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ABSTRACT. Classical dictionary learning methods simply normalize dictionary columns at each iteration, and
the impact of this basic form of regularization on generalization performance (e.g. compression ratio on new
images) is unclear. Here, we derive a tractable performance measure for dictionaries in compressed sensing
based on the low M∗ bound and use it to regularize dictionary learning problems. We detail numerical experi-
ments on both compression and inpainting problems and show that this more principled regularization approach
consistently improves reconstruction performance on new images.

1. INTRODUCTION

Dictionary learning seeks to decompose signals on a few atoms using a dictionary learned from the data
set, instead of a predefined one formed by e.g. wavelet transforms [Mallat, 1999]. This learning approach
has significantly improved state-of-the-art performance on various signal processing tasks such as image
denoising [Elad and Aharon, 2006] or inpainting [Mairal et al., 2009] for example. Dictionary learning is
an inherently hard problem and the references above use alternating minimization to find good solutions.
Furthermore, in all these cases, the dictionary learning problem is only regularized by a simple normalization
constraint on the matrix columns. Our main point here is that beyond its simplicity, it is unclear how this
normalization affects dictionary performance. Classical methods thus learn dictionaries without proper
regularization, which can hurt generalization performance.

In a similar vein, structured acquisition seeks to design dictionaries to maximize signal recovery perfor-
mance while satisfying design constraints [Boyer et al., 2016, 2017] in e.g. magnetic resonance imaging.
This means for example ensuring samples follow a continuous path in Fourier space for compressed sensing
MRI [Lustig et al., 2008]. More recently, structured acquisition procedures in e.g. [Chauffert et al., 2014,
Boyer et al., 2016, 2017] use a sampling approach based on the results of [Lustig et al., 2008, Candes and
Plan, 2011].

Instead of this sampling approach, we focus on producing a tractable metric of dictionary performance
and use it to regularize dictionary learning problems. In the classical compressed sensing setting, we let
A ∈ Rm×n be a full rank matrix, we are given m observations Ax0 of a signal x0 ∈ Rn, and we seek to
decode it by solving

minimize Card(x)
subject to Ax = Ax0,

(1)

in the variable x ∈ Rn. Problem (1) is combinatorially hard, but under certain conditions on the matrix A
(see e.g. [Candès and Tao, 2005, Donoho and Tanner, 2005, Kashin and Temlyakov, 2007, Cohen et al.,
2009]), we can reconstruct the signal by solving instead

minimize ‖x‖1
subject to Ax = Ax0,

(2)

which is a convex problem in the variable x ∈ Rn. Given a sensing matrix A, [Candès and Tao, 2005,
Donoho and Tanner, 2005] showed that there is a recovery threshold k such that solving problem (2) will
always recover the solution to (1) provided the signal has at most k nonzero coefficients. While many results
allow us to bound k with high probability for certain classes of random matricesA, computing this threshold
k given A is a hard problem [Bandeira et al., 2013, Wang et al., 2016, Weed, 2017].
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Our first objective here is to learn dictionary matrices A to reconstruct a sample data set with minimal
loss, while maximizing the recovery threshold k of the dictionary matrix. Several relaxations have been
derived to approximate the recovery threshold [d’Aspremont and El Ghaoui, 2011, Juditsky and Nemirovski,
2011, d’Aspremont et al., 2014], but these approximations typically only certify recovery up to signal size√
k when the optimal threshold is k. In fact, there is substantial evidence that this is the best that can be

achieved in polynomial time, in the regimes that are relevant for compressed sensing. It can be shown for
example that certifying recovery using the restricted isometry property is equivalent to solving a sparse PCA
problem, which is hard in a broad sense by reduction of the planted-clique problem [Berthet and Rigollet,
2013].

On the other hand, a simple result in Kashin and Temlyakov [2007] shows that the sparse recovery
threshold satisfies k ≥ S(A)−2, where S(A) is the radius of a section of the `1-ball by the nullspace of the
sampling matrix A. Directly approximating the radius of a convex polytope is of course hard [Freund and
Orlin, 1985, Lovasz and Simonovits, 1992], but the low-M∗ bound in e.g. [Pajor and Tomczak-Jaegermann,
1986] shows that we can accurately quantify the performance of a slightly enlarged sampling matrix (A,G),
with high probability, where G is a matrix containing a few additional Gaussian samples.

Our contribution here is twofold. In the spirit of smoothed analysis [Spielman and Teng, 2004], we first
show how to use the recovery threshold of the perturbed sampling matrix (A,G) as a proxy for the perfor-
mance of the original dictionary A. We then use the M∗ of this perturbed matrix to regularize dictionary
learning problems using an alternating minimization algorithm, to improve generalization performance.

We detail numerical experiments on both image compression and inpainting problems, comparing the
PSNR of reconstructed images both inside the training set and on new images. We observe that M∗-
regularized dictionary learning often significantly improves reconstruction PSNR and SSIM compared to
classically normalized dictionary learning algorithms, both inside and outside the training set.

The paper is organized as follows. In Section 2 we recall the low-M∗ bounds and its application to sparse
recovery. In Section 3, we detail our M∗-regularized dictionary learning algorithms. Finally, we detail
numerical experiments in Section 4.

2. LOW M∗ DICTIONARIES

Our starting point is the following result by Kashin and Temlyakov [2007], linking signal recovery thresh-
olds and the radius of a section of the `1 ball. We will see that this last quantity is hard to estimate but
provides accurate bounds on the recovery threshold k of a given sampling matrix A.

Proposition 2.1. [Kashin and Temlyakov, 2007, Th. 2.1] Given a coding matrix A ∈ Rm×n, suppose that
there is some k > 0 such that

S(A) , sup
Ax=0

‖x‖2
‖x‖1

≤ 1√
k

(3)

then xLP = x0 if Card(x0) ≤ k/4, and

‖x0 − xLP‖1 ≤ 4 min
{Card(y)≤k/16}

‖x0 − y‖1

where xLP solves the `1-recovery problem in (2) and x0 is the original signal.

This result means that the `1-minimization problem in (2) will recover exactly all sparse signals x0 sat-
isfying Card(x0) ≤ k/4 and that the `1 reconstruction error for other signals will be at most four times
larger than the `1 error corresponding to the best possible approximation of x0 by a signal of cardinality at
most k/16. The quantity supAx=0 ‖x‖2/‖x‖1 is the radius of a section of the `1 ball written

K(A) , {x ∈ Rn : ‖x‖1 ≤ 1, Ax = 0} (4)

and thus controls the recovery threshold of matrix A, i.e. the largest signal size that can provably be recov-
ered using the observations in A.
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2.1. Deterministic Approximation Bounds on the Radius. In line with previous results producing bounds
on RIP and nullsapce property constant which also control the recovery threshold k [d’Aspremont and
El Ghaoui, 2011, Juditsky and Nemirovski, 2011, d’Aspremont et al., 2014], we now derive convex re-
laxations to efficiently approximate the radius defined in (3). As discussed above, we will see that the
approximation bounds for these relaxations are relatively coarse.

2.2. Semidefinite relaxation. We now show how to compute tractable bounds on the ratio

S(A) = max
Ax=0

‖x‖2
‖x‖1

,

defined in (3). We first formulate a semidefinite relaxation of this problem as follows.

Lemma 2.2. Let A ∈ Rm×n,

S(A)2 ≤ SDP (A) ≡ max
Tr(ATAX)=0
‖X‖1≤1, X�0

TrX (5)

where SDP (A) is computed by solving a semidefinite program in the variable X ∈ Sn.

Proof. Writing X = xxT , we have

S(A)2 = max
Tr(ATAX)=0, ‖X‖21≤1,

Rank(X)=1, X�0

TrX

and dropping the rank constraint yields the desired result.

We now connect the value of S(A) with that of the function α1(A) defined in [Juditsky and Nemirovski,
2011, d’Aspremont and El Ghaoui, 2011] as

α1(A) ≡ max
Ax=0

‖x‖∞
‖x‖1

, (6)

which can be computed by solving either a linear program [Juditsky and Nemirovski, 2011] or a semidefinite
program [d’Aspremont and El Ghaoui, 2011]. The following lemma bounds S(A) using α1(A).

Lemma 2.3. Let A ∈ Rm×n, we have

α1(A) ≤ S(A) ≤
√
SDP (A) ≤

√
α1(A)

Proof. The first inequality simply follows from ‖x‖∞ ≤ ‖x‖2, the second from Lemma 2.2. If X
solves (5), Tr(ATAX) = 0 implies AX = 0, which means that the columns of X are in the nullspace
of A. By definition of α1(A), we then have Xii = ‖Xi‖∞ ≤ α1(A)‖Xi‖1, hence Tr(X) ≤ α1(A)‖X‖1 ≤
α1(A), which yields the desired result.

The following proposition shows that if a matrix allows recovery of all signals of cardinality less than k∗,
then the SDP relaxation above will efficiently certify recovery of all signals up to cardinality O(k∗/

√
n).

This is a direct extension of Lemma 2.3 and Proposition 2.1.

Proposition 2.4. SupposeA ∈ Rm×n satisfies condition (3) for some k > 0, the semidefinite relaxation will
satisfy

S(A) ≤
√
SDP (A) ≤ k−

1
4 (7)

and the semidefinite relaxation will certify exact decoding of all signals of cardinality at most
√
k.

Proof. From Lemma 2.3, we know that α1 ≤ S(A) hence
√
SDP (A) ≤

√
S(A). We conclude using

Proposition 2.1.

We can produce a second proof of this last result, which uses the norm ratio in (3) directly.
3



Proposition 2.5. SupposeA ∈ Rm×n satisfies condition (3) for some k > 0, the semidefinite relaxation will
satisfy

S(A) ≤
√
SDP (A) ≤ k−

1
4 (8)

and the semidefinite relaxation will certify exact decoding of all signals of cardinality at most
√
k.

Proof. If X solves the SDP relaxation in (5), then the rows of X are in the nullspace of A, and satisfy
‖Xi‖2 ≤ ‖Xi|/

√
S. Then, with ‖X‖1,

TrX ≤
n∑
i=1

‖Xi‖∞ ≤
n∑
i=1

‖Xi‖2 ≤
‖X‖1√
S
≤ 1√

S

hence the desired result.

Note that we are not directly using X � 0 in this last proof, so the approximation ratio also holds for a
linear programming bound written

LP (A) ≡ max. TrX
s.t. AX = 0

‖X‖1 ≤ 1
(9)

We now show that the k−1/4 bound is typically the best we can hope for from the relaxation in (5).

Proposition 2.6. Suppose A ∈ Rm×n with n = 2m, then

1√
2n
≤ SDP (A) (10)

and the semidefinite relaxation will certify exact decoding of all signals of cardinality at most O(
√
m).

Proof. Let Q be the orthoprojector on the nullspace of A. We have Q � 0, Tr(Q) = m, ‖Q‖F =
√
m

and ‖Q‖1 ≤
√
n2‖Q‖F ≤ n

√
m, which means that X = Q/(n

√
m) is a feasible point of the SDP

relaxation in (5) with TrX =
√
m/n = 1/

√
2n which yields the required bound on the optimal value

of (5).

This means that if the matrix A allows exact recovery of signals with up to (an unknown number) k
nonzero coefficients, then our relaxation will only certify recovery of signals with cardinality O(

√
k). The

fact that approximating the recovery threshold k is hard is not entirely surprising, indeed k in (3) is the
Euclidean radius of the centrally symmetric polytope {x ∈ Rn : Ax = 0, ‖x‖1 ≤ 1}. Computing the
radius of generic convex polytopes is NP-Complete [Freund and Orlin, 1985, Lovasz and Simonovits, 1992,
Gritzmann and Klee, 1993, Brieden et al., 2001]. In particular, Lovasz and Simonovits [1992] show that if
we only have access to an oracle for K, then there is no randomized polynomial time algorithm to compute
the radius of a convex body K within a factor n1/4. In that sense, the approximation ratio obtained above
is optimal. This question is also directly connected to that of efficiently testing Kashin decompositions (see
[Szarek, 2010, §4.1] for a discussion).

Here of course, we have some additional structural information on the set K (it is a section of the `1 ball)
so there is a (slight) possibility that this bound could be improved. On the other hand, in the next section,
we will see that if we are willing to add a few random experiments to A, then the radius can be bounded
with high probability by a randomized polynomial time algorithm.

2.3. Probabilistic Approximation Bounds on the Radius. Proposition 2.1 links the sparse recovery thresh-
old k of a matrix A and the radius of the polytope {x ∈ Rn : Ax = 0, ‖x‖1 ≤ 1}. In this section, we first
recall some classical results from geometric functional analysis and use these to quantify the sparse recovery
thresholds of arbitrary matrices A.
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2.3.1. Dvoretzky’s Theorem. We first recall some concentration results on the sphere as well as classical
results in geometric functional analysis which control, in particular, the radius of random sections of the `1
ball (i.e. where A is chosen randomly). Let σ be the unique rotation invariant probability measure on the
unit sphere Sn−1 of Rn, and ‖ · ‖K be a norm on Rn with unit ball K, then

σ
{
x ∈ Sn−1 : |‖x‖ −M(K)| ≥ tM(K)

}
≤ e−k(K)t2 (11)

with

k(K) = cn

(
M(K)

b(K)

)2

(12)

where c > 0 is a universal constant, and

M(K) =

∫
Sn−1

‖x‖dσ(x) and b(K) = sup
x∈Sn−1

‖x‖. (13)

Klartag and Vershynin [2007] call k(K) the Dvoretzky dimension of the convex set K. Part of the proof
of Dvoretzky’s theorem states that random sections of K with dimension k = k(K) are approximately
spherical with high probability (w.r.t. the uniform measure on the Grassman Gn,k). We write Bn

p the `p ball
of Rn.

Theorem 2.7. (General Dvoretzky) In a Banach space with unit ball K, let E ⊂ Rn be a subspace of
dimension l ≤ k(K) defined in (12), chosen uniformly at random w.r.t. to the Haar measure on Gn,k, then

c1

M(K)
(Bn

2 ∩ E) ⊂ (K ∩ E) ⊂ c2

M(K)
(Bn

2 ∩ E)

with probability 1− e−c3l, where c1, c2, c3 > 0 are absolute constants.

Proof. See [Milman and Schechtman, 1986, §4] or [Vershynin, 2011, Th. 6.4] for example.

This result means that random sections of convex bodies with dimension k are approximately spherical
with high probability. Milman and Schechtman [1997] show that the threshold k(K) is sharp in the sense
that random sections of dimension greater than k(K) are typically not spherical. Because projections of
sphere are spheres, there is thus a phase transition at k(K): random sections of K become increasingly
spherical until they reach dimension k(K) below which they are approximately spherical with high proba-
bility.

2.3.2. LowM∗ Bounds. The radius follows a similar phase transition, and the following result characterizes
its behavior as the dimension of the subspace decreases (we write K∗ the polar of K).

Theorem 2.8. (Low M∗) In a Banach space with unit ball K, let E ⊂ Rn be a subspace of codimension k
chosen uniformly at random w.r.t. to the Haar measure on Gn,n−k, then

radius(K ∩ E) ≤ c
√
n

k
M(K∗)

with probability 1− e−k, where c > 0 is an absolute constant.

Proof. See [Pajor and Tomczak-Jaegermann, 1986] for example.

The value of M(K∗) is known for many convex bodies, including lp balls. In particular, (Bn
1 )∗ = Bn

∞
and M(Bn

∞) ∼
√

log n/n asymptotically. This means that random sections of the `1 ball with dimension
n− k have radius bounded by

radius(Bn
1 ∩ E) ≤ c

√
log n

k
with high probability, where c is an absolute constant (a more precise analysis allows the log term to be
replaced by log(n/k)). This, combined with the result of Proposition 2.1 is one way to prove optimal
bounds on the sparse recovery threshold of random matrices A, and we will apply it below to characterize
the performance of randomly perturbed deterministic ones.
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2.3.3. Sparse Recovery Thresholds. Proposition 2.1 shows that the sparse recovery threshold associated
with the m linear observations stored in A ∈ Rm×n, i.e. the largest signal cardinality for which all sparse
signals can be recovered exactly by solving the `1-minimization problem in (2), is given by the radius of the
centrally symmetric convex polytope {x ∈ Rn : Ax = 0, ‖x‖1 ≤ 1} with

k ≥ 1

radius({x ∈ Rn : Ax = 0, ‖x‖1 ≤ 1})2
(14)

By homogeneity, this is also equivalent to producing lower bounds on ‖Fy‖1 over Sn−m−1, the unit sphere
of Rn−m.

The low M∗ estimate in Proposition 2.8 together with the fact that M(Bn
∞) ∼

√
log n/n and Proposi-

tion 2.1 then show that choosing m linear samples A ∈ Rm×n uniformly at random in the Grassman will
allow us, with high probability, to recover all signals with at most m

c logn nonzero coefficients, by solving the
`1 minimization problem in (2) (again, the log term can be replaced by log(n/k)).

As we have seen above, finding good compressed sensing experiments means finding matricesA ∈ Rm×n
for which ‖Fy‖1 is almost spherical, where F is any basis for the nullspace of A. Bad matrices are matrices
for which the norm ball of ‖Fy‖1 is much closer to a cross-polytope. The key difficulty in high dimensions
is that all centrally symmetric convex bodies look like spheres, except for a few “spikes” (or tentacles in
Vershynin [2011]) with negligible volume, hence precisely characterizing the radius using only probabilistic
arguments is delicate.

2.3.4. Approximating the Radius of a Perturbed Matrix A. Crucially here, if we notice that ‖Fy‖1 defines
a norm on Rn−m, we can apply the low-M∗ bound in Theorem 2.8 to the normed space (Rn−m, ‖Fy‖1)
with unit ball

K =
{
y ∈ Rn−m : ‖Fy‖1

}
instead of the space (Rn, ‖x‖1). Applying Theorem 2.8 requires computing M∗(K) and, since an affine
section of an affine section is itself an affine section, this then produces bounds on the radius

radius({x ∈ Rn : Ax = 0, Gx = 0, ‖x‖1 ≤ 1})
where G ∈ Rq×n is a i.i.d Gaussian matrix, with high probability. Thus M∗(K) estimates the recovery
threshold of the perturbed sampling matrix (A,G) and we use this last quantity as a proxy for the actual
recovery threshold of A.

2.3.5. Estimating M∗(K). Computing the dual norm of ‖Fy‖1 for any orthogonal matrix F is a convex
problem, hence we can simply approximate M∗ by simulation. In the particular case of (Rn−m, ‖Fy‖1),
this means computing

M∗ , E
[
max‖Fy‖1≤1 y

T g
]

= E
[
minFT x=g ‖x‖∞

]
= E [minFT x=0 ‖Fg + x‖∞] (15)

by duality, where g ∼ N (0, In−m) (assuming F TF = In−m). Sampling both terms simply means solving
one linear program per sample. Also, a simple Cauchy inequality shows that M(K∗) is bounded above by
O(1/

√
k). Since the target precision for our estimate of M(K∗) is always larger than 1/

√
n, this produces

a recipe for a randomized polynomial time algorithm for estimating S. In fact, following [Bourgain et al.,
1988, Giannopoulos and Milman, 1997, Giannopoulos et al., 2005], we have the following bound.

Proposition 2.9. If K ⊂ Rn is a symmetric convex body, 0 < δ, β < 1 and we pick N points xi uniformly
at random on the sphere Sn−1 with

N =
c log(2/β)

δ2
+ 1

where c is an absolute constant, then∣∣∣∣∣M(K∗)− 1

N

N∑
i=1

‖xi‖K∗
∣∣∣∣∣ ≤ δM(K∗)

with probability 1− β.
6



FIGURE 1. Recovery threshold k versus number of samples m, by estimating M∗ in di-
mension 200. Shaded region at plus and minus one standard deviation.

3. ALGORITHMS FOR M∗-REGULARIZED DICTIONARY LEARNING

LetA ∈ Rm×n be a dictionary matrix with linearly independent lines and F be a basis ofNullspace(A).
Then M∗(A) was defined in (15) as

M∗(A) = E
[
minFT x=g ‖x‖∞

]
(16)

with g ∼ N (0, In−m). We have seen above that this quantity is tractable and we will use it as a penalty in
various dictionary learning problems. In general, given a dictionary learning task which involves minimizing
a loss l : A ∈ Rm×n −→ l(A) ∈ R with respect to a dictionary matrix A, on an admissible set C, we solve
the penalized loss minimization problem

minimize l(A) + λM∗(A)
subject to A ∈ C (17)

in the variable A ∈ Rm×n.

3.1. Optimizing M*. In order to solve the regularized loss minimization problem (17) using e.g. stochastic
gradient descent, we first need to compute a subgradient of M∗ with respect to A. In practice, M∗ is an
explicit function of F = null(A), so we will start by computing a sugradient with respect to F . We will
then add a coupling constraint to link F and A. We have the following result.

Lemma 3.1. The regularized function

νg(F ) , min. ||x||∞ + λ
2 ||x||

2
2 + σ

2 ||r||
2
2

s.t. F Tx+ r = g
(18)

in the variables x ∈ Rn , r ∈ Rn−m, with λ, σ > 0 is differentiable and its gradient with respect to F is
given by

∇νg(F ) = −x∗g(F )y∗Tg (F ), (19)

where x∗g(F ) and y∗g(F ) are the primal and dual solutions of problem (18).

Proof. We consider here the regularized version of the linear program appearing in the formula of M∗

in (15) in order to enforce uniqueness of the solution, which is does not hold for (15) when the intersection
between the nullspace of F T and the hypercube have some common directions. The differentiability result
then follows from [Bonnans and Shapiro, 2013, Th. 4.24].
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To account for the fact that M∗(A) is only explicitly computed from F , (17) can be rewritten as

min. l(A) + λM∗(F )
s.t. A ∈ C, AF = 0

F TF = I
(20)

Imposing AF = 0 may yield numerical issues and we can replace the hard constraint by a penalty on
||AF ||2F , where || · ||F is the Frobenius norm. The problem then becomes

minimize l(A) + λM∗(F ) + µ||AF ||2F
subject to A ∈ C

F TF = I
(21)

in the variables A ∈ Rm×n and F ∈ Rn×n−m.
Assuming l(A) is easy to minimize, a classical technique to solve the above problem involve alternate

minimization in A and F . The variable F lies in the Stiefel manifold, hence minimizing in F can be
performed using stochastic gradient descent on the Stiefel manifold

M =
{
F ∈ Rn×n−m : F TF = In−m

}
. (22)

using the partial derivative obtained in Lemma 3.1.
Updates consist in projecting the partial gradient on TFM, the tangent space ofM at the current point F ,

make a gradient step in this tangent space and finally re-project the result on the manifold to get the new
point. The resulting stochastic gradient descent algorithm is described in Algorithm 1.

Algorithm 1 Stochastic Gradient Descent onM, SGDM∗(null(A), τ, nsgd)

Input: Initial F0 ∈ Rn×n−m, penalty µ, stepsize τ , number of gradient steps nsgd.
F := F0.
for 1 to nsgd do

Sample g ∼ N (0, In−m),
Update F := ProjM(F − τProjTFM(∇νg(F ) + 2µATAF )),

end for
Output: Matrix F .

In practice, the penalization coefficient µ is set close to 0 in the SGD steps. To obtain a F that is not too far
from the nullspace of A, the initial F0 belongs to the nullspace of the current iterate A. All the algorithms
described in the next parts will then follow the generic alternating minimization structure of Algorithm 2.

Algorithm 2 Generic Alternate Minimization Algorithm
Input: Initial A, number of iterations niter, penalty µ, stepsize τ , number of gradient steps nsgd.
for 1 to niter do

Update A := argminA∈C l(A) + µ||AF ||2F ,
Update F := SGDM∗(null(A), τ, nsgd),

end for
Output: Dictionary matrix A.

We now apply this method to dictionary learning problems.

3.2. Compression by Dictionary Learning. Our objective here is to learn an over-complete dictionary that
has good compressed sensing properties, i.e. a low M∗ in our setting, to optimize dictionary performance
out-of-sample.
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3.2.1. Dictionary Learning. Let us recall the dictionary learning problem and its classical formulation for
compression. Given a set of training observations Y = (Y1, . . . , Ym) ∈ Rn×m and a sparsity target S , the
goal is to find an over-complete dictionary D = (D1, . . . , Dp) ∈ Rn×p(n < p << m) and a representation
X = (X1, . . . , Xm) ∈ Rp×m which minimize the training loss∑

i

||Yi −DXi||22 = ||Y −DX||2F .

with ||Xi||0 ≤ S. One classical regularization strategy is to normalize the columns of the dictionary, often
called atoms. This prevents the problem to be ill-posed with infinitely many solutions differing only by the
norms of their atoms. The problem then becomes

minimize ||Y −DX||2F
subject to ||Di||2 = 1, i = 1, . . . , p

||Xj ||0 ≤ S, j = 1, . . . ,m
(23)

in the variables D ∈ Rn×p, X ∈ Rp×m. This corresponds to choosing

l(A) := min. ||Y −AX||2F
s.t. ||Xj ||0 ≤ S, j = 1, . . . ,m

(24)

in our generic problem (21), where the minimization is performed with respect to X ∈ Rp×m onthe set of
matrices with normalized columns C = {A ∈ Rn×p | ||Ai||2 = 1, j = 1, . . . , p}.

A standard way to deal with problem (23) is the KSVD Algorithm (see Elad and Aharon [2006]). This
is an alternate minimization algorithm between the dictionary D and the representation X . In the mini-
mization with respect to X , Orthogonal Matching Pursuit (see e.g. Cai and Wang [2011] is used to find an
approximate solution with a given cardinality. For the minimization with respect to the dictionary D, the
updates are made column by column. Given X , an update for the column j then consists in solving

minimize ||Y −
∑

i 6=j DiX
(i) −DjX

(j)||2F
subject to ||Dj ||2 = 1

(25)

in the variable Dj ∈ Rn. If one allows the minimization to include the variables (Dj , X
(j)), this comes

down to finding the rank one matrix DjX
(j) that best approximates M = Y −

∑
i 6=j DiX

(i) in term of
Frobenius norm. This can be obtain by performing a rank one SVD of M . One significant advantage of this
method is that it directly gives a normalized update for Dj and also guarantees that the dictionary updates
are descent steps. KSVD is detailed in Algorithm 3

Algorithm 3 KSVD

Input: Initial Dictionary D0, training patches Y = [Y1, . . . , Ym], sparsity level S, number of iterations
niter.
D = D0, K = K0.
for 1 to niter do

for j := 1 to m do
Xj := OMP(D,Yj , S),

end for
for l := 1 to p do

Ω := supp(X(l)), where X(l) is the l-th line of X ,
E := Y −

∑
i 6=l diX

(i),
[U, S, V ] := SVD(EΩ),
Dl := U1,
X(l) := S11V

T
1 ,

end for
end for
Output: Dictionary D = [d1, . . . , dp].

9



3.2.2. Dictionary Learning with M* Penalization. The penalized formulation introduced in (21) can used
to learn a dictionary with low M∗. The penalized learning problem is then written

minimize ||Y −DX||2F + λM∗(F ) + µ||DF ||2F
subject to ||Di||2 = 1, i = 1, . . . , p

||Xj ||0 ≤ S, j = 1, . . . ,m
F TF = Ip−n

(26)

in the variables X ∈ Rp×m, D ∈ Rn×p, F ∈ Rp×p−n.
There is no change in the updates of the representation X when everything else is fixed compared to the

classical setting. However for the dictionary updates in the variable D, the addition of the penalty term
µ||DF ||2F prevents the use of the SVD approach from Algorithm 3. Instead, the new dictionary is chosen
to annihilate the gradient of the loss with respect to D and then projected on the admissible set C. If C is
chosen to be the set of dictionaries with normalized columns as in KSVD, the projection changes the current
value of M∗, since normalizing each columns changes the nullspace of the matrix. To avoid this effect,
we can take C∗ = {D | max(||Di||2) = 1}. This set contains the previous one and the projection on it
simply reduces to divide all the coefficients of the dictionary by max(||Di||2) which has no effect on the
M∗. Overall, the M∗-regularized dictionary learning problem is then written

minimize ||Y −DX||2F + λM∗(F ) + µ||DF ||2F
subject to max((||Di||2)i∈[|1;p|]) = 1

||Xj ||0 ≤ S, j = 1, . . . ,m
F TF = Ip−n

(27)

in the variables X ∈ Rp×m, D ∈ Rn×p, F ∈ Rp×p−n.
Finally, the update with respect to F is done as in part 3.1, using a stochastic gradient descent to minimize

M∗ on the Stiefel Manifold. The complete M∗-penalized dictionary learning algorithm is then detailed as
Algorithm 4.

Algorithm 4 Penalized Dictionary Learning

Input: Initial Dictionary D0, Initial nullspace F0, training patches Y = [Y1, . . . , Ym], sparsity level S,
number of iterations niter, regularization parameter µ, stepsize τ , number of gradient iterations nsgd
D := D0, K := K0.
for 1 to niter do

for j := 1 to m do
Xj := OMP(D,Yj , S),

end for
D := projC∗(Y X

T (XXT + µFF T )−1),
F := SGDM∗(null(D), τ, nsgd),

end for
Output: Dictionary D.

3.3. Inpainting by Dictionary Learning. Inpainting is a particular class of denoising problems for imag-
ing. This is a situation where the noise is multiplicative and takes its values in {0, 1}. For an image I of size
n × m the noise matrix is called a mask denoted B ∈ {0, 1}p×m. What is observed is a noisy version of
the image I � B (where � is the Hadamard product of matrices) which is basically I with missing parts
appearing as black holes. Dictionary learning by patches has been adapted to the inpainting problem giving
good results (see e.g. Mairal et al. [2008]. In this section, we adapt the M∗ penalized algorithm to the
inpainting setting.
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3.3.1. Inpainting Problems. Given some training patches Y = [Y1, . . . , Ym] ∈ Rn×m and a mask B =
[B1, . . . , Bm] ∈ Rn×m, the idea of inpainting by patches is essentially the same as the classical dictionary
learning principle. It seeks to find a sparse representation of the training patches using a few learned atoms.
However, only B � Y is accessible, meaning that information is only available on some pixels of each
patch. Due to the intrinsic sparse structure of natural images it is reasonable to think that there is enough
information in the visible pixels to learn a good dictionary to fill the masked parts of the image. The learning
task in this case is then simply

minimize ||B � (Y −DX)||2F
subject to ||Di||2 = 1, i = 1, . . . , p

||Xj ||0 ≤ S, j = 1, . . . ,m
(28)

in the variables X ∈ Rp×m, D ∈ Rn×p.
Due to the Hadamard product with B, the KSVD algorithm cannot be directly applied to solve this

problem. Mairal et al. [2008] presented a weighted KSVD algorithm that will be referred to as wKSVD in
the following. It uses an iterative algorithm detailed in Srebro and Jaakkola [2003] to approximate a solution
of the weighted rank one approximation problem encountered when trying to update the dictionary column
by column as in KSVD. This consists in solving the following

minimize ||W � (M −A)||2F
subject to rank(A) = 1

(29)

with respect to the matrix A ∈ Rn×m, with M ∈ Rn×m,W ∈ Rn×m+ . Pseudo code for wKSVD is detailed
as Algorithm 5.

Algorithm 5 Weighted KSVD Algorithm

Input: Initial Dictionary D0, training patches Y = [Y1, . . . , Ym], sparsity level S, number of iterations
niter, number of intermediate iterations ndico.
D = D0, K = K0.
for 1 to niter do

for j := 1 to m do
Xj ← OMP(diag(Bj)D,Bj � Yj , S),

end for
for l := 1 to p do

Ω := supp(X(l)),
E = Y −

∑
i 6=l diX

(i),
for 1 to ndico do
EB := B � E + (1−B)� dlX(l),
[U, S, V ] := SVD(EB,Ω),
dl := U1,
X(l) := S11V

T
1 ,

end for
end for

end for
Output: Dictionary D = [d1, . . . , dp].

3.3.2. M∗ Penalization for Inpainting. As above, an M∗ penalty can be added to the classical loss, with
the admissible set becoming C∗ = {D | max(||Di||2) = 1} and the penalized algorithm is modified using
an iterative method during the dictionary update step in D. Indeed this update corresponds to solving the
problem

minimize ||B � (Y −DX)||2F + µ||DF ||F
subject to max((||Di||2)i∈[|1;p|]) = 1

(30)

11



in the variable D ∈ Rn×p.
One can set YB = B�Y +(1−B)�DX and rewrite the loss above as ||YB−DX||F +µ||DF ||F . The

variable YB takes the values of the training patches matrix Y on the observed pixels and the current values
of DX on the masked ones. Minimizing ||YB −DX||F + µ||DF ||F with respect to D, with YB fixed, can
be solved as in the classical compression case.

This procedure can be seen as a missing values estimation problem, where given a matrix of observations
Y with some missing values (the values of the masked pixels), one tries to find a dictionary D that minimize
the previous error. Hence setting YB as detailed above consists in an estimation step where the missing
values are replaced by the current estimate DX . Then one performs a minimization step on D to update
the current estimate. This is done in an iterative setting and pseudo code for M∗ penalized inpainting is
described in Algorithm 6.

Algorithm 6 Penalized Dictionary Learning for Inpainting

Input: Initial Dictionary D0, initial nullspace F0, training patches Y = [Y1, . . . , Ym], mask for on the
training patchesB = [B1, . . . , Bm], sparsity level S, number of iterations niter, regularization parameter
µ, stepsize τ , number of gradient iterations nsgd, number of intermediate iterations ndico.
D = D0, K = K0.
for 1 to niter do

for j := 1 to m do
Xj ← OMP(diag(Bj)D,Bj � Yj , S),

end for
for 1 to ndico do
YB ← B � Y + (1−B)�DX ,
D ← projC∗(YBX

T (XXT + µFF T )−1),
end for
F ← SGDM∗(null(D), τ, nsgd),

end for
Output: Dictionary D.

4. NUMERICAL RESULTS

This section is dedicated to experimental results obtained using the previously described framework. The
optimization toolbox Manopt (Boumal et al. [2014]) was used to perform stochastic gradient descent on the
Stiefel manifold, together with the SPAMS toolbox (Mairal et al. [2009]) to perform the OMP algorithm.
All the tests were done on grayscale images of size 512× 512. The size of the patches has been set to 8× 8,
meaning n = 64. When not specified, the columns of the initial dictionaries D0 are normalized independent
mean zero and unit variance Gaussian vectors except for the the last one being the constant vector 1√

n
. This

last column remains unmodified by the various algorithms to capture the mean information.

4.1. Compression Experiments. This is the setting of Section 3.2.1. The number of atoms in the dictionar-
ies has been set to p = 4n = 256. The training set is formed by 200p = 51200 patches selected randomly
in four training images. Both KSVD and penalized dictionary methods are applied for 150 iterations, for
different sparsity levels S between 2 and 10.

Figure 2 shows examples of dictionaries obtained using these two algorithms. The dictionary obtained
by M∗ penalization is not as sharp as the dictionary learned with KSVD, yet has a lot more structure than
random Gaussian dictionaries. With Gaussian initialization, the M∗ of the dictionaries learned by both
methods starts at minimal value. During the iterations of the algorithms dictionaries acquire more and more
structure and their M∗ increases gradually as shown in Figure 3 on the left.

To measure the quality of a dictionary D in the compression setting, we formed a test set of 21 standard
gray scale 512×512 images. Each image is decomposed in non overlaying patches. This means for instance
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KSVD M∗

FIGURE 2. Example of dictionaries learned by both KSVD and M*-Regularization, with
a training sparsity S = 5 and a regularization parameter µ = 108. (Gaussian M∗ for this
dimensions is 1.517±0.003). Left: KSVD, M∗ = 1.686±0.004. Right: M∗ penalization,
M∗ = 1.558± 0.003.

that a 512×512 image is cut into 64·64 = 4096 adjacent patches of size 8×8. Each image is then represented
as a set of patches Y ∈ R64×4096 and is approximated by DX where X is obtained as in (24) with a given
reconstruction sparsity k (which is not necessarily the same as the training sparsity S). This corresponds to
the compression factor: the smaller k, the more compressed the images are, so compression is measured by
the cardinality of the representations of the images in the dictionary.

For a given set of non overlaying patches Y ∈ R64×4096 representing an image and a cardinality k, we
define

Yk(D) , DX, where x‘X = argmin. ||Y −DX||2F
s.t. ||Xj ||0 ≤ k, j = 1, . . . , 4096

(31)

where the minimization is performed with respect toX ∈ R256×4096. Here, Yk(D) corresponds to the matrix
where each column is an approximation of the corresponding column of Y using a linear combination of k
atoms of D.

We write DS the dictionary obtained by KSVD with a training sparsity S, and Dµ
S the one obtained by

the M∗ penalized algorithm with sparsity S and regularization parameter µ in problem (27). For a patch
representation Y of a test image, a reconstruction sparsity k and a penalization coefficient µ, approximation
quality for the KSVD (resp. M∗ penalized) algorithm is obtained by computing both PSNR and SSIM
between the ground truth Y , and Yk(DS) (resp. Yk(D

µ
S)). SSIM is a measurement of structural similarity

designed to describe the perceived quality of an image more faithfully than PSNR, which is a pixel to pixel
measurement (Wang et al. [2004]). In order to plot the aggregate curve in Figure 3 on the right, we took
the average of the PSNR and SSIM values over all 21 images in the test set, for a range of reconstruction
sparsity k between 2 and 30.

When using small penalization µ in problem (27), the two methods had similar compression performance
on the test set, with a minor advantage for M∗ penalized dictionary for small values of k. In this case, the
M∗ of the penalized dictionary has an intermediate value between that of the dictionary from KSVD and
that of a Gaussian dictionary. Increasing the penalization parameter allows to learn dictionaries with M∗

almost as low as Gaussian ones, however these new dictionaries with low M∗ don’t fit the training data as
well and the test PSNR and SSIM become worse than those of KSVD.

Convergence of the algorithms with deterministic initialization has also been experimented, with D0 a
constant matrix with columns of norm 1. The KSVD algorithm converges very slowly in this case (if at all).
All the columns of the dictionary remain very close to the initial ones. The penalized algorithm on the other
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FIGURE 3. Compression experiments with training sparsity S = 5. Top: µ = 107. Bottom:
µ = 108. Left: Evolution of the M∗ across algorithm iterations. Middle: PSNR of the
compressed test images. Right: SSIM of the compressed test images.
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FIGURE 4. Training PSNR versus M∗ when varying the regularization parameter µ with
training sparsity S = 4. Red dot corresponds to the KSVD algorithm. Left: Gaussian
initialization. Right: deterministic initialization.

hand achieves similar performances on train and test errors compared to the random initialization setting.
It also appears that a stronger M∗ regularization is suitable to reach better training error, compared with
random initialization (see Figure 4).

For the compression task, it thus appears that dictionaries learned by KSVD are nearly optimal, if ran-
domly initialized, in the sense that learning a dictionary with lower M∗ through M∗ penalization method
does not improve performance. Regularizarion does improve convergence when starting from a determin-
istic matrix. The next section is devoted to inpainting experiments where the M∗ will play a much more
significant role due to the particular structure of the noise introduced by the masks.

4.2. Inpainting Experiments. In the setting of §3.3, the number of atoms in the dictionaries is set to
p = 128 and the number of training patches is m = 150p. The size of the patches used is still 8 × 8. This
corresponds to dictionaries of size 64 × 128. Experiments are based on a set of 14 gray scale 512 × 512
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FIGURE 5. Images and masks used for inpainting experiments. From top left to bottom
right line by line: ”barbara”, ”boat”, ”cameraman”, ”fish”, ”house”, ”jetplane”, ”lake”,
”lena”, ”livingroom”, ”mandril”, ”people”, ”peppers”, ”pirate”, ”walkbridge”, ”text”,
”cracks”.

images and two masks, one representing cracks and one with text (see Figure 5). For a given mask B, a
given image I and a training sparsity S, m masked patches are selected randomly in the image B � I .
Then both wKSVD and M∗ penalized algorithms are run for 50 iterations on these training patches with a
training sparsity S to obtain the dictionaries DS(I,B) and Dµ

S(I,B). For simplicity, in all these inpainting
experiments, the regularization parameter µ has been fixed to 108, the same order of magnitude as the
training loss ||Y − DX||2F for our experiments. Of course, results would further improve with µ chosen
adaptively.

To reconstruct a new masked image B′ � I ′ ∈ R512×512 thanks to a dictionary D, all the (512 − 8) ·
(512−8) = 254016 patches of I ′ are gathered in a matrix Y = R64×254016. Compared with the compression
setting, all the 8×8 patches are used for the reconstruction. For simplicity, B′�Y will represent the matrix
of masked patches, even if B′ has not the right dimension, and corresponds to the set of all patches of the
mask. As in (31), we set

Yk(D) , DX where X = argmin. ||B′ � (Y −DX)||2F
s.t. ||Xj ||0 ≤ k, j = 1, . . . , 25016

(32)

Yk(D) is the approximation of the patches Y throughD with a reconstruction sparsity of k when onlyB′�Y
is observed. An approximation I ′B′ of I ′ is then reconstructed from patches Yk(D) by recasting them to an

15



5 10 15 20 25 30

Reconstruction sparsity k

25

26

27

28

29

30

31

P
S

N
R

wKSVD

M
*
 penalized  = 10

8

5 10 15 20 25 30

Reconstruction sparsity k

0.8

0.82

0.84

0.86

0.88

0.9

S
S

IM

wKSVD

M
*
 penalized  = 10

8

FIGURE 6. Reconstruction errors for the inpainting of ’lake’ based on dictionaries learned
on ’livingroom’ with both methods (with S = 5).

image and simply averaging their overlaying parts. The final reconstructed image isB′�I ′+(1−B′)�I ′B′
since I ′ was already known on the pixels p where B′(p) = 1 and the approximation I ′B′ is only used for the
pixels where B′(p) = 0.

The new image reconstructed can be compared to the original using PSNR and SSIM measures. For
instance Figure 6 represents the curves of PSNR and SSIM versus reconstruction sparsity for the inpainting
of the ”lake” image trained on the image ”livingroom” and masked by the cracks mask with S = 5.

The 14 images are used successively as training image with both masks and for all the sparsity levels S
between 4 and 10. This means 2×14×7 dictionaries computed for each method. The dictionaries obtained
by both methods are then used to reconstruct each of the 14 images with reconstruction sparsity k between 2
and 30. This means forming (number of mask : 2)×(number of train images : 14)×(number of train sparsity
S : 7)×(number of test images : 14) = 2744 PSNR and SSIM curves (as in Figure 6).

For each plot, the area of the gap between the curve obtained from M∗ penalization and the curve from
wKSVD gives an indicator of the benefit of regularized methods (the larger the better). This area can be
computed as the mean of the difference between the curves. These areas are aggregated over the training
sparsity S and over the two masks for each couple of train/test images and the results in terms of PSNR are
shown in Figure 7 where the abscissa corresponds to the training images and the ordinate to the test ones.
Figure 8 is the same type of figure but comparing the performance of our low-M∗ dictionaries to Gaussian
ones, to illustrate the impact of the learning step.

Finally the distribution of the SSIM and PSNR gaps between the images reconstructed by the two methods
is represented on Figure 9 on the left. This distribution is shifted on the positive side showing globally better
reconstruction performances withM∗ penalized method. One can also observe the distribution of theM∗ of
the dictionaries produced by both methods in Figure 9 on the right. The x-axis corresponds to the difference
of M∗ between the dictionaries and Gaussian matrices. Most of the dictionaries obtained by the penalized
method have a nearly optimal M∗.

Compared with the previous setting, the training masked patches should not be fitted exactly. Indeed
it would mean that the dictionary learned the noise and the reconstructed image would artifact from the
mask. This is a more interesting setting forM∗ penalized methods because the dictionary learned must have
better generalization performance in order to fill the void in the images. The regularization parameter µ has
been set to a constant value for all the inpainting experiments. It could of course be fine tuned to improve
reconstruction results. For example, results for inpainting have been presented for S between 4 and 10 with
a regularization parameter µ = 108. When using the same value of µ for smaller S as 2 and 3 performances
can be worse than with wKSVD, however decreasing the regularization parameter to µ = 106 allows to
retrieve or improve the reconstruction performance of wKSVD.
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FIGURE 9. Results of the 2 × 7 × 14 × 14 inpainting experiments. Top: Histogram of
the gaps (M∗ minus KSVD) in SSIM and PSNR of reconstructed images between both
methods. Bottom: Histogram of the gap of M∗ regularized solution with Gaussian M∗.
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5. APPENDIX

We recall some results on a low-M estimate.

Theorem 5.1 (Low M estimate). Let λ ∈ (0, 1) and k = bλnc and E ⊂ Rn be a subspace of codimension
k chosen uniformly at random w.r.t. to the Haar measure on Gn,n−k, suppose Bn

2 ⊂ K and

M(K) ≥
√
λ

then

radius(K ∩ E) ≤ c
√

1− λ
M(K)−

√
λ
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with probability 1− c2e
−c3δ2(1−λ)n, where

δ =
M2(K)− λ
1−M2(K)

and c1, c2, c3 are absolute constants.

Proof. See [Giannopoulos et al., 2005, Th.B].

Note that the condition Bn
2 ⊂ K means the set K needs to be normalized by b(K). Klartag [2004]

recently produced a similar result using M(K) together with volume ratios. This result applies to all values
of M(K)/b(K), unfortunately, the dependence on k is exponential instead of being polynomial.

We will see below that the quantitiesM(K) and b(K) which characterize the phase transition for sections
of the norm ball of ‖Fy‖1 can be approximated efficiently. We first recall a result which can be traced back
at least to [Nesterov, 1998a, Nemirovski, 2005], approximating the mixed ‖ · ‖2→1 operator norm by a
MAXCUT type relaxation.

Proposition 5.2. Let F ∈ Rn×n−m, then
2

π
SDP (F ) ≤ max

‖x‖2≤1
‖Fx‖21 ≤ SDP (F ) (33)

where
SDP (F ) = max. Tr(XFF T )

s.t. diag(X) = 1
X � 0.

(34)

Proof. We can write, by conjugacy,

max
‖x‖2≤1

‖Fx‖21 = max
‖u‖∞≤1

‖uTF‖22 = max
‖u‖∞≤1

uTFF Tu

and by convexity of uTFF Tu this is equal to

max
u∈{−1,1}n

uTFF Tu

and Nesterov [1998b] (using again the fact that FF T is positive semidefinite) shows that this problem can
be approximated within a factor 2/π by the semidefinite relaxation in (34).

This means that the mixed norm b(K), which is typically hard to bound in probabilistic arguments, is
approximated within a factor 2/π by solving a MAXCUT semidefinite relaxation when the norm ball is a
section of the `1 ball. We now recall a classical result showing that the spherical average M(K) can be
approximated by a Gaussian average.

Lemma 5.3. Let f be a homogeneous function on Rn, then∫
Sn−1

f(x)dσ(x) =

(
1√
n

+
1

4n3/2
+ o(n−3/2)

)
E[f(g)]

where σ is the Haar measure on the sphere and g ∼ N (0, In).

Proof. Because the Gaussian measure γ is invariant by rotation, uniqueness of the Haar measure on Sn−1

means that ∫
Sn−1

f(x)dσ(x) = λn

∫
Rn

‖x‖2f(x/‖x‖2)dγ(x) = λn

∫
Rn

f(x)dγ(x)

for some constant λn satisfying

λn =

∫
Rn

‖x‖2dγ(x)

and we conclude using∫
Rn

‖x‖2dγ(x) =

√
2Γ((n+ 1)/2)

Γ(n/2)
=
√
n− 1

4
√
n

+ o(n−1/2)
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as n goes to infinity.

We can now easily compute M(K), when K is the unit ball of ‖Fy‖1, with

M(K) =

(
1√
n

+
1

4n3/2
+ o(n−3/2)

)√
2

π

n∑
i=1

‖Fi‖2 (35)

where Fi are the rows of the matrix F , with F ∈ Rn×n−m satisfying AF = 0. The key difficulty with
these approximations of the Dvoretzky dimension is that M(Bn

1 ) is roughly equal to
√

2n/π, so the ratio
M(K)/b(K) is already constant and the 2/π approximation ratio for b(K) only produces trivial bounds.
Hence, even though we can expect matrices with high approximate ratio M(K)/SDP (F ) to be good sens-
ing matrices, there are no guarantees that all such matrices will have high approximate ratios.
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