efficient optimal
transportation on geometric domains. ACM Transactions on Graphics, 34(4):66:1–66:11, 2015.

[34] Adrien B Taylor. Convex interpolation and performance estimation of first-order methods for
convex optimization. PhD thesis, 2017.

[35] Adrien B Taylor, Julien M Hendrickx, and François Glineur. Smooth strongly convex interpola-
tion and exact worst-case performance of first-order methods. Mathematical Programming, 161
(1-2):307–345, 2017.

[36] Cedric Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics Series.
American Mathematical Society, 2003. ISBN 9780821833124.

[37] Cedric Villani. Optimal Transport: Old and New, volume 338. Springer Verlag, 2009.

[38] L Yeganova and WJ Wilbur. Isotonic regression under lipschitz constraint. Journal of optimiza-
tion theory and applications, 141(2):429–443, 2009.

10

https://openreview.net/forum?id=rkQkBnJAb


A Proofs

Proof for Definition 1 We write a proof in the case where E = {Rd}. If K > 1, the proof can be
applied independently on each set of the partition.

Let (fn)n∈N be such that fn(0) = 0 for all n ∈ N and

W2 [(∇fn)]µ, ν] ≤ 1

n+ 1
+ inf
f∈F`,L

W2 [(∇f)]µ, ν] .

Let x0 ∈ supp(µ). Then there exists C > 0 such that for all n ∈ N, ‖∇fn(x0)‖ ≤ C. Indeed,
suppose this is not true. Take r > 0 such that V := µ[B(x0, r)] > 0. By Prokhorov theorem, there
exists R > 0 such that ν [B(0, R)] ≥ 1− V

2 . Then for C > 0 large enough, there exists an n ∈ N
such that:

W 2
2 [(∇fn)]µ, ν] = min

π∈Π(µ,ν)

∫
‖∇fn(x)− y‖2 dπ(x, y)

≥
∫
‖∇fn(x)− projB(0,R) [∇fn(x)] ‖2 dµ(x)

≥
∫
B(x0,r)∩supp(µ)

‖∇fn(x)− projB(0,R) [∇fn(x)] ‖2 dµ(x)

≥ 1
2V min

x∈B(x0,r)
y∈B(0,R)

‖∇fn(x)− y‖2

≥ 1
2V (C − Lr −R)

which contradicts the definition of fn when C is sufficiently large.
Then for x ∈ Rd,

‖∇fn(x)‖ ≤ L‖x− x0‖+ ‖∇fn(x0)‖ ≤ L‖x− x0‖+ C.

Since (∇fn)n∈N is equi-Lipschitz, it converges uniformly (up to a subsequence) to some function g
by Arzelà–Ascoli theorem. Note that g is L-Lipschitz.
Let ε > 0 and let N ∈ N such that n ≥ N ⇒ ‖∇fn − g‖∞ ≤ ε. Then for n ≥ N and x ∈ Rd,

|fn(x)| =
∣∣∣∣ ∫ 1

0

〈∇fn(tx), x 〉 dt
∣∣∣∣ ≤ ‖x‖(‖g‖∞ + ε)

so that (fn(x)) converges up to a subsequence. Let φ, ψ be two extractions and α, β such that
fφ(n)(x))→ α and fψ(n)(x))→ β. Then

|α− β| = lim
n→∞

∣∣∣∣ ∫ 1

0

〈∇fφ(n)(tx)−∇fψ(n)(tx), x 〉 dt
∣∣∣∣ ≤ lim

n→∞
‖x‖‖∇fφ(n) −∇fψ(n)‖∞ = 0.

This shows that (fn)n∈N converges pointwise to some function f∗. In particular, f∗ is convex. For
x ∈ Rd, using Lebesgue’s dominated convergence theorem,

f∗(x) = lim
n→∞

fn(x) = lim
n→∞

∫ 1

0

〈∇fn(tx), x 〉 dt =

∫ 1

0

〈 lim
n→∞

∇fn(tx), x 〉 dt =

∫ 1

0

〈g(tx), x 〉 dt
so f∗ is differentiable and ∇f∗ = g. Using Lebesgue’s dominated convergence theorem, uniform
(hence pointwise) convergence of (∇fn)n∈N to ∇f∗ shows that (∇fn)]µ ⇀ (∇f∗)]µ. Then
classical optimal transport stability theorems (e.g. theorem 1.51 in [31]) show that

W2 [(∇f∗)]µ, ν] = lim
n→∞

W2 [(∇fn)]µ, ν] = inf
f∈F`,L

W2 [(∇f)]µ, ν] ,

i.e. f∗ is a minimizer.

Proof of Theorem 2 For f ∈ F`,L,E ,∇f]µ =
∑n
i=1 aiδ∇f(xi). Writing zi = ∇f(xi), we wish to

minimize W 2
2 (
∑n
i=1 aiδzi , ν) over all the points z1, . . . , zn ∈ Rd such that there exists f ∈ F`,L,E

with ∇f(xi) = zi for all i ∈ JnK. Following [34, Theorem 3.8], there exists such a f if, and only if,
there exists u ∈ Rn such that for all k ∈ JKK and for all i, j ∈ Ik,

ui ≥ uj + 〈zj , xi − xj 〉+
1

2(1− `/L)

(
1

L
‖zi − zj‖2 + `‖xi − xj‖2 − 2

`

L
〈zj − zi, xj − xi 〉

)
.

Then minimizing over f ∈ F`,L,E is equivalent to minimizing over (z1, . . . , zn, u) under the
interpolation constraint.

The second part of the theorem is a direct application of [34, Theorem 3.14].
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Proof of Proposition 1 Let f : R→ R. Then f ∈ F`,L,E if and only if it is convex and L-smooth
on each set Ek, k ∈ JKK, i.e. if and only if for any k ∈ JKK, 0 ≤ f ′′ Ek

≤ L.

For a measure ρ, let us write Fρ and Qρ the cumulative distribution function and the quantile function
(i.e. the generalized inverse of the cumulative distribution function). Then Q∇f]µ = ∇f ◦Qµ.

Using the closed-form formula for the Wasserstein distance in dimension 1, the objective we wish to
minimize (over f ∈ F`,L,E ) is:

W 2
2 (f ′]µ, ν) =

∫ 1

0

[f ′ ◦Qµ(t)−Qν(t)]
2
dt.

Suppose µ has a density w.r.t the Lebesgue measure. Then by a change of variable, the objective
becomes ∫ +∞

−∞
[f ′(x)−Qν ◦ Fµ(x)]

2
dµ(x) = ‖f ′ − π‖2L2(µ).

Indeed, Qν ◦ Fµ is the optimal transport map from µ to ν, hence its own barycentric projection. The
result follows.

Suppose now that µ is purely atomic, and write µ =
∑n
i=1 aiδxi

with x1 ≤ . . . ≤ xn. For 0 ≤ i ≤ n,
put αi =

∑i
k=1 ak with α0 = 0. Then

W 2
2 (f ′]µ, ν) =

n∑
i=1

∫ αi

αi−1

(f ′(xi)−Qν(t))2dt

=

n∑
i=1

ai

[
f ′(xi)−

1

ai

(∫ αi

αi−1

Qν(t)dt

)]2

+

∫ αi

αi−1

Qν(t)2dt− 1

ai

(∫ αi

αi−1

Qν(t)dt

)2

.

Since
∑n
i=1

∫ αi

αi−1
Qν(t)2dt− 1

ai

(∫ αi

αi−1
Qν(t)dt

)2

does not depend on f , minimizing W 2
2 (f ′]µ, ν)

over f ∈ F`,L,E is equivalent to solve

min
f∈F`,L,E

n∑
i=1

ai

[
f ′(xi)−

1

ai

(∫ αi

αi−1

Qν(t)dt

)]2

.

There only remains to show that π(xi) = 1
ai

∫ αi

αi−1
Qν(t) dt. Using the definition of the conditional

expectation and the definition of π:

π(xi) =
1

ai

∫ +∞

−∞
y 1{x = xi} dπ(x, y)

=
1

ai

∫ +∞

−∞
y 1{x = xi} d(Qµ, Qν)]L

1
[0,1]

=
1

ai

∫ 1

0

Qν(t)1{Qµ(t) = xi} dt

=
1

ai

∫ αi

αi−1

Qν(t) dt.

Proof of Proposition 2 Using the triangular inequality for the Wasserstein distance,∣∣∣W2(µ, ν)−W2(µ, (∇f̂n)]µ)
∣∣∣ ≤W2

(
(∇f̂n)]µ, ν

)
.

Then using the fact that (∇f̂n,∇f∗)]µ is an admissible transport plan between (∇f̂n)]µ and ν:

W2

(
(∇f̂n)]µ, ν

)
= W2

(
(∇f̂n)]µ, (∇f∗)]µ

)
≤
(∫
‖x− y‖2 d(∇f̂n,∇f∗)]µ

)1/2

= ‖∇f̂n−∇f∗‖L2(µ).

Using stability of optimal transport, for example [37, Theorem 5.19],

(Id,∇f̂n)]µ ⇀ (Id,∇f∗)]µ a.s.

Since µ is compactly supported and ∇f̂n is Lipschitz, [31, Lemma 2.25] shows that ‖∇f̂n −
∇f∗‖L2(µ) −→

n→∞
0.
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B Color Transfer

Higher-quality images for the color transfer application, with the same parameters.

(a) Original Image (b) Target Image (c) Classical OT, W ≈ 0.

(d) ` = 0, L = 1, W ≈ 1.10−2 (e) ` = 0.5, L = 1, W ≈ 1.10−2 (f) ` = 1, L = 1, W ≈ 2.10−2

(g) ` = 0, L = 2, W ≈ 4.10−3 (h) ` = 0.5, L = 2, W ≈ 5.10−3 (i) ` = 1, L = 2, W ≈ 2.10−2
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(a) ` = 0, L = 5, W ≈ 2.10−4 (b) ` = 0.5, L = 5, W ≈ 1.10−3 (c) ` = 1, L = 5, W ≈ 2.10−2
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