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ABSTRACT. Seriation seeks to reconstruct a linear order between variables using unsorted, pairwise similarity
information. It has direct applications in archeology and shotgun gene sequencing for example. We write seri-
ation as an optimization problem by proving the equivalence between the seriation and combinatorial 2-SUM
problems on similarity matrices (2-SUM is a quadratic minimization problem over permutations). The seriation
problem can be solved exactly by a spectral algorithm in the noiseless case and we derive several convex relax-
ations for 2-SUM to improve the robustness of seriation solutions in noisy settings. These convex relaxations
also allow us to impose structural constraints on the solution, hence solve semi-supervised seriation problems.
We derive new approximation bounds for some of these relaxations and present numerical experiments on
archeological data, Markov chains and DNA assembly from shotgun gene sequencing data.

1. INTRODUCTION

We study optimization problems written over the set of permutations. While the relaxation techniques
discussed in what follows are applicable to a much more general setting, most of the paper is centered on
the seriation problem: we are given a similarity matrix between a set of n variables and assume that the
variables can be ordered along a chain, where the similarity between variables decreases with their distance
within this chain. The seriation problem seeks to reconstruct this linear ordering based on unsorted, possibly
noisy, pairwise similarity information.

This problem has its roots in archeology [Robinson, 1951] and also has direct applications in e.g. enve-
lope reduction algorithms for sparse linear algebra [Barnard et al., 1995], in identifying interval graphs for
scheduling [Fulkerson and Gross, 1965], or in shotgun DNA sequencing where a single strand of genetic ma-
terial is reconstructed from many cloned shorter reads (i.e. small, fully sequenced sections of DNA) [Garriga
et al., 2011; Meidanis et al., 1998]. With shotgun gene sequencing applications in mind, many references
focused on the consecutive ones problem (C1P) which seeks to permute the rows of a binary matrix so
that all the ones in each column are contiguous. In particular, Fulkerson and Gross [1965] studied further
connections to interval graphs and Kendall [1971] crucially showed that a solution to C1P can be obtained
by solving the seriation problem on the squared data matrix. We refer the reader to [Ding and He, 2004;
Vuokko, 2010; Liiv, 2010] for a much more complete survey of applications.

On the algorithmic front, the seriation problem was shown to be NP-complete by George and Pothen
[1997]. Archeological examples are usually small scale and earlier references such as [Robinson, 1951]
used greedy techniques to reorder matrices. Similar techniques were, and are still used to reorder genetic
data sets. More general ordering problems were studied extensively in operations research, mostly in con-
nection with the quadratic assignment problem (QAP), for which several convex relaxations were derived in
e.g. [Lawler, 1963; Zhao et al., 1998]. Since a matrix is a permutation matrix if and only if it is both orthog-
onal and doubly stochastic, much work also focused on producing semidefinite relaxations to orthogonality
constraints [Nemirovski, 2007; So, 2011]. These programs are convex hence tractable but the relaxations
are usually very large and scale poorly. More recently however, Atkins et al. [1998] produced a spectral
algorithm that exactly solves the seriation problem in a noiseless setting. They show that for similarity ma-
trices computed from serial variables (for which a total order exists), the ordering of the second eigenvector
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of the Laplacian (a.k.a. the Fiedler vector) matches that of the variables, in results that are closely connected
to those obtained on the interlacing of eigenvectors for Sturm Liouville operators. Finally a lot of work
has focused on the minimum linear arrangement problem or 1-SUM, with [Even et al., 2000; Feige, 2000;
Blum et al., 2000] and [Rao and Richa, 2005; Feige and Lee, 2007; Charikar et al., 2010] producing (ex-
ponentially large but tractable) semidefinite relaxations with nearly dimension independent approximation
ratios. Finally, seriation is also directly related to the manifold learning problem [Weinberger and Saul,
2006] which seeks to reconstruct a low dimensional manifold based on local metric information. Seriation
can be seen as a particular instance of that problem, where the manifold is unidimensional but the similarity
information is not metric.

Our contribution here is twofold. First, we explicitly write seriation as an optimization problem by
proving the equivalence between the seriation and combinatorial 2-SUM problems on similarity matrices.
2-SUM, defined in e.g. [George and Pothen, 1997], is a quadratic minimization problem over permutations.
Our result shows in particular that 2-SUM is polynomially solvable for matrices coming from serial data.
While this quadratic problem was mentioned in [Atkins et al., 1998], no explicit connection was established
between 2-SUM and seriation.

Second, we derive several new convex relaxations for the seriation problem. Our simplest relaxation is
written over the set of doubly stochastic matrices and appears to be more robust to noise than the spectral
solution in a number of examples. Perhaps more importantly, it allows us to impose additional structural
constraints to solve semi-supervised seriation problems. We also briefly outline a fast algorithm for pro-
jecting on the set of doubly stochastic matrices, which is of independent interest. We then produce a semi-
definite relaxation for the seriation problem using the classical lifting argument in [Shor, 1987; Lovász and
Schrijver, 1991] written on a nonconvex quadratic program (QP) formulation of the combinatorial 2-SUM
problem. Based on randomization arguments in [Nesterov, 1998; d’Aspremont and El Karoui, 2013] for the
MaxCut and k-dense-subgraph problems, we show that this relaxation of the set of permutation matrices
achieves an approximation ratio of O(

√
n). We then recall how several other relaxations of the minimum

linear arrangement (MLA) problem, written on permutation vectors, can be adapted to get nearly dimension
independent O(

√
log n) approximation ratios by forming (exponentially large but tractable) semidefinite

programs. While these results are of limited practical impact because of the computational cost of the semi-
definite programs they form, they do show that certain QAP instances written on Laplacian matrices, such as
the seriation problem considered here, are much simpler to approximate than generic QAP problems. They
also partially explain the excellent empirical performance of our relaxations in the numerical experiments
of Section 5.

The paper is organized as follows. In Section 2, we show how to decompose similarity matrices formed
in the C1P problem as conic combinations of CUT matrices, i.e. elementary block matrices. This allows us
to connect the solutions of the seriation and 2-SUM minimization problems on these matrices. In Section 3
we use these results to write convex relaxations of the seriation problem by relaxing the set of permutation
matrices as doubly stochastic matrices in a QP formulation of the 2-SUM minimization problem. We then
detail a larger semidefinite relaxations of this QP and obtain O(

√
n) approximation bounds using random-

ization arguments. We also detail several direct connections with the minimum linear arrangement problem.
Section 4 briefly discusses first order algorithms solving the doubly stochastic relaxation and details in par-
ticular a block coordinate descent algorithm for projecting on the set of doubly stochastic matrices. Finally,
Section 5 describes applications and numerical experiments on archeological data, Markov chains and DNA
assembly problems.

Notation. We use the notation P for both the set of permutations of {1, . . . , n} and the set of permutation
matrices. The notation π will refer to a permuted vector (1, . . . , n)T while the notation Π (in capital letter)
will refer to the corresponding matrix permutation, which is a {0, 1} matrix such that Πij = 1 iff π(i) = j.
Moreover yπ is the vector with coefficients (yπ(1), . . . , yπ(n)) hence Πy = yπ and ΠT yπ = y. This also
means that AΠT is the matrix with coefficients Aiπ(j), and ΠAΠT is the matrix with coefficients Aπ(i)π(j).
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For a vector y ∈ Rn, we write var(y) its variance, with var(y) =
∑n

i=1 y
2
i /n − (

∑n
i=1 yi/n)2, we also

write y[u,v] ∈ Rv−u+1 the vector (yu, . . . , yv)
T . Here, ei ∈ Rn is i-the Euclidean basis vector and 1 is

the vector of ones. Recall also that the matrix product can be written in terms of outer products, with
AB =

∑
iA(i)B

(i), with A(i) (resp. B(i)) the i-th column (resp. row) of A (resp. B). For a matrix
A ∈ Rm×n, we write vec(A) ∈ Rmn the vector formed by stacking up the columns of A. We write I the
identity matrix and Sn the set of symmetric matrices of dimension n, ‖ · ‖F denotes the Frobenius norm,
λi(X) the ith eigenvalue (in increasing order) of X and ‖X‖∞ = ‖vec(X)‖∞.

2. SERIATION, 2-SUM & CONSECUTIVE ONES

Given a symmetric, binary matrix A, we will focus on variations of the following 2-SUM combinatorial
minimization problem, studied in e.g. [George and Pothen, 1997], and written

minimize
∑n

i,j=1Aij(π(i)− π(j))2

subject to π ∈ P, (1)

where P is the set of permutations of the vector (1, . . . , n)T . This problem is used for example to reduce
the envelope of sparse matrices and is shown in [George and Pothen, 1997, Th. 2.2] to be NP-complete.
When A has a specific structure, Atkins et al. [1998] show that a related matrix ordering problem used for
seriation can be solved explicitly by a spectral algorithm. However, the results in Atkins et al. [1998] do not
explicitly link spectral ordering and the optimum of (1). The main objective of this section is to show the
equivalence between the 2-SUM and seriation problems for certain classes of matrices A. In particular, for
some instances of A related to seriation and consecutive one problems, we will show below that the spectral
ordering directly minimizes the objective of problem (1). We first focus on binary matrices, then extend our
results to more general unimodal matrices.

Let A ∈ Sn and consider the following generalization of the 2-SUM minimization problem

minimize f(yπ) ,
∑n

i,j=1Aij(yπ(i) − yπ(j))2
subject to π ∈ P, (2)

in the permutation variable π, where y ∈ Rn is a given weight vector. The classical 2-SUM minimization
problem (1) is a particular case of problem (2) with yi = i. The main point of this section is to show that if
A is the permutation of a similarity matrix formed from serial data, then minimizing (2) recovers the correct
variable ordering. To do this, we simply need to show that when A is correctly ordered, a monotonic vector
y solves (2), since reordering y is equivalent to reordering A. Our strategy is to first show that we can focus
on matrices A that are sums of simple CUT matrices, i.e. symmetric block matrices with a single constant
block [see Frieze and Kannan, 1999]. We then show that all minimization problems (2) written on CUT
matrices have a common optimal solution, where yπ is monotonic.

2.1. Similarity, C1P & unimodal matrices. We begin by introducing a few definitions on R-matrices (i.e.
similarity matrices), C1P and unimodal matrices following [Atkins et al., 1998].

Definition 2.1. (R-matrices) We say that the matrix A ∈ Sn is an R-matrix (or Robinson matrix) iff it is
symmetric and satisfies Ai,j ≤ Ai,j+1 and Ai+1,j ≤ Ai,j in the lower triangle, where 1 ≤ j < i ≤ n.

Another way to write the R-matrix conditions is to impose Aij ≤ Akl if |i − j| ≤ |k − l| off-diagonal,
i.e. the coefficients of A decrease as we move away from the diagonal (cf. Figure 1). In that sense,
R-matrices are similarity matrices between variables organized on a chain, i.e. where the similarity Aij
is monotonically decreasing with the distance between i and j on this chain. We also introduce a few
definitions related to the consecutive ones problem (C1P) and its unimodal extension.

Definition 2.2. (P-matrices) We say that the {0, 1}-matrix A ∈ Rn×m is a P-matrix (or Petrie matrix) iff
for each column of A, the ones form a consecutive sequence.
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FIGURE 1. A sample Q-matrix (see Def. 2.3), which has unimodal columns (left), its “cir-
cular square”A◦AT (see Def. 2.4) which is an R-matrix (center), and a matrix a◦aT where
a is a unimodal vector (right).

As in [Atkins et al., 1998], we will say that A is pre-R (resp. pre-P) iff there is a permutation Π such that
ΠAΠT is an R-matrix (resp. ΠA is a P-matrix). Based on Kendall [1971], we also define a generalization
of P-matrices called (appropriately enough) Q-matrices, i.e. matrices with unimodal columns.

Definition 2.3. (Q-matrices) We say that a matrix A ∈ Rn×m is a Q-matrix if and only if each column of
A is unimodal, i.e. the coefficients of each column increase to a maximum, then decrease.

Note that R-matrices are symmetric Q-matrices. We call a matrix A pre-Q iff there is a permutation Π
such that ΠA is a Q-matrix. Next, again based on Kendall [1971], we define the circular product of two
matrices.

Definition 2.4. Given A,BT ∈ Rn×m, and a strictly positive weight vector w ∈ Rm, their circular product
A ◦B is defined as

(A ◦B)ij =
m∑
k=1

wk min{Aik, Bkj} i, j = 1, . . . , n,

note that when A is a symmetric matrix, A ◦A is also symmetric.

Remark that whenA,B are {0, 1}matrices andw = 1, min{Aik, Bkj} = AikBkj , so the circular product
matches the regular matrix product AB. Similarly, a {0, 1} matrix with the consecutive one property (C1P)
is also unimodal. In the rest of the paper, we will assume that w = 1.

2.2. Seriation on CUT matrices. We now introduce CUT matrices (named after the CUT decomposition
in [Frieze and Kannan, 1999]), and first study the seriation problem on these simple block matrices. The
motivation for this definition is that if A a P, Q or R-matrix, then A ◦ AT can we decomposed as a sum of
CUT matrices. This is illustrated in Figure 1 and means that we can start by studying problem (2) on CUT
matrices.

Definition 2.5. For u, v ∈ [1, n], we call CUT (u, v) the matrix such that

CUT (u, v) =

{
1 if u ≤ i, j ≤ v
0 otherwise,

i.e. CUT (u, v) is symmetric, block diagonal and has one square block equal to one.

We first show that the objective of (2) has a natural interpretation whenA is a CUT matrix, as the variance
of a subset of y under a uniform probability measure.
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Lemma 2.6. Suppose A = CUT (u, v), then

f(y) =
n∑

i,j=1

Aij(yi − yj)2 = (v − u+ 1)2 var(y[u,v]).

Proof. We can write
∑

ij Aij(yi − yj)2 = yTLAy where LA = diag(A1) − A is the Laplacian of A,
which is a block matrix with a single nonzero block equal to (v − u+ 1)δ{i=j} − 1 for u ≤ i, j ≤ v.

This last lemma shows that solving the seriation problem (2) for CUT matrices amounts to finding a
subset of y of size (u − v + 1) with minimum variance. This is the key to all the results that follow. As
illustrated in Figure 2, for CUT matrices and of course conic combinations of CUT matrices, monotonic
sequences have lower variance than sequences where the ordering is broken and the results that follow make
this explicit. We now show a simple technical lemma about the impact of switching two coefficients in y on
the objective of problem (2), when A is a CUT matrix.

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12
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FIGURE 2. Objective values of 2-SUM problem (2) when A = CUT (5, 8) and yi = i,
i = 1, . . . , 12. We plot the permuted values yπ(i) against i, linking consecutive values of
y both inside and outside the interval [5, 8]. The solution on the left, where the values of
y[5,8] are consecutive, has var(y[5,8]) = 1.6 while var(y[5,8]) = 5.6 on the right, where
there is a gap between y6 and y7. Minimizing the 2-SUM objective for CUT matrices, i.e.
the variance of a subset of the coefficients of y, tends to pull the coefficients in this subset
together.

Lemma 2.7. Let A ∈ Sn, y ∈ Rn and f(·) be the objective of problem (2). Suppose we switch the values of
yj and yj+1 calling the new vector z, we have

f(y)− f(z) = 4

n∑
i=1

i 6=j, i6=j+1

(
yj + yj+1

2
− yi

)
(yj+1 − yj)(Aij+1 −Aij).
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Proof. Because A is symmetric, we have

(f(y)− f(z))/2 =
∑

i 6=j, i6=j+1

Aij(yi − yj)2 +
∑

i 6=j, i6=j+1

Aij+1(yi − yj+1)
2

−
∑

i 6=j, i6=j+1

Aij(yi − yj+1)
2 −

∑
i 6=j, i6=j+1

Aij+1(yi − yj)2

=
∑

i 6=j, i6=j+1

2Aij(yj − yj+1)

(
yj + yj+1

2
− yi

)

+
∑

i 6=j, i6=j+1

2Aij+1(yj+1 − yj)
(
yj + yj+1

2
− yi

)
,

which yields the desired result.

The next lemma characterizes optimal solutions of problem (2) for CUT matrices and shows that they
split the coefficients of y in disjoint intervals.

Lemma 2.8. Suppose A = CUT (u, v), and write w = yπ the optimal solution to (2). If we call I = [u, v]
and Ic its complement, then

wj /∈ [min(wI),max(wI)], for all j ∈ Ic,
in other words, the coefficients in wI and wIc belong to disjoint intervals.

Proof. Without loss of generality, we can assume that the coefficients of wI are sorted in increasing
order. By contradiction, suppose that there is a wj such that j ∈ Ic and wj /∈ [wu, wv]. Suppose also that
w is larger than the mean of coefficients inside I, i.e. wj ≥

∑v
i=u+1wi/(v − u). This, combined with our

assumption that wj ≤ wv and Lemma 2.7 means that switching the values of wj and wv will decrease the
objective by

4

v−1∑
i=u

(
wj + wv

2
− yi

)
(wv − wj)

which is positive by our assumptions on wj and the mean which contradicts optimality. A symmetric result
holds if wj is smaller than the mean.

This last lemma shows that when A is a CUT matrix, then the monotonic vector yi = ai+ b, for a, b ∈ R
and i = 1, . . . , n, is always an optimal solution to the 2-SUM problem (2), since all subvectors of y of a
given size have the same variance. This means that, when y is a permutation of yi = ai+b, all minimization
problems (2) written on CUT matrices have a common optimal solution, where yπ is monotonic.

2.3. Ordering P, Q & R matrices. Having showed that all 2-SUM problems (2) written on CUT matrices
share a common monotonic solution, this section now shows how to decompose the square of P, Q and
R-matrices as a sum of CUT matrices, then links the reordering of a matrix with that of its square A ◦ AT .
We will first show a technical lemma proving that if A is a Q-matrix, then A ◦ AT is a conic combination
of CUT matrices. The CUT decomposition of P and R-matrices will then naturally follow, since P-matrices
are just {0, 1} Q-matrices, and R-matrices are symmetric Q-matrices.

Lemma 2.9. Suppose A ∈ Rn×m is a Q-matrix, then A ◦AT is a conic combination of CUT matrices.

Proof. Suppose, a ∈ Rn is a unimodal vector, let us show that the matrix M = a ◦ aT with coefficients
Mij = min{ai, aj} is a conic combination of CUT matrices. Let I = argmaxi ai, then I is an index interval
[Imin, Imax] because a is unimodal. Call ā = maxi ai and b = maxi∈Ic ai (with b = 0 when Ic = ∅), the
deflated matrix

M− = M − (ā− b) CUT (Imin, Imax)
6



can be written M− = a− ◦ (a−)T with

a− = a− (ā− b)v

where vi = 1 iff i ∈ I . By construction | argmaxM−| > |I|, i.e. the size of argmaxM increases by at least
one, so this deflation procedure ends after at most n iterations. This shows that a◦aT is a conic combination
of CUT matrices when a is unimodal. Now, we have (A ◦AT )ij =

∑n
k=1wk min{Aik, Ajk}, so A ◦AT is

a sum of n matrices of the form min{Aik, Ajk} where each column is unimodal, hence the desired result.

This last result also shows that, when A is a Q matrix, A ◦ AT is a R-matrix as a sum of CUT matrices,
which is illustrated in Figure 1. We now recall the central result in [Kendall, 1971, Th. 1] showing that for
Q-matrices, reordering A ◦AT also reorders A.

Theorem 2.10. [Kendall, 1971, Th. 1] Suppose A ∈ Rn×m is pre-Q, then ΠA is a Q-matrix if and only if
Π(A ◦AT )ΠT is a R-matrix.

We use these last results to show that at least for some vectors y, if C is a Q-matrix then the 2-SUM
problem (2) written on A = C ◦ CT has a monotonic solution yπ.

Proposition 2.11. Suppose C ∈ Rn×m is a pre-Q matrix and yi = ai + b for i = 1, . . . , n and a, b ∈ R
with a 6= 0. Let A = C ◦CT , if Π is such that ΠTAΠ is an R-matrix, then the corresponding permutation π
solves the combinatorial minimization problem (2).

Proof. If C ∈ Rn×m is pre-Q, then Lemma 2.9 and Theorem 2.10 show that there is a permutation Π
such that Π(C ◦ CT )ΠT is a sum of CUT matrices (hence a R-matrix). Now all monotonic subsets of y of
a given length have the same variance, hence Lemmas 2.6 and 2.8 show that π solves problem (2).

We now show that when the R-constraints are strict, the converse is also true, i.e. for matrices that are the
square of Q-matrices, if yπ solves the 2-SUM problem (2), then π makes A an R-matrix. In the next section,
we will use this result to reorder pre-R matrices (with noise and additional structural constraints) by solving
convex relaxations to the 2-SUM problem.

Proposition 2.12. Suppose A is a pre-R matrix that can be written as A = C ◦ CT , where C ∈ Rn×m is a
pre-Q matrix, yi = ai + b for i = 1, . . . , n and a, b ∈ R with a 6= 0. Suppose moreover that A has strict
R-constraints, i.e. the rows/columns of A are strictly unimodal after reordering. If the permutation π solves
the 2-SUM problem (2), then the corresponding permutation matrix Π is such that ΠAΠT is an R-matrix.

Proof. We can assume that A is a R-matrix without loss of generality. We will show that the identity is
optimal for 2-SUM and that it is the unique such solution, hence solving 2-SUM solves seriation. Lemma 2.9
shows that A is a conic combination of CUT matrices. Moreover, by Proposition 2.11 the identity matrix
solves problem (2). Following the proof of Proposition 2.11, the identity matrix is also optimal for each
seriation subproblem on the CUT matrices of A.

Now remark that since the R-constraints are strict on the first column of A, there must be n − 2 CUT
matrices of the form Ai = CUT (1, i) for i = 2, . . . , n − 1 in the decomposition of A (otherwise, there
would be some index k > 1 for which A1k = A1k+1 which would contradict our strict unimodal as-
sumption). Following the previous remarks, the identity matrix is optimal for all the seriation subprob-
lems in Ai, which means that the variance of all the corresponding subvectors of yπ, i.e. (yπ(1), yπ(2)),
(yπ(1), yπ(2), yπ(3)),. . . , (yπ(1), . . . , yπ(n−1)) must be minimized. Since these subvectors of yπ are monoton-
ically embedded, up to a permutation of yπ(1) and yπ(2), Lemma 2.8 shows that this can only be achieved
for contiguous yπ(i), that is for π equal to the identity or the reverse permutation. Indeed, to minimize the
variance of (yπ(1), . . . , yπ(n−1)), we have to choose π(n) = n or π(n) = 1. Then to minimize the variance
of (yπ(1), . . . , yπ(n−2)), we have to choose respectively π(n− 1) = n− 1 or π(n− 1) = 2. Thus we get by
induction respectively π(i) = i or π(i) = n−i+1 for i = 3, . . . , n. Finally, there are only two permutations

7



left for yπ(1) and yπ(2). Since A31 < A32, we have to choose (yπ(3) − yπ(1))2 > (yπ(3) − yπ(2))2, and the
remaining ambiguity on the order of yπ(1) and yπ(2) is removed.

These results shows that ifA is pre-R and can be writtenA = C ◦CT with C pre-Q, then the permutation
that makes A an R-matrix also solves the 2-SUM problem (2). Conversely, when A is pre-R (strictly),
the permutation that solves (2) reorders A as a R-matrix. Since Atkins et al. [1998] show that sorting the
Fiedler vector also orders A as an R-matrix, Proposition 2.11 gives a polynomial time solution to the 2-SUM
problem (2) when A is pre-R with A = C ◦ CT for some pre-Q matrix C. Note that the strict monotonicity
constraints on the R-matrix can be somewhat relaxed (we only need one strictly monotonic column plus two
more constraints), but requiring strict monotonicity everywhere simplifies the argument.

3. CONVEX RELAXATIONS

In the sections that follow, we will use the combinatorial results derived above to produce convex relax-
ations of optimization problems written over the set of permutation matrices. We mostly focus on the 2-SUM
problem in (2), however many of the results below can be directly adapted to other objective functions. We
detail several convex approximations, some new, some taken from the computer science literature, ranked
by increasing numerical complexity. Without loss of generality, we always assume that the weight matrix
A is nonnegative (if A has negative entries, it can be shifted to become nonnegative, with no impact on the
permutation problem). The nonnegativity assumption is in any case natural since A represents a similarity
matrix in the seriation problem.

3.1. Spectral ordering. We first recall classical definitions from spectral clustering and briefly survey the
spectral ordering results in [Atkins et al., 1998] in the noiseless setting.

Definition 3.1. The Fiedler value of a symmetric, nonnegative matrix A is the smallest non-zero eigenvalue
of its Laplacian LA = diag(A1) − A. The corresponding eigenvector is called Fiedler vector and is the
optimal solution to

minimize yTLAy
subject to yT1 = 0, ‖y‖2 = 1.

(3)

in the variable x ∈ Rn.

We now recall the main result from [Atkins et al., 1998] which shows how to reorder pre-R matrices in a
noise free setting.

Proposition 3.2. [Atkins et al., 1998, Th. 3.3] Suppose A ∈ Sn is a pre-R-matrix, with a simple Fiedler
value whose Fiedler vector v has no repeated values. Suppose that Π is a permutation matrix such that the
permuted Fielder vector Πv is strictly monotonic, then ΠAΠT is an R-matrix.

We now extend the result of Proposition 2.11 to the case where the weights y are given by the Fiedler
vector.

Proposition 3.3. Suppose A ∈ Sn×n is a R-matrix and y is its Fiedler vector. Then the identity matrix
solves the 2-SUM problem (2).

Proof. The combinatorial problem (2) can be rewritten

minimize yTΠTLAΠy
subject to Π ∈ P,

which is also equivalent to

minimize zTLAz
subject to zT1 = 0, ‖z‖2 = 1, z = Πy,Π ∈ P,
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since y is the Fiedler vector ofA. By dropping the constraints z = Πy,Π ∈ P , we can relax the last problem
into (3), whose solution is the Fiedler vector of A. Note that the optimal value of problem (2) is thus an
upper bound on that of its relaxation (3), i.e. the Fiedler value of A. This upper bound is attained by the
Fiedler vector, i.e. the optimum of (3), therefore the identity matrix is an optimal solution to (2).

Using the fact that the Fiedler vector of a R-matrix is monotonic [Atkins et al., 1998, Th. 3.2], the next
corollary immediately follows.

Corollary 3.4. If A is a pre-R matrix such that ΠTAΠ is a R-matrix, then π is an optimal solution to
problem (2) when y is the Fiedler vector of A sorted in increasing order.

The results in [Atkins et al., 1998] thus provide a polynomial time solution to the R-matrix ordering
problem in a noise free setting (extremal eigenvalues of dense matrices can be computed by randomized
polynomial time algorithms with complexity O(n2 log n) [Kuczynski and Wozniakowski, 1992]). While
Atkins et al. [1998] also show how to handle cases where the Fiedler vector is degenerate, these scenarios
are highly unlikely to arise in settings where observations on A are noisy and we refer the reader to [Atkins
et al., 1998, §4] for details.

3.2. QP relaxation. In most applications, A is typically noisy and the pre-R assumption no longer holds.
The spectral solution is stable when the magnitude of the noise remains within the spectral gap (i.e., in a
perturbative regime [Stewart and Sun, 1990]). Beyond that, while the Fiedler vector of A can still be used
as a heuristic to find an approximate solution to (2), there is no guarantee that it will be optimal.

The results in Section 2 made the connection between the spectral ordering in [Atkins et al., 1998] and the
2-SUM problem (2). In what follows, we will use convex relaxations to (2) to solve matrix ordering problems
in a noisy setting. We also show in §3.2.3 how to incorporate a priori knowledge on the true ordering
in the formulation of the optimization problem to solve semi-supervised seriation problems. Numerical
experiments in Section 5 show that semi-supervised seriation solutions are sometimes significantly more
robust to noise than the spectral solutions ordered from the Fiedler vector.

3.2.1. Permutations and doubly stochastic matrices. We write Dn the set of doubly stochastic matrices, i.e.
Dn = {X ∈ Rn×n : X > 0, X1 = 1, XT1 = 1}. Note that Dn is convex and polyhedral. Classical results
show that the set of doubly stochastic matrices is the convex hull of the set of permutation matrices. We
also have P = D ∩ O, i.e. a matrix is a permutation matrix if and only if it is both doubly stochastic and
orthogonal. The fact that LA � 0 means that we can directly write a convex relaxation to the combinatorial
problem (2) by replacing P with its convex hull Dn, to get

minimize gTΠTLAΠg
subject to Π ∈ Dn,

(4)

where g = (1, . . . , n), in the permutation matrix variable Π ∈ P . By symmetry, if a vector Πy mini-
mizes (4), then the reverse vector also minimizes (4). This often has a significant negative impact on the
quality of the relaxation, and we add the linear constraint eT1 Πg + 1 ≤ eTnΠg to break symmetries, which
means that we always pick monotonically increasing solutions. Because the Laplacian LA is positive semi-
definite, problem (4) is a convex quadratic program in the variable Π ∈ Rn×n and can be solved efficiently.
To produce approximate solutions to problem (2), we then generate permutations from the doubly stochastic
optimal solution to the relaxation in (4) (we will describe an efficient procedure to do so in §3.2.4).

The results of Section 2 show that the optimal solution to (2) also solves the seriation problem in the
noiseless setting when the matrix A is of the form C ◦ CT with C a Q-matrix and y is an affine transform
of the vector (1, . . . , n). These results also hold empirically for small perturbations of the vector y and to
improve robustness to noisy observations of A, we average several values of the objective of (4) over these
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perturbations, solving
minimize Tr(Y TΠTLAΠY )/p
subject to eT1 Πg + 1 ≤ eTnΠg,

Π1 = 1, ΠT1 = 1, Π ≥ 0,
(5)

in the variable Π ∈ Rn×n, where Y ∈ Rn×p is a matrix whose columns are small perturbations of the vector
g = (1, . . . , n)T . Solving (5) is roughly p times faster than individually solving p versions of (4).

3.2.2. Regularized QP relaxation. In the previous section, we have relaxed the combinatorial problem (2)
by relaxing the set of permutation matrices into the set of doubly stochastic matrices. As the set of per-
mutation matrices P is the intersection of the set of doubly stochastic matrices D and the set of orthogonal
matricesO, i.e. P = D∩O we can add a penalty to the objective of the convex relaxed problem (5) to force
the solution to get closer to the set of orthogonal matrices. Since a doubly stochastic matrix of Frobenius
norm

√
n is necessarily orthogonal, we would ideally like to solve

minimize 1
p Tr(Y TΠTLAΠY )− µ

p‖Π‖
2
F

subject to eT1 Πg + 1 ≤ eTnΠg,
Π1 = 1, ΠT1 = 1, Π ≥ 0,

(6)

with µ large enough to guarantee that the global solution is indeed a permutation. However, this problem
is not convex for any µ > 0 since its Hessian is not positive semi-definite. Note that the objective of (5)
can be rewritten as Vec(Π)T (Y Y T ⊗ LA)Vec(Π)/p so the Hessian here is Y Y T ⊗ LA − µI ⊗ I and is
never positive semidefinite when µ > 0 since the first eigenvalue of LA is always zero. Instead, we propose
a slightly modified version of (6), which has the same objective function up to a constant, and is convex
for some values of µ. Recall that the Laplacian matrix LA is always positive semidefinite with at least one
eigenvalue equal to zero corresponding to the eigenvector 1/

√
n (strictly one if the graph is connected) and

let P = I− 1
n11

T .

Proposition 3.5. The optimization problem

minimize 1
p Tr(Y TΠTLAΠY )− µ

p‖PΠ‖2F
subject to eT1 Πg + 1 ≤ eTnΠg,

Π1 = 1, ΠT1 = 1, Π ≥ 0,

(7)

is equivalent to problem (6), their objectives differ by a constant. Furthermore, when µ ≤ λ2(LA)λ1(Y Y
T ),

this problem is convex.

Proof. Let us first remark that

‖PΠ‖2F = Tr(ΠTP TPΠ) = Tr(ΠTPΠ)

= Tr(ΠT (I − 11T /n)Π) = Tr(ΠTΠ− 11T /n))

= Tr(ΠTΠ)− 1

where we used the fact that P is the (symmetric) projector matrix onto the orthogonal of 1 and Π is doubly
stochastic (so Π1 = ΠT1 = 1). We deduce that problem (7) has the same objective function as (6) up to a
constant. Moreover, it is convex when µ ≤ λ2(LA)λ1(Y Y

T ) since the Hessian of the objective is given by

−A =
1

p
Y Y T ⊗ LA −

µ

p
I⊗ P (8)

and the eigenvalues of Y Y T ⊗ LA, which are equal to λi(LA)λj(Y Y
T ) for all i, j in {1, . . . , n} are all

superior or equal to the eigenvalues of µI⊗ P which are all smaller than µ.

To have µ strictly positive, we need Y Y T to be definite, which can be achieved w.h.p. by setting p higher
than n and sampling independent vectors y.
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3.2.3. Semi-supervised problems. The QP relaxation above allows us to add structural constraints to the
problem. For instance, in archeological applications, one may specify that observation i must appear before
observation j, i.e. π(i) < π(j). In gene sequencing applications, one may constrain the distance between
two elements (e.g. mate reads), which would be written a ≤ π(i) − π(j) ≤ b and introduce an affine
inequality on the variable Π in the QP relaxation of the form a ≤ eTi Πg − eTj Πg ≤ b. Linear constraints
could also be extracted from a reference gene sequence. More generally, we can rewrite problem (7) with nc
additional linear constraints as follows

minimize 1
p Tr(Y TΠTLAΠY )− µ

p‖PΠ‖2F
subject to DTΠg + δ ≤ 0,

Π1 = 1, ΠT1 = 1, Π ≥ 0,

(9)

where D is a matrix of size n × (nc + 1) and δ is a vector of size nc. The first column of D is equal to
e1 − en and δ1 = 1 (to break symmetry).

3.2.4. Sampling permutations from doubly stochastic matrices. This procedure is based on the fact that
a permutation can be defined from a doubly stochastic matrix S by the order induced on a monotonic
vector. Suppose we generate a monotonic random vector v and compute Sv. To each v, we can associate a
permutation Π such that ΠSv is monotonically increasing. If S is a permutation matrix, then the permutation
Π generated by this procedure will be constant, if S is a doubly stochastic matrix but not a permutation, it
might fluctuate. Starting from a solution S to problem (7), we can use this procedure to sample many
permutation matrices Π and we pick the one with lowest cost yTΠTLAΠy in the combinatorial problem (2).
We could also project Π on permutations using the Hungarian algorithm, but this proved more costly and
less effective in our experiments.

3.3. SDP relaxations & doubly stochastic matrices. Using randomization techniques derived from [Nes-
terov, 1998; d’Aspremont and El Karoui, 2013], we can produce approximation bounds for a relaxation of
the nonconvex QP representation of (2) derived in (7), namely

minimize Tr(Y TΠTLAΠY )− µ‖PΠ‖2F
subject to Π1 = 1, ΠT1 = 1, Π ≥ 0,

which is a (possibly non convex) quadratic program in the matrix variable Π ∈ Rn×n, where P = I− 1
n11

T .
We now set the penalty µ > 0 sufficiently high to ensure that the objective is concave and the constraint
‖Π‖ =

√
n is saturated. From Proposition (3.5) above, this means µ > ‖LA‖2‖Y ‖22. The solution of this

concave minimization problem over the convex set of doubly stochastic matrices will then be at an extreme
point, i.e. a permutation matrix. We first rewrite the above QP as a more classical maximization problem
over vectors

maximize
(
vec(Π)TAvec(Π)

)1/2
subject to (1T ⊗ I)vec(Π) = 1, (I⊗ 1T )vec(Π) = 1, Π ≥ 0.

We use a square root in the objective here to maintain the same homogeneity properties as in the linear
arrangement problems that follow. Because the objective is constructed from a Laplacian matrix, we have
1TA1 = 0 so the objective is invariant by a shift in the variables. We now show that the equality constraints
can be relaxed without loss of generality. We first recall a simple scaling algorithm due to [Sinkhorn, 1964]
which shows how to normalize to one the row and column sums of a strictly positive matrix. Other algo-
rithms based on geometric programming with explicit complexity bounds can be found in e.g. [Nemirovski
and Rothblum, 1999].

The next lemma shows that the only matrices satisfying both ‖Π‖F =
√
n and Π1 ≤ 1, ΠT1 ≤ 1, with

Π ≥ 0 are doubly stochastic.

Lemma 3.6. Let Π ∈ Rn×n, if ‖Π‖F =
√
n and Π1 ≤ 1, ΠT1 ≤ 1, with Π ≥ 0, then Π is doubly

stochastic.
11



Algorithm 1 Matrix scaling (Sinkhorn).

Input: A matrix Π ∈ Rm×n
1: for k = 1 to N − 1 do
2: Scale row sums to one: Πk+1/2 = diag(Πk1)−1Πk

3: Scale column sums to one: Πk+1 = Πk+1/2 diag(1TΠk+1/2)
−1

4: end for
Output: A scaled matrix ΠN .

Proof. Suppose Π1 ≤ 1, ΠT1 ≤ 1, Π > 0, each iteration of Algorithm 1 multiplies vec(Π) by a
diagonal matrix D with diagonal coefficients greater than one, with at least one coefficient strictly greater
than one if Π is not doubly stochastic, hence ‖Π‖F is strictly increasing if Π is not doubly stochastic. This
means that the only maximizers of ‖Π‖F over the feasible set of (3.3) are doubly stochastic matrices.

We let z = vec(Π), the above lemma means that problem (3.3) is equivalent to the following QP

maximize ‖A1/2z‖2
subject to (1T ⊗ I)z ≤ 1, (I⊗ 1T )z ≤ 1,

z ≥ 0,
(QP)

in the variable z ∈ Rn2
. Furthermore, since permutation matrices are binary matrices, we can impose the

redundant constraints that zi ∈ {0, 1} or equivalently z2i = zi at the optimum. Lifting the quadratic objective
and constraints as in [Shor, 1987; Lovász and Schrijver, 1991] yields the following relaxation

maximize Tr(AZ)
subject to (1T ⊗ I)z ≤ 1, (I⊗ 1T )z ≤ 1,

Zii = zi, Zij ≥ 0, i, j = 1, . . . , n,(
Z z
zT 1

)
� 0,

(SDP1)

which is a semidefinite program in the matrix variable Z ∈ Sn2 and the vector z ∈ Rn2
. By adapting

a randomization argument used in the MaxCut relaxation bound in [Nesterov, 1998] and adapted to the
k-dense-subgraph problem in [d’Aspremont and El Karoui, 2013], we can show the following O(

√
n) ap-

proximation bound on the quality of this relaxation.

Proposition 3.7. Let OPT be the optimal value of problem (QP) and SDP1 be that of (SDP1), then

0 ≤ Tr(AG)

4n
+
SDP1

2πn
≤ OPT 2 ≤ SDP1.

with Gij =
√
ZiiZjj , i = 1, . . . , n and Tr(AG) ≤ 0.

Proof. The fact that A � 0 by construction shows 0 ≤ OPT 2 ≤ SDP1. Let ξ ∼ N (0, Z), and define

yi =

{ √
zi if ξi ≥ 0

0 otherwise.

We write C = diag(Z)−1/2Z diag(Z)−1/2 the correlation matrix associated with Z (under the convention
that Cij = 0 whenever ZiiZjj = 0). A classical result from [Sheppard, 1900] (see also [Johnson and Kotz,
1972, p.95]) shows

E[yiyj ] =
√
zizj

(
1
4 + 1

2π arcsin(C)
)
, i = 1, . . . , n,
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and A � 0 together with arcsin(C) � C (with the arcsin(·) taken elementwise) and zi = Zii means that,
writing Gij =

√
zizj =

√
ZiiZjj , we get

E[yTAy] = E[Tr(AyyT )]

= Tr

(
A
(
G ◦

(
1

4
11T +

1

2π
arcsin(C)

)))
≤ Tr

(
A
(

1

4
G+

1

2π
Z

))
=

1

4
Tr(AG) +

1

2π
SDP1,

because Shur’s theorem shows thatA◦B � 0 whenA,B � 0. It remains to notice that, because (1T⊗I)z ≤
1, and (I⊗ 1T )z ≤ 1, with z ≥ 0, then

(1T ⊗ I)
√
z ≤
√
n1, and (I⊗ 1T )

√
z ≤
√
n1,

so all the points y generated using this procedure are feasible for (QP) if we scale them by a factor
√
n.

While theO(
√
n) bound grows relatively fast with problem dimension, remember that the problem has n2

variables because it is written on permutation matrices. In what follows, we will see that better theoretical
approximation bounds can be found if we write the seriation problem directly over permutation vectors,
which is of course a much more restrictive formulation.

3.4. SDP relaxations & minimum linear arrangement. Several other semidefinite relaxations have been
derived for the 2-SUM problem and the directly related 1-SUM, or minimum linear arrangement (MLA)
problem. While these relaxations have unreasonably high computational complexity, they come with ex-
cellent approximation bounds. We briefly recall these results in what follows. The 2-SUM minimization
problem (1) is written (after taking square roots)

minimize
(∑n

i,j=1Aij(π(i)− π(j))2
) 1

2

subject to π ∈ P.
(10)

in the variable π ∈ P which is a permutation of the vector (1, . . . , n)T . Even et al. [2000]; Feige [2000];
Blum et al. [2000] form the following semidefinite relaxation

minimize
∑n

i,j=1AijXij

subject to 1
|S|
∑

j∈S(Xii − 2Xij +Xjj) ≥ 1
6(|S|/2 + 1)(|S|+ 1), for all S ⊂ [1, n], i = 1, . . . , n

1
|S|
∑

k∈S ∆2(i, j, k) ≥ ε(Xii − 2Xij +Xjj)|S|2, for all S ⊂ [1, n], i, j = 1, . . . , n

X � 0, Xij ≥ 0, i, j = 1, . . . , n
(SDP2)

in the variable X ∈ Sn, where ε > 0 and ∆(i, j, k) is given by the determinant

∆(i, j, k) =

∣∣∣∣ Xjj − 2Xij +Xii Xjk −Xij −Xjk +Xii

Xjk −Xij −Xjk +Xii Xkk − 2Xik +Xii

∣∣∣∣ .
[Blum et al., 2000, Th. 2] shows that if OPT is the optimal value of the 2-SUM problem (10) and SDP2 the
optimal value of the relaxation in (SDP2), then

SDP2 (log n)−1/2 ≤ OPT ≤ SDP2 (log n)3/2.

While problem (SDP2) has an exponential number of constraints, efficient linear separation oracles can
be constructed for the last two spreading constraints, hence the problem can be solved in polynomial time
[Grötschel et al., 1988].
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Tighter bounds can be obtained by exploiting approximation results on the minimum linear arrangement
problem, noting that the 2-SUM problem is equivalent to

min
π∈P

max
{‖V ‖F≤1, V≥0}

n∑
i,j=1

VijA
1/2
ij |π(i)− π(j)| (11)

in the variables π ∈ P and V ∈ Rn×n (note that this is true for the support function of any set contained
in the nonnegative orthant). Using results in [Rao and Richa, 2005; Feige and Lee, 2007; Charikar et al.,
2010], the minimum linear arrangement problem, written

min
π∈P

n∑
i,j=1

Wij |π(i)− π(j)| (MLA)

over the variable π ∈ P , with nonnegative weights W ∈ Rn×n, can be relaxed as

minimize
∑n

i,j=1Wij(Xii − 2Xij +Xjj)

subject to 1
|S|
∑

j∈S(Xii − 2Xij +Xjj) ≥ |S|
2

5 , for all S ⊂ [1, n], i = 1, . . . , n

(Xii − 2Xij +Xjj) ≤ (Xii − 2Xik +Xkk) + (Xkk − 2Xkj +Xjj), i, j, k = 1, . . . , n
(Xii − 2Xij +Xjj) ≥ 1, i, j = 1, . . . , n
X � 0,

(SDP3)
in the variable X ∈ Sn. The constraints above ensure that dij = (Xii− 2Xij +Xjj) is a squared Euclidean
metric (hence a metric of negative type). If MLA is the optimal value of the minimum linear arrangement
problem (MLA) and SDP3 the optimum of the relaxation in (SDP3), [Feige and Lee, 2007; Charikar et al.,
2010] show that

SDP3 ≤MLA ≤ SDP3 O(
√

log n log logn),

which immediately yields a convex relaxation withO(
√

log n log logn) approximation ratio for the minmax
formulation of the 2-SUM problem in (11).

4. ALGORITHMS

The convex relaxation in (9) is a quadratic program in the variable Π ∈ Rn×n, which has dimension n2.
For reasonable values of n (around a few hundreds), interior point solvers such as MOSEK [Andersen and
Andersen, 2000] solve this problem very efficiently. Furthermore, most pre-R matrices formed by squaring
pre-Q matrices are very sparse, which considerably speeds up linear algebra. However, first-order methods
remain the only alternative beyond a certain scale. We quickly discuss the implementation of two classes of
methods: the conditional gradient (a.k.a. Frank-Wolfe) algorithm, and accelerated gradient methods.

4.1. Conditional gradient. Solving (9) using the conditional gradient algorithm in e.g. [Frank and Wolfe,
1956] requires minimizing an affine function over the set of doubly stochastic matrices at each iteration.
This amounts to solving a classical transportation (or matching) problem for which very efficient solvers
exist [Portugal et al., 1996].

4.2. Accelerated smooth optimization. On the other hand, solving (9) using accelerated gradient algo-
rithms requires solving a projection step on doubly stochastic matrices at each iteration [Nesterov, 2003].
Here too, exploiting structure significantly improves the complexity of these steps. Given some matrix Π0,
the Euclidean projection problem is written

minimize 1
2‖Π−Π0‖2F

subject to DTΠg + δ ≤ 0,
Π1 = 1, ΠT1 = 1, Π ≥ 0

(12)
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in the variable Π ∈ Rn×n, with parameter g ∈ Rn. The dual is written

maximize −1
2‖x1

T + 1yT +DzgT − Z‖2F −Tr(ZTΠ0)
+xT (Π01− 1) + yT (ΠT

0 1− 1) + z(DTΠ0g + δ)
subject to z ≥ 0, Z ≥ 0

(13)

in the variables Z ∈ Rn×n, x, y ∈ Rn and z ∈ Rnc . The dual optimizes over decoupled linear constraints
in (z, Z), while x and y are unconstrained.

Each subproblem is equivalent to computing a conjugate norm and can be solved in closed form. This
means that, with independent constraints (D full rank), at each iteration, explicit formulas are available
to update variables block by block in the dual Euclidean projection problem (13) over doubly stochastic
matrices (cf. Algorithm 2). Problem (13) can thus be solved very efficiently by block-coordinate ascent,
whose convergence is guaranteed in this setting [Bertsekas, 1998], and a solution to (12) can be reconstructed
from the optimum in (13).

The detailed procedure for block coordinate ascent in the dual Euclidean projection problem (13) is
described in Algorithm 2. We perform block coordinate ascent until the duality gap between the primal and
the dual objective is below the required precision. Warm-starting the projection step in both primal and dual
provided a very significant speed-up in our experiments.

Algorithm 2 Projection on doubly stochastic matrices.

Input: A matrix Z ∈ Rn×n+ , a vector z ∈ Rnc
+ , two vectors x, y ∈ Rn, a target precision ε, a maximum

number of iterations N .
1: Set k = 0.
2: while duality gap > ε & k ≤ N do
3: Update dual variables

Z = max{0, x1T + 1yT +DzgT −Π0}
x = 1

n(Π01− (yT1 + 1)1−DzgT1 + Z1)
y = 1

n(ΠT
0 1− (xT1 + 1)1− gzTD1 + ZT1)

z = 1
‖g‖22

max{0, (DTD)−1(DT (Z + Π0)g + δ −DTxgT1−DT1gT y)}

4: Set k = k + 1.
5: end while

Output: A doubly stochastic matrix Π.

5. APPLICATIONS & NUMERICAL EXPERIMENTS

We now study the performance of the relaxations detailed above in some classical applications of se-
riation. Other applications not discussed here include: social networks, sociology, cartography, ecology,
operations research, psychology [Liiv, 2010].

In most of the examples below, we will compare the performance of the spectral solution, that of the
QP relaxation in (7) and the semi-supervised seriation QP in (9). In the semi-supervised experiments,
we randomly sample pairwise orderings either from the true order information (if known), or from noisy
ordering information. We use a simple symmetric Erdös-Rényi model for collecting these samples, so that a
pair of indices (i, j) is included with probability p, with orderings sampled independently. Erdös and Rényi
[1960] show that there is a sharp phase transition in the connectivity of the sampled graphs, with the graphs
being a.s. disconnected when p < (1−ε) logn

n and almost surely connected when p > (1+ε) logn
n for ε > 0

and n large enough. Above that threshold, i.e. when O(n log n) pairwise orders are specified, the graph is
fully connected so the full variable ordering is specified if the ordering information is noiseless. Of course,
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when the samples include errors, some of the sampled pairwise orderings could be inconsistent, so the total
order is not fully specified.

5.1. Archeology. We reorder the rows of the Hodson’s Munsingen dataset (as provided by Hodson [1968]
and manually ordered by Kendall [1971]), to date 59 graves from 70 recovered artifact types (under the
assumption that graves from similar periods contain similar artifacts). The results are reported in Table 1.
We use a fraction of the pairwise orders in Kendall [1971] to solve the semi-supervised version. Note that
the original data contains errors, so Kendall’s ordering cannot be fully consistent. In fact, we will see that
the semi-supervised relaxation actually improves on Kendall’s manual ordering.

In Figure 3 the first plot on the left shows the row ordering on 59 × 70 grave by artifacts matrix given
by Kendall, the middle plot is the Fiedler solution, the plot on the right is the best QP solution from 100
experiments with different Y (based on the combinatorial objective in (2)). The quality of these solutions is
detailed in Table 1.

Kendall [1971] Spectral QP Reg QP Reg + 0.1% QP Reg + 47.5%
Kendall τ 1.00 0.75 0.73±0.22 0.76±0.16 0.97±0.01

Spearman ρ 1.00 0.90 0.88±0.19 0.91±0.16 1.00±0.00
Comb. Obj. 38520 38903 41810±13960 43457±23004 37602±775
# R-constr. 1556 1802 2021±484 2050±747 1545±43

TABLE 1. Performance metrics (median and stdev over 100 runs of the QP relaxation, for
Kendall’s τ , Spearman’s ρ ranking correlations (large values are good), the objective value
in (2), and the number of R-matrix monotonicity constraint violations (small values are
good), comparing Kendall’s original solution with that of the Fiedler vector, the seriation QP
in (7) and the semi-supervised seriation QP in (9) with 0.1% and 47.5% pairwise ordering
constraints specified. Note that the semi-supervised solution actually improves on both
Kendall’s manual solution and on the spectral ordering.

FIGURE 3. The Hodson’s Munsingen dataset: row ordering given by Kendall (left), Fiedler
solution (center), best unsupervised QP solution from 100 experiments with different Y ,
based on combinatorial objective (right).

5.2. Markov Chains. Here, we observe many disordered samples from a Markov chain. The mutual in-
formation matrix of these variables must be decreasing with |i − j| when ordered according to the true
generating Markov chain (this is the “data processing inequality” in [Cover and Thomas, 2012, Th. 2.8.1]),
hence the mutual information matrix of these variables is a pre-R-matrix. We can thus recover the order
of the Markov chain by solving the seriation problem on this matrix. In the following example, we try to
recover the order of a Gaussian Markov chain written Xi+1 = biXi + εi with εi ∼ N(0, σ2i ). The results
are presented in Table 2 on 30 variables. We test performance in a noise free setting where we observe
the randomly ordered model covariance, in a noisy setting with enough samples (6000) to ensure that the
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spectral solution stays in a perturbative regime, and finally using much fewer samples (60) so the spectral
perturbation condition fails. In Figure 4, the first plot on the left shows the true Markov chain order, the
middle plot is the Fiedler solution, the plot on the right is the best QP solution from 100 experiments with
different Y (based on combinatorial objective).

No noise Noise within spectral gap Large noise
True 1.00±0.00 1.00±0.00 1.00±0.00

Spectral 1.00±0.00 0.86±0.14 0.41±0.25
QP Reg 0.50±0.34 0.58±0.31 0.45±0.27

QP + 0.2% 0.65±0.29 0.40±0.26 0.60±0.27
QP + 4.6% 0.71±0.08 0.70±0.07 0.68±0.08

QP + 54.3% 0.98±0.01 0.97±0.01 0.97±0.02

TABLE 2. Kendall’s τ between the true Markov chain ordering, the Fiedler vector, the
seriation QP in (7) and the semi-supervised seriation QP in (9) with varying numbers of
pairwise orders specified. We observe the (randomly ordered) model covariance matrix (no
noise), the sample covariance matrix with enough samples so the error is smaller than half
of the spectral gap, then a sample covariance computed using much fewer samples so the
spectral perturbation condition fails.

FIGURE 4. Markov Chain experiments: true Markov chain order (left), Fiedler solution
(center), best unsupervised QP solution from 100 experiments with different Y , based on
combinatorial objective (right).

5.3. Gene sequencing. In next generation shotgun genome sequencing experiments, DNA strands are
cloned about ten to a hundred times before being decomposed into very small subsequences called “reads”,
each of them fifty to a few hundreds base pairs long. Current machines can only accurately sequence these
small reads, which must then be reordered by “assembly” algorithms, using the overlaps between reads.
These short reads are often produced in pairs, starting from both ends of a longer sequence of known length,
hence a rough estimate of the distance between these “mate pairs” of reads is known, giving additional
structural information on the semi-supervised assembly problem.

Here, we generate artificial sequencing data by (uniformly) sampling reads from chromosome 22 of the
human genome from NCBI, then store k-mer hit versus read in a binary matrixC (a k-mer is a fixed sequence
of k base pairs). If the reads are ordered correctly and have identical length, this matrix is C1P, hence we
solve the C1P problem on the {0, 1}-matrix whose rows correspond to k-mers hits for each read, i.e. the
element (i, j) of the matrix is equal to one if k-mer j is present in read i. The corresponding pre-R matrix
obtained CCT , which measures overlap between reads, is extremely sparse, as it is approximately band-
diagonal with roughly constant degree when reordered correctly, and computing the Fiedler vector can be
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done with complexityO(n log n), as it amounts to computing the second largest eigenvector of λn(L)I−L,
where L is the Laplacian of the matrix. In our experiments, computing the Fiedler vector from 250000 reads
takes a few seconds using MATLAB’s eigs on a standard desktop machine.

In practice, besides sequencing errors (handled relatively well by the high coverage of the reads), there
are often repeats in long genomes. If the repeats are longer than the k-mers, the C1P assumption is violated
and the order given by the Fiedler vector is not reliable anymore. On the other hand, handling the repeats
is possible using the information given by mate pairs, i.e. reads that are known to be separated by a given
number of base pairs in the original genome. This structural knowledge can be incorporated into the re-
laxation (9). While our algorithm for solving (9) only scales up to a few thousands base pairs on a regular
desktop, it can be used to solve the sequencing problem hierarchically, i.e. to refine the spectral solution.

In Figure 5, we show the result of spectral ordering on simulated reads from human chromosome 22. The
full R matrix formed by squaring the reads × kmers matrix is too large to be plotted in MATLAB and we
zoom in on two diagonal block submatrices. In the first submatrix, the reordering is good and the matrix has
very low bandwidth, the corresponding gene segment (called contig) is well reconstructed. In the second the
reordering is less reliable, and the bandwidth is larger, so the reconstructed gene segment contains errors.

FIGURE 5. We plot the reads × reads matrix measuring the number of common k-mers
between read pairs, reordered according to the spectral ordering on two submatrices.

In Figure 6, we show recovered read position versus true read position for the Fiedler vector and the
Fiedler vector followed by semi-supervised seriation, where the QP relaxation is applied to groups of reads
(contigs) assembled by the spectral solution, on the 250 000 reads generated in our experiments. The spectral
solution orders most of these reads correctly, which means that the relaxation is solved on a matrix of dimen-
sion about 100. We see that the number of misplaced reads significantly decreases in the semi-supervised
seriation solution. Looking at the correlation between the true positions and the retrieved positions of the
reads, both Kendall τ and Spearman ρ are equal to one for Fiedler+QP ordering while they are equal to re-
spectively 0.87 and 0.96 for Fiedler ordering alone. A more complete description of the assembly algorithm
is given in the appendix.
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6. APPENDIX

In what follows, we describe in detail the procedure used in the DNA sequencing experiments.

6.1. Procedure for gene sequencing. We first order all the reads using the spectral algorithm. Then, in
order to handle repeats in the DNA sequence, we adopt a divide and conquer approach and reorder smaller
groups of reads partitioned using the spectral order. Finally we use the information given by mate pairs to
reorder the resulting clusters of reads, using the QP relaxation. Outside of spectral computations which take
less than a minute in our experiments, most computations can be naively parallelized. The details of the
procedure are given below.

• Extract uniformly reads of length a few hundreds bp (base pairs) from DNA sequence. In our
experiments, we artificially extract reads of length 200 bp from the true sequence of a million bp of
the human chromosome 22. We perform a high coverage (each bp is contained in approx. 50 reads)
uniform sampling. To replicate the setting of real sequencing data, we extract pairs of reads, with a
distance of 5000 bp between each “mate” pairs.
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• Extract all possible k-mers from reads, i.e. for each read, record all subsequence of size k. We use
k=100 in our experiments. The size of k-mers may be tuned to deal with noise in sequencing data
(use small k) or repeats (use large k).
• Solve the C1P problem on the {0, 1}-matrix whose rows correspond to k-mers hits for each read,

i.e. the element (i, j) of the matrix is equal to one if k-mer j is included in read i. Note that
solving this C1P problems corresponds to reordering the similarity matrix between reads whose
element (r, s) is the number of shared k-mers between reads r and s. In the presence of noise in
sequencing data, this similarity matrix can be made more robust by recomputing for instance an edit
distance between reads sharing k-mers. Moreover, if there are no repeated k-mers in the original
sequence, i.e. a k-mer appears in two reads only if they overlap in the original sequence, then the
C1P problem is solved exactly by the spectral relaxation and the original DNA sequence is retrieved
by concatenating the overlapping reordered reads. Unfortunately, for large sequences, repeats are
frequent and the spectral solution “mixes” together different areas of the original sequence. We deal
with repeats in what follows.
• We extract contigs from the reordered reads: extract with high coverage (e.g. 10) sequences of

a few thousands reads from the reordered sequence of reads (250 000 reads in our experiments).
Although there were repeats in the whole sequence, a good proportion of the contigs do not contain
reads with repeats. By reordering each contig (using the spectral relaxation) and looking at the
corresponding similarity (R-like) matrix, we can discriminate between “good” contigs (with no
repeats and therefore a perfectly reordered similarity matrix which is an R-matrix) and “bad” contigs
(with repeats and a badly reordered similarity matrix).
• Reorder the “good” contigs from the previous step using the spectral relaxation and agglomerate

overlapping contigs. The aggregation can be done using again the spectral algorithm on the sub
matrix of the original similarity matrix corresponding to the two clusters of reads. Now there should
be only a few (long) contigs left (usually less than a few hundreds in our experiments).
• Use the mate pairs to refine the order of the contigs with the QP relaxation to solve the semi-

supervised seriation problem. Gaps are filled by incorporating the reads from the “bad” contigs
(contigs with repeats).

Overall, the spectral preprocessing usually shrinks the ordering problem down to dimension n ∼ 100,
which is then solvable using the convex relaxations detailed in Section 3.
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