Stochastic and randomized convex optimization

(Incomplete version without transitions)

Adrien Taylor

INRIA & Ecole Normale Supérieure

Program for today

<

Convex stochastic optimization,

<

batch gradient methods,

&

stochastic gradient descent,

< finite-sum algorithms,

<

(randomized) coordinate methods,

. on a few running examples.

Which of the following ML algorithms do you use on a regular basis?

Decision Trees, Random Forests

Linear or Logistic Regression

Gradient Boosting Machines

Bayesian Approaches
Autoencoder Networks
Evolutionary Approaches
Transformer Networks
Dense Neural Networks (MLPs, etc)
RNNs
CNNs GANs

See Kaggle survey 2022.

https://www.kaggle.com/code/dhirajkumar612/kaggle-survey-2022-data-analysis

Table of contents

1. Stochastic optimization problems
2. Plain gradient methods

3. Stochastic gradient methods

4. Finite sums

5. Popular stochastic algorithms

6. Randomized coordinate descent

7. Conclusion

Stochastic optimization problems

Table of contents

1. Stochastic optimization problems
2. Plain gradient methods

3. Stochastic gradient methods

4. Finite sums

5. Popular stochastic algorithms

6. Randomized coordinate descent

7. Conclusion

Motivation: supervised learning

¢ Input measurement x € X,

© output measurement y €),

o (x,y) ~ D with D unknown,

o training data: D, = {(x1,%1),---,(Xn,¥n)} (i.i.d. ~ D).

\.

Often:

- x € R4 and y € {—1,1} (classification),
- or x € R? and y € R (regression).

We search a predictor function p: X —).

Motivation: supervised learning

i 1 2 3 4 n
Xi
Yi 1 1 -1 1 -1

Target: find p: X — Y

Motivation: supervised learning

Often:

- x € R4 and y € {—1,1} (classification),
- or x € R? and y € R (regression).

We search a predictor p: X —). How to construct good predictors?

> . 8 -
s ..'.' ':'
T zy
Regression Classification

Motivation: supervised learning

How to construct a good predictor?
o Pick a loss function: ¢(p(x),y) to measure quality of p(x) = y.
o Examples:

— 0—1loss: £(p(x),y) =1y 20,
— quadratic loss: ¢(p(x),y) = |p(x) — y|*.

Risk function

¢ Risk measures the average loss over D

R(p) = E(x,py~p [((p(x), y)]-

o Examples:

— 0—1risk: R(p) =P(y # p(x)).
— Quadratic risk: R(p) =E [ly — p(x)|?].

Motivation: supervised learning

Learning a predictor via decision variable

minei%]dize IE(x,y)ND[Z(p (X)vy)]
Here: D is distribution of datapoints £ = (x,y) € R, and linear p,(x) = (¢, x). Examples:

o linear regression: £(p.(x),y) = ((/,x) — y)?,

exp(y(0,x))
I+exp(y(0,x))"

© support vector machines: ¢(py(x),y) = max{0,1 — y (0, x)}.

o logistic regression: ¢(py(x),y) =

For all of those beyond pure linear models: see kernel versions.

Motivation: supervised learning

Name

E(ymy) Graph E(val)

0—1 loss

quadratic loss

logistic loss

hinge loss

Uyp,y) = (¥p — Y)2

_J 0 ify,=y

Uyp,y) = log (1 + exp(—ypy))

E(ymy) = max{O,l _}/p)/} A\

Stochastic optimization framework

Learning a predictor via decision variable

minimize B y)p[¢(p:(x), y)] 2 Eeup [F(0;)]

Examples: D is distribution of datapoints & = (x,y) € Rt

Often approached via empirical risk minimization:

I L1 R
mlnelrﬂ‘gdlze ;lz:;g(< aXi>v.yi) = ;’z:;f;(): F()

10

Classification via logistic regression

We have D, = {(x1,y:),i =1,...,n}, with y; € {-1,1}.
Objective: find

such that y;(0,x;) = 0forall i=1,...,n.

0z

11

Classification via logistic regression

< Pick sigmoid function
g(z) = # /—

o interpret: o({/,x)) = P{y = 1|x} and o(—(/, x)) = P{y = —1|x}
¢ with maximum likelihood / cross-entropy loss, yields logistic regression

1 n
inimi — | 1 —Yi\Vy Xi .
mmenﬂwgdlzenz og (14 exp (—yi(?,x)))

i=1
o Convex! (How to show that?)

12

Table of contents

1. Stochastic optimization problems
2. Plain gradient methods

3. Stochastic gradient methods

4. Finite sums

5. Popular stochastic algorithms

6. Randomized coordinate descent

7. Conclusion

13

Plain gradient methods

Stochastic optimization

Empirical risk minimization as
1 n
inimi F(9) & = E f(0) 3.
mlgeI%?Jze{ () n 4 ()}

Starting assumptions (we will make variations around this):
o each fi(-) has a Lipschitz gradient (constant L),

o each fi(-) is strongly convex (constant).

When f; twice continuously differentiable: uly < V2£(6) < Ly for all € dom f.

14

About the assumptions

A differentiable function f : RY — R is p-strongly convex and L-smooth iff Vx,y € RY:

f

(1) (Convexity) f(x) = f(y) + (VF(y),x — y),
(1b) (p-strong convexity) f(x) > f(y) + (VF(y),x —y) + 5llx -y
(2) (L-smoothness) f(x) < f(y) + (VFf(y),x — y) + 5|lx — y|3,

(1&2) f(x) = f(y)+(VF(y), x=y)+ o0 [VE) =V F W3+ a5t Ix—y — 1 (VF(x) = V)13,

(1&2b) (VF(x) = VF(y),x —y) = 2 IVF(x) = VI3 + &5 I1x = v o

2
21

About the assumptions

First-order optimization: condition number k = ﬁ > 1 discriminates “easy” vs. “hard"”.

© Smoothness L given by curvature in direction with fastest variation,
o Strong convexity given by curvature in direction with slowest variation.
Insights from level curves:

very well conditioned problem (k = 1):

~

more poorly conditioned one (k> 1):

o Regularized least squares (Ridge regression): £(0) = ({6, x) — yi)? + 503
Hessian: V2£;(6) = 2x;x.] + Aly. Hence: L = 212?<><n||x,-||§ +Xand g =\
o Regularized logistic regression: f;(6) = log(1 + exp(—y;(0,x))) + 50||3, we have:
V() = Treatlimn + A0, V() = %“T + Ay
Therefore, for any z with ||z| = 1: (hint: use ﬁ <1
z"V2£(0)z = zTx,-x,-Tz7(1;”25‘5{;?(;2;))2 + Mgllzl3 < 27 (3xix” + My) z

_1 112 _
Hence L = 412?<><n\|x,||2 +Xand p= A\

17

Plain gradient descent

Algorithm: Plain gradient descent
Set 0° c R?, a > 0.
for t=0,1,... do

| 6 =0t — S 3L, VA(OY)
end

In this context, for a = %:

0 _ pg*||2
F(6") — F(6*) < m|n{%’(1_%)t}M.

2
16° = 60713 < (1 2)"[16° - 6% 3.

K

18

Plain GD

Gradient descent (o = 1):!

Cost function contours

1.00
12
0.75
1.1
0.50
025 1.0
2 5
£ 000 0973
2 H
_025 08
~050 07
-075 06
-1.00 05
10 -05 0.0 05 10 15 2.0

Weight wl

Logistic regression problem: “fourclass” dataset from LIBSVM (n, d) = (862, 2).

19

Classical GD convergence analysis

General idea: studying a single iteration is simpler. Need recursable bounds.

One can prove V1 < V¢t for all 6¢, 911 = 9t — %VF(Ht) and L-smooth convex function, with
VE2 V(AL 0) £ A(F(60F) — F(07)) + 51l0° — 0713

and App1 < A+ 1.

Why is this nice?
A (F(0) — F(0") < Vi< Vil <l < VY,

so F(0%) — F(6*) < X—to = %Af*”% when choosing Ag = 0.

20

GD: recall convergence analysis — a simple case

For GD, a simple bound to prove:

1651 — %13 = 1167 — 07[13 — 2a(V F(67), 6 — 6%) + *|[VF(6°)3
Inequality (1&2b)
< (1) 16" =013 +a (o - 225) IVFE)IB

ifogagﬁ

< (1= ap)?[o° - 073

21

Plain accelerated gradient descent

Algorithm: Plain acceleration for ERM

Set 99 = #° € RY, a, {B;} > 0. —r

fort=0,1,..., T —1do ' =

0t =0t — 5 3L, V(O =

grtl — pt+1 + ﬂt(9t+1 _ Ht) E—— _

end

In this context, for appropriate choices of («, 3): (for some C > 0)

t
F(6") — F(6*) < min {32, (1 — \/E) } L||6° — 6*|3.
t
o -5 < € (1= /2) 160 - 13

using similar proof patterns.?

2See, e.g., d'Aspremont, Scieur, T (2021). “Acceleration methods.”

Classical AGD convergence analysis

General idea: studying a single iteration is simpler. Need recursable bounds.
One can prove Vil < V1 with

VEL V(AL 0°) £ A(F(09) — F(6)) + §116° — 0713
and A; =~ t? when Ay = 0.

In short: all coefficient choices made for greedily making A; large.

23

GD vs. AGD

Cost function contours Cost function contours
1.00 1.00
0.75 0.754
0.50 4 0.50 4
0.254 0.254
o~ o~
H H
£ 000 £ 000
]]
= =
~0.254 ~0.254
-0.50 * -0.50 *
~0.75 -0.754
-1.00 T T T T T -1.00 T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Weight wl Weight wl

Vanilla GD Accelerated GD

24

Plain gradients for ERM — takeaways

Were we exploiting what we can?
¢ Momentum? — accelerated convergence rates.
< Adaptative step-size selection? — backtracking line-search, online estimation of L,...

But when far away from solution: single V£;(6*) is already informative!
— useful to evaluate the full batch?

Table of contents

1. Stochastic optimization problems
2. Plain gradient methods

3. Stochastic gradient methods

4. Finite sums

5. Popular stochastic algorithms

6. Randomized coordinate descent

7. Conclusion

26

Stochastic gradient methods

Stochastic gradient descent (SGD)

migei%jdize {F(H) = % Z 1‘;(9)} .

Algorithm: SGD, constant step-size

Set °c R, o >0
fort=0,1,..., T —1do
sample iy ~ U[[1, n]]

0t = 0t — aVF, (0Y)
end

l‘ very simple to implement!

!‘ very cheap iteration.

27

Stochastic gradient descent (SGD)

Observations:
o V£(0) (with i ~ U[[1, n]]) is unbiased estimate of gradient (more later):
Ei[V£i(0)] = VF(0).

o What if gradients V£;(0)'s are very different?
o What if gradients Vf;(0)'s are very similar?

— variance of gradient estimation drives behavior of SGD!

28

Stochastic gradient descent: empirical behavior

Short step sizes®

a = .025

— very slow to converge & relatively accurate.

3Logistic regression problem: “fourclass” dataset from LIBSVM (n, d) = (862, 2).
29

Stochastic gradient descent: empirical behavior

Larger step sizes

— faster to reach “stationnary behavior” (forget about initial conditions) & not accurate.

— we want: initially large «, then short « on the long run.

30

Stochastic gradient descent: empirical behavior

Morally, two extreme regimes:
o “error due to initial conditions” dominates — stochastic gradients are very informative
o “error due to noise” dominates — need to accomodate noise. 31

Mitigating noise via step-size schedulers

Naive scheduler:*

Algorithm: SGD, naive step-size scheduler

Set e RY, a® >0, c€(0,1), KeN
fort=0,1,..., T —1do
sample i ~ UI[L, n]] B i it vaaeai

9t+1 = 6t — a V£, (6Y) .

if mod(t+ 1,K) =0 then ' o~
| a=co

end S

i

end

4Experiment with the “mushroom” dataset from LIBSVM (n, d) = (8124, 112).
32

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html

Mitigating noise via minibatches

Algorithm: minibatch-SGD, constant step-size

Set 0° c R4, o >0, b N.

fort=0,1,..., T —1do
sample i, ... i ~ U1, n)], 7. = {iV,...,i®}
0 = 6 — & Sy, V()

end
b | name | gradient estimate | computational cost
1 (pure) SGD V£, (0%) with i € U[[1, n]] O(d)
1<b<n minibatch SGD Z,-GL V604, |Z| = b O(bd)
b=n full batch/plain GD S, VE(6Y) O(nd)

o Commonly: pick b=2? (a =5,6,...) to benefit from parallelization on GPU/CPU.

¢ For theory, focus on b= 1. 33

Stochastic gradient descent — unbiasedness

If batch chosen uniformly at random & independently from past = unbiased gradient estimate.

o pure SGD: pick iy € U][1, n]] independently from past iterates then
E V£, (0 Z V£(6t) £ VF(6Y).

© Minibatch SGD: pick Z; uniformly at random in {1,..., n} (with or without resampling) &
independently from past iterates then

Zw

IGI:

unbiased but noisy estimations. Effect of b on variance?

34

Stochastic gradient descent — bounds

L Al
minimize {F(&) = Z f,-(@)} .

i=1
Classical assumptions (variations on this theme in what follows)
o each f;(:) is L-smooth and p-strongly convex,

o bounded variance at 6*: E; [||[VF(0*) — V£(6*)[13] =E; [|[VA(6)|3] < o2

One can show: (with o = 1/L for simplicity)

B [0 — 0130 < (1 -)" 0 — 0% 13 + %%

35

Stochastic gradient descent — bounds

Proof. reformulate the inequality (due to smoothness and strong convexity), namely (1&2b):

o>E{—wawﬂ—vmwxw—ww+%waww—vmwvﬁ

+3 [6° — 6% — L(VF (") — Vﬁt(e*))\li}

/L
multiplied by 2a(1 — ap) > 0 (with 0 < a < 1/L) as

Ei [0 — 0713 <(1 — ap)?ll6" — 0" |3 + 220 e, [V £, (67) 3]

— 2Coolbi g, (0" — %) + VE(07) + 25245 VE(07) 3

L—p a(L+p)

<(1L—ap)’)|6" - 073 + 2o
(using unbiasedness: E;[(Vf;,(0%),0%)] = E;[(V£,(07),0%)] = 0).

: : 1
Desired result by evaluating a < ;.

36

Stochastic gradient descent — bounds

By chaining inequalities, we arrive to (t > 0)

t—1

E; [0f — 0"[36°] < (1=) 6° — 0" 13+ 2 > (1 - §)”
i=0
O G A (R TRy

N

2t 2
(1—=5)7 1% =03+ 3
Hence, for SGD with constant o« = % reaches

E; [[10F — 07 [3]0°) < (1 — &) [16° — 07|13 + 22

— convergence to a ball around 6*.

37

Stochastic gradient descent — bounds & takeaways

Theory and experience agree on:
¢ small step-size: slowly forget initial condition; convergence to a small ball around solution.

o Large step-size: better forget initial conditions; convergence to a larger ball.

Can we do better?
< averaging,
© decreasing step-sizes (step-size schedules),

© decrease variance (minibatching).

Here: let's simplify the assumptions for this study.

38

SGD with bounded gradients

minimize {F(G) £ % Z ff(@)} .

6eRrd
Simplifying assumptions here:
© each fi(+) is convex

© bounded stochastic gradients E [|[V£(0)3] < M>.

(one can get refined analyses using smoothness/strong convexity).

39

SGD: averaging

a = .025

40

averaging

t = 1000

Cost functon contours

t=10

Costfunction contours

41

SGD with bounded gradients

Suppose [|6° — 0% |2 < R for some 6° € R?, and E,[||V£(6")||3] < M?, then

_ R2 M2 T 2
EIF(I7)] - F(0) < S oo
2 Zt:O 0%

I

with 87 = T%rl tT:O 0 (Polyak-Ruppert averaging).

¢ Proof essentially similar to that of the subgradient method.

© Rates are similar (but in expectation).

42

SGD with bounded gradients

Proof. Define r; = ||0" — 0*]|2, we have:
ri = 1t = 20(V£,(0°),0° = 0%) + af | V£, (09)]3.
Taking expectations and using convexity and indepence of i; and 6*

< E[rf] - 204E [(V£,(6°), 6" — >} + aZE[[| V£, (6)]3]
< E[rf] - 20:E [(E [V£,(6") | 0'] ,0° — 0] + aiM®
< E[rf] — 20:(E[F(6°)] — F(67)) + ot M*.

E["t2+1]

(with abusive drops of conditional expectations, and using a; > 0).

Summing up and using convexity of F(-), we reach the desired
T T
o+ MY ai > a(B[F(6" <Z at> (E[F(67)] — F(6Y)).
t=0 t=0

43

SGD with bounded gradients
M2, then

R for some 6° € R?, and E;[||V£(6?)3] <

R2+M2Zt Oat

Suppose [|0° — 0% ||, <

E[F(97)] - F(") <
2 Zt oat
with 7 = % Z;O 6" (Polyak-Ruppert averaging).
Examples:
. " M||0°—0*||24+(T+1)a?M _ M||6°—06*||2
o Pick ar = 5: F F(OT) - F(0*) < H 2(”T24-rlr1()ojr) = 2‘1T+1)(J2 + %

0 *
o Pick a; = ‘L\Z\/%‘lz (constant step-size depending on horizon T) then
M||6° — 6|2

F(OT) - F(0") < U

SGD with bounded gradients

Suppose [|#° — 6*[]2 < R for some 6° € R9, and E;[||V£(0*)]|3] < M?, then

R? + M? ZtT:O a?
2 ZZ—:O (05

with 7 = TLH Z;O 0t (Polyak-Ruppert averaging).

E[F(OT)] - F(0") <

b

¢ Square summable but not summable, e.g.: a; = m

|6° — 0"]3 + a(1 + a)
2alog(T +2) ’

¢ Non-summable diminishing, example a; = %m then

E[F(AT)] — F(8*) < !

- . 109 — 6|5 + (1 + log(T + 2))
E[F(OT)] — F(6*) < M T3 .

45

Summing up: rough computational estimates for smooth convex minimization

Computational cost to reach F(0) — F(6*) < €?

Method | Cost per iteration | 4 iterations | Computational cost

GD O(nd) 0(%) O ()
AGD 0(nd) o(ég o(%
SGD 0(d) O (%) 0(2)

— SGD: total complexity does not depend on n.
— For any € > 0, total complexity of SGD better than that of (A)GD if n large enough.

What target accuracy? Total computational cost:
e | e | AeD | seD
1/y/n | O(n/2d) | O(n®*d) | O(nd)
1/n O(n?d) | O(n*?d) | O(n?d)
1/n? | O(n%d) O(n*d) | O(n*d)

o Low/moderate accuracy wrt. n: SGD better.

© Moderate/high accuracy wrt. n: (A)GD better.

o ML: typically low/moderate accuracy.

46

GD vs. SGD

stochastic

deterministic

log(excess cost)

v

time

Example: smooth convex optimization:
o from low to moderate accuracy requirements: SGD better.

o from moderate to high accuracy requirements: (A)GD better.

47

Momentum & stochasticity

e B

Algorithm: Stochastic accelerated gradient

Set 0° = ° € RY, {a.}, {B:} > 0.
fort=0,1,..., T —1do

sample iy ~ U[[1, n]]

gt+l = ét — Oétvﬁt(ét)

§t+1 _ 0t+1 + ﬂt(0t+1 _ ot)
end

¢ Classical choices: momentum — critical noise accumulation!

o Can be mitigated via appropriate scheduling (but essentially no rate improvement).5:°

5Devolder (2011). “Stochastic first order methods in smooth convex optimization.”
6Aybat, Fallah, Gurbuzbalaban, Ozdaglar (2019). “A universally optimal multistage accelerated stochastic

gradient method.”
48

Table of contents

1. Stochastic optimization problems
2. Plain gradient methods

3. Stochastic gradient methods

4. Finite sums

5. Popular stochastic algorithms

6. Randomized coordinate descent

7. Conclusion

49

Finite sums

Finite sum optimization

1 n
inimize { F(0) 2 = 3" £(6) V.
mlgelflg;ze{ OEEDY ()}
So far:

o full batch (A)GD: accurate (but expensive) estimate of VF(6%)

useless accuracy when far from solution,
convergence to a solution.

© SGD: cheap (but noisy) estimate of VF (")

when far from solution: V£;(8") essentially points the right direction
when close to solution: direction is not good.

Can we get best of both world? — “variance reduction” techniques!

50

Finite sum optimization

1 n
inimi F(o) = = E f(0) ¢ -
mlgeI%?Jze{ () n 4 ()}
Running assumptions:

o each f;(-) has a Lipschitz gradient (constant L),

© each f;(-) is strongly convex (constant p).

Most methods below apply more generally to (but not discussed further):
o each f;(-) has a Lipschitz gradient (constant L),

o F(-) is strongly convex (constant p).

51

Exploiting finite sums

Instead of using V£, (6*) =~ VF(6"):
© build running estimate gt =~ VF(6*),

o update estimate using new information V£, (0%).

Target/hopes: unbiased gt ~ VF(6¢) with |gt||3 — 0 (as 6t — 6%).

52

Exploiting finite sums

Recall gradient descent §'™! = 6 — aVF(#*). Equivalently:

2
0141 = arguin { F@RTFENO=G] + 2 0 - o'}

HeRd

essentially: regularized linear approximation. What about the stochastic setting? Proposal:

ef+1—argmm{ (Z (89) + (V(80),0 - ¢f>)+§||e—ef||§}.

0cRd

How to update ¢}'s?

53

SAG: Stochastic Average Gradient’

Algorithm: SAG
Set 0° € R, a > 0, ¢¥ = 0° and g; = V£(0°) for all i € [[L, n]].
fort=0,1,..., 7T —1do

sample iy ~ U[[1, n]]
ot = ¢t | forall i # iy
of =0° (save evaluated point for Vf;,)
g, = V£, (0Y) (upgrade gradient of f;,)
g =iy" g (estimate of VF(6?))
9t+1 — et _ agt
end
5. simple to implement. @ stores d x n matrix lg1, &2, -5 &n]
more efficient computation of gt? do we really need to store matrix for LR & LS?

54

7Schmidt, Le Roux, Bach, (2013). “Minimizing finite sums with the stochastic average gradient.”

SAG: observations

Observations:

o Gradient estimate?

o Unbiased?
Eilg'] 0%, =
_>

¢ Can we do something about storage? — for linear models, yes (later).

55

Stochastic average gradient (SAG)

Let f; (i=1,...,n) be L-smooth and p-strongly convex, and let « = 16%, we have

1\ t ot
N FO)< (1—mind 2 = < —min{
E[F(0")] — F(0*) < (1 mm{l6L’8n}> Co\exp(mm{16L’8n}) Co,

with Go = 3 (F(6%) — F(67) + %(16° — 0"|13 + 7).

.

Complexity? E[F(0)] — F(6*) < e in t at most

exp (— min {%, S—tn}) GLeat> max{lGﬁ,Sn} log <i0>

Result actually not easy to prove. Proof relies on computer-aided verification steps.

56

SAGA: Stochastic Average Gradient “Amélioré”?

Algorithm: SAGA
Set 0° € R, a > 0, ¢¥ = 0° and g; = V£(0°) for all i € [[L, n]].
fort=0,1,..., 7T —1do

sample iy ~ U[[1, n]]

ot = ¢t | forall i # iy

ot =0 (save evaluated point for Vf;,)
gt =Vr(0")— g, + 13" g (estimate of VF(6"))

gi, = V£, (6%) (upgrade gradient of f;)

9t+1 — et _ agt

end

Differences with SAG?

8Defazio, Bach, Lacoste-Julien (2014). “SAGA: A fast incremental gradient method with support for
non-strongly convex composite objectives.”

57

SAGA: observations

Observations:

¢ Gradient estimate?

1 n
t o ot — UL (O — o L .
V) 8 = VA0 g Y

& Unbiased?
Eilg'| 0", =

58

SAGA: observations

t =30 t =100 t =200

Cost function contours Cost function contours

Cost function contours

Weight w2
Weight w2
Weight w2

59

SAGA: Stochastic Average Gradient “Amélioré”

Let f; (i=1,...,n) be L-smooth and pu-strongly convex, and let & = =-, we have

3L
. 1 op)
E[Hﬂt—ﬁ ||%] < <1_mm{4n’3L}) Go

with Co = [||60° — 6*||3 + 22 [F (6°) — (VF (6*),6° — 6*) — F (6*)]].

\. J

Similar conclusions as for SAG: we reach ||§ — 0*||3 < ¢ in at most

O (max {x, n}log (1)).

Analysis of SAGA is considerably simpler than that of SAG.

60

SAGA: Stochastic Average Gradient “Amélioré”

Proof overview. Show that (Lyapunov analysis): We have

E[vi+] < (1—mind 2, 2 LY v
4n" 3L

with
n 1 : * * * *
VEE V(0 {f}1,) £ = DD [(60) = £(07) = (VA (87) . 6f —)] + c|o* — o],
i=1
and ¢ = m

Details: see arXiv.

61

https://arxiv.org/pdf/1407.0202#section.5

SAGA for linear models

If learning problem can be written as

1o A
bl 4 hi 07 ; Zlle 2,
mlgé%l}ze - ; (0, xi)) + 2|| 12

we have: V£(0) = hi((0,x;))x; + \0. Hence, for each data point store only 5; = h.((0*, x;)).

62

SAGA for /,-regularized linear models

Algorithm: SAGA for linear models
Set e RY, A >0, a >0, B = h((6° x;)) for all i € [[L, n]].
fort=0,1,..., T —1do
sample iy ~ U[[1, n]]
g =
Bi, =
9t+1 —
end

5. No storage issue!

Storage

Stochastic
gradient

Gradient esti-
mate?

63

Stochastic variance reduced method gradient (SVRG)®

Algorithm: SVRG

Set° e RY, o >0, me N.
fors=0,1,..., T do
G* = % Z?=1 V£ (6°) differences

0 _ s
0" =0 l‘ no need to store d X n matrix

fort:O,l,....,m—ldo g1, &2 - &0l.
sample iy ~ U[[1, n]]
gt = V£, (0°) — V£, (%) + G° '@ need to tune m (inner loop).
gt+l — gt _ agt

end

sample ji ~ U[[L, m]]

gs+1 — gis

end

J

9 Johnson, Zhang (2013). “Accelerating stochastic gradient descent using predictive variance reduction.” 64

SVRG: observations

o Gradient estimate?

- 1< -
F(0F) ~ g = V£, (07) — V£, (05) + = Y V().
VF0) ~g Vi, (0Y) V,t(9)+ni:1V,(9)

o Unbiasedness?
IE,'[|:gt | 0t755:| =

65

Stochastic vs. variance reduction vs. full batch methods'®

Training objective - n = 1000 Expected risk -n = 1000
0.70
— sGD
. — oD
065 — saGA
o 0.60
z -
! ©
z 3 055
z &
5 050
g
045
0.40
0 0 20 30 40 50
effective passes effective passes
Training objective - n = 10000 Expected risk - n = 10000
0.70
— sGb
— oD
065 — saca
kS
& -
! Y
B]
z &
g
0.45
0.40
0 10 20 30 40 50
effective passes effective passes

10 . - . I "
Bach (2024). “Learning theory from first principles. 66

Exploiting finite sums — momentum

Recall template for accelerated gradient descent (iterates {(6, ¢*, A*)}¢=0.1,...

¢t =(1—71) 0" + A"
t
- :ai%ﬂi?jn{z [(Aiz = A) (F(6) + (VF(¢),0 -)] + §||A—¢f||§}
i=0
0 = (1—7) 0" + F AT
.. similarly: based on regularized (weighted) linear approximations of F(-)

(with growing sequence {A;}¢=0,1,... and some {(7k, 7x)}t=0,1,... for convex combinations).

67

Momentum versions

A few momentum variations exist. Among the simplest ones:!!

Algorithm: SAGA with Sampled Negative Momentum
Set ° € RY, o, 7 > 0, ¢? = VF£(6°) for all i € [[1, n]].
fort=0,1,..., T —1do

sample iy ~ U[[1, n]]

0t =70t + (1 — 7)ot differences

g = V'(if(gt) - Vfi(¢;) + % i1 VEi(95) # gradient evaluations
g+l = gt — agt

sample j; ~ U[[1, n]]

qi)jfl = 70" + (1 - 7)¢},
end

" Zhou et al. (2019). “Direct acceleration of SAGA using sampled negative momentum.”

68

Takeaways from variance reduction

¢ Finite-sums methods use only one stochastic gradient per iteration and converge linearly

on strongly convex functions.

¢ Choice of fixed (nondecreasing) step-size possible.

o SAGA only needs to know the smoothness parameter, but requires storing n past

stochastic gradients in general (but not for linear classifier).

o SVRG only has O(d) storage in general, but requires full gradient computations every so

often. Has an extra “number of inner iterations” parameter.

multiclass support:

solver penalty

“The choice of the algorithm depends on the penalty chosen and on (multinomial)

multinomial multiclass

“Ibigs’ 2, None

e Learning in Pyth

CCEIAITe “iblinear e
Geting Started ~ Release Highlighs for 1.5 P— p—
‘newton-cholesky’ 12, None

‘sag 2., None

SAG/SAGA in scikit-learn —

‘saga ‘elasticnet’, 11", 12/, None

69

https://scikit-learn.org/1.5/modules/generated/sklearn.linear_model.LogisticRegression.html

Summing up: rough computational cost estimates

Method | # iterations | # gradient queries
GD O (rlog (1)) O (nrlog (1))
AGD 0 (vrlog (1)) O (ny/klog (1))
SAG/SAGA/SVRG O (max{n, x} log (1)) 0 (max{n, s} log (1))

Katyushia'?/MiG!3/SSNM*/Pt-SAGA™® | O (max{n, /nr}log (1)) | O (max{n,/nx}log (%))

So: finite-sum methods benefit from momentum when n < k. That is:
o max{n,kx} = k — computational complexities of SAG/SAGA/SVRG is O (rlog (1)).
o max{n,/nk} = y/nk — computational complexities of momentum variants is

0 (virlog (1)) < O (xlog ().

2Allen-Zhu (2017). “Katyusha: The first direct acceleration of stochastic gradient methods.”
13Zhou, Shang, Cheng (2018). “A simple stochastic variance reduced algorithm with fast convergence rates.”
14Zhou et al. (2019). “Direct acceleration of SAGA using sampled negative momentum.”

5Defazio (2016). “A simple practical accelerated method for finite sums.”
70

Stochastic vs. variance reduction vs. full batch methods

Gradient descent (GD)

Stochastic gradient descent (SGD)

log(excess cost)

Variance reduction

>

Running time

To experiment with those:

© SAG/SAGA ©) Point-SAGA €) Boosted variants

71

https://github.com/fbach2000/Learning_Theory_from_First_Principles/blob/main/python/5_optimization.ipynb
https://github.com/adefazio/point-saga
https://github.com/jnhujnhu/boosting_by_shifting_objective

Table of contents

1. Stochastic optimization problems
2. Plain gradient methods

3. Stochastic gradient methods

4. Finite sums

5. Popular stochastic algorithms

6. Randomized coordinate descent

7. Conclusion

72

Popular stochastic algorithms

Practical improvements

Practical improvements: Algorithms

¢ adapt to observations,
¢ adapt componentwise,
© momentum,

o different step-size schedules.

Generally, either

© no existing analysis,

o or extremely technical.

Optimizers in Pytorch —

Implements Adadelta algorithm.

Implements Adafactor algorithm.

Implements Adagrad algorithm.

Implements Adam algorithm.

Implements AdamW algorithm.

SparseAdam implements a masked version of the Adam
algorithm suitable for sparse gradients.

Implements Adamax algorithm (a variant of Adam based on
infinity norm).

Implements Averaged Stochastic Gradient Descent.

73

https://pytorch.org/docs/stable/optim.html

d16,17

Adagra

. Ad d
Adagrad® (update all components j): agra

CLASS torch.optim.Adagrad (parans, 12=6. 01, 1r_decay=6, weight_decay=0,

t j— . t— 1) initial_accumulator_value=0, eps=1e-10, foreach=None, +, maximize=False,
g - vf;t (9 differentiable=False, fused=None) [SOURCE]
2)
t t—1 t Implements Adagrad algorithm.
Viny = V. -
O=v) T (%))
t t—1 o t input : 7 (Ir), 6y (params), f(6) (objective), A (weight decay),
90) = 9(1) - —VF—F g() 7 (initial accumulator value), 7 (Ir decay)
Vv E+V(j) initialize : state_sum) « T
For certain parameter choices:!’ fort=1to...do
9+ Vo fi(0i1)

Fey/+E-1)m)
E[IVF@)B) =0 (&)
stat;,sm;, P sttalte,sum(149

for smooth objectives.

0, 0,17

Adagrad in Pytorch — return 6

%Duchi, Hazan, Singer (2011). “Adaptive subgradient methods for online learning and stochastic optimization.”
17Défossez, Bottou, Bach, Usunier (2020). “A simple convergence proof of Adam and Adagrad.”

74

https://pytorch.org/docs/stable/generated/torch.optim.Adagrad.html

Adam®® (update all components j):
gt _ Vﬁt (9t71>
m' = pim* 4 (1 - B1)g*
2
vy = Aoy + (1= 22 (s
t _ pt—1 [t
b0 =04~ Jerg &0

For certain parameter choices:'®

E[IVFE)I3) = 0 (%)

for smooth objectives.

Adam in Pytorch —

Adam

CLASS torch.optim.A

(pazans, 17=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=6,

reach=None, maxinize=False, capturable=False, differentiable=False,

€

jone) [SOURC

Implements Adam algorithm.

input : v (Ir), By, B, (betas), 6, (params), f(6) (objective)

X (weight decay), amsgrad, mazimize

initialize : mo < 0 (first moment), vo < 0 (second moment), "

fort=1to ... do

if mazimize :

90— —Vafi(0i-1)
else

9 Vofi(6,1)
ifA£0

G e+ A0y
me e fimes + (1- i)
v Bvis + (1— Bo)g?

0, 6,y —ymy/ (VT +€)

return 0,

8Kingma, Ba (2014). “Adam: A method for stochastic optimization.”
19Défossez, Bottou, Bach, Usunier (2020). “A simple convergence proof of Adam and Adagrad.”

75

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

Randomized coordinate descent

(One possible) motivation: back to supervised learning

A
mlnlmlzeth 0, xi)) EWH%

0cRd

What did we do with stochastic methods?
— update parameter estimation, one sample at a time.

— Other ways to do that? One possibility: artificially augmented problem:

minimize — Z hi(Bi) + f||9||§ stt. Bi=(0,x;) fori=1,...,n
0erR?
Bi,..Ba€R =1
Introduce dual variables wy, . ..,w,; Lagrangian dual is:

— Use coordinate-based methods on dual.2®

20Shalev-Shwartz, Zhang (2013). “Stochastic dual coordinate ascent methods for regularized loss minimization.”

76

Randomized block-coordinate methods

minimize D(w)
weRd

where f is L-smooth and convex. Decompose decision space into n blocks:

w=Y Uw with [UUy...U,] =1y
i=1

Algorithm: RBCD update rule corresponds to
0 d
Set w’ € R?, a > 0. o if i # iy U’_wt+1:int
fort=0,1,..., T —1do 1t ;
sample iy ~ U[[1, n]] o if i= iy wiy = WG,y — oV D(w).
wit! = wt — aU;, VD(w?) Example: what {U;}?_; corresponds to single
end coordinate decomposition?

7

Randomized block-coordinate methods: convergence

Let w! € RY, w'? = x* — aU; VD(w*) with o € (0, 1], ir ~ U[[1, n]]. One can show:
AcE[D(w") = D(w*)] + SE[lw™ — w*|[5] < A(D(w") = D(w*)) + 5llw’ — w*[13

for any A; > 1 and Apyq = A, + 2L,

© Many results, variants, etc. Easily fall into additional technical difficulties.

© More conventional to assume Lipschitz by block (simpler to compute and more aggressive
step size strategies), but this result is simple.

o Guarantee: E[D(w') — D(w*)] < 2 (D(w®) — D(w*) + Lw® — w*]|2) with o = 1.

o Recall gradient descent: E[D(w*) — D(w*)] < £[jw® — w*|.

78

Randomized block-coordinate methods — improvement

minimize D(w)
weRd

where f is convex. Decompose decision space into n blocks: w =37 | Uiw with [U1 Uz ... Uy] = Ig.
Further assume Vi € {1,2,...,n}:

Ly
D(x+ i) < D(x) + (VD(x). Uid) + 51Ul

Algorithm: RBCD

Set w® € RY.

for t=0,1,..., T —1do ¢ L; usually simpler to compute than L
samlple & o T) o L; often (much) smaller than L.
wt =w' = LU, VD(w)

end

79

On RBCD

Questions:

1. Is the gradient estimate U;, Vf(w") biased?

2. Consider the quadratic problem
minimize %wTAw
weRd
and the decomposition U; = &; (unit vector whose ith component is one).
— What do the L;'s (i=1,...,d) correspond to?
— Show that the global Lipschitz constant L satisfies: max L; < L <>, L;.

IR

— Consider the matrix A = c117. What are L;'s? and L?

80

Randomized block-coordinate methods — improvement

Denote [[w|3,,, 2 327, Li[|Uiwlf3.

Let w' € R?, w'™ = w' — 2 U, VF(w') with ir ~U{1,...,n}. It holds:
A E[D(w) — D(w*)] + FE[lw™ — w*[|713] < Ad(D(w") — D(w*)) + 3[lw' — w* Iy

for any A > 1 and A1 = A + %

<&

Usually simpler to compute and allows for larger step-sizes.
¢ More conventional to assume Lipschitz by block.

Guarantee: E[D(w") — D(w*)] < 2 (D(w®) — D(w*) + 3[jw’ — w*||%,_i}).

<

Possible to extend results to linear convergence (strong convexity-type assumptions).

<

21See, e.g., Nesterov (2012). “Efficiency of coordinate descent methods on huge-scale optimization problems.”

81

Randomized block-coordinate methods

Proof sketch. Weighted sum of inequalities:
o convexity of F between w' and w*, with weight A;11 — A
0> D(w') — D(w*) + (VD(w'),w" — wf),
© expectation of the “block” descent lemma with weight A¢y1:
E,[D(w"™)] < D) — B [71U VD) 3]
Weighted sum yields:

Eir[VH-l] < Vt At+1 IHVD(LU)||?[L71

+ (Aep1 — A — 1) (VD(w'),w" — w"),

with V' = A (D(w") — D(w)) + §

3w’ — w i,

82

Example — support vector machine

Soft-margin support vector machine (SVM):
minimize 510112 + 1/; max{0,1 — y;(0, x;)}
Reformulate:

n
. . . 1 2
e 5|0 S;
minimize 31613 + ”E,-:f :

st.yi{0,x) >1—s;
Si 2 0

Lagrange dual?

83

Example — support vector machine

Denote by X = [y1x1 | y2x2| - .. | yaxs] € RY*". Lagrange duality yields:

maximize {D(/\) = —%/\TXTXA +)\,}

o<y .
i=1

and a natural estimate of the primal variable 6 = >°7 | A\ix;y; = X . Algorithm?

Algorithm: RBCD for dual SVM
Set A’ ¢ R".
fort=0,1,..., T —1do
sample iy ~ U[[1, n]]

. 'g?
Af:)l = PrOJ[O,a] |:(.d(t’~t) = L%V,tD(/\t)} <o LI S!
end o Exact 1-D optimization.

o)‘Ei) denotes ith component.

¢ Projection OK within BCD
for separable constraints.

84

Example — support vector machine

Denote by X = [y1x1 | y2x2| - .. | yaxs] € RY*". Lagrange duality yields:

maximize {D(A) 4 —%/\TXTX/\ +>)\,}

0<ALY .
i=1

and a natural estimate of the primal variable § = >"" | A\ix;y; = X\. Algorithm?

N

Algorithm: RBCD for dual SVM
Set \’=0€eR", °=0€eR

fort=0,1,..., T —1do
sample iy ~ U[[1, n]]

A= Al
t+1 : t 1—y;, (6%,
Ay = Projjo,a1 (A(n) MR)
gt =0 + }/itXi,(/\(t,-J:)l -)
end

85

Table of contents

1. Stochastic optimization problems
2. Plain gradient methods

3. Stochastic gradient methods

4. Finite sums

5. Popular stochastic algorithms

6. Randomized coordinate descent

7. Conclusion

86

Conclusion

Concluding remarks

What did we do?

o exploit problem structures (finite sums/expectations).
o cheaper iterations vs. slower convergence per iteration.
o Different stochastic/randomized strategies.

Methods of extreme practical use, particularly when:
© even computing a gradient is too expensive,
< updates without accouting for full dataset,

© accurate solution not needed (no need to go beyond statistical accuracy).

Gradient descent (GD)

Stochastic gradient descent (SGD)

log(excess cost)

Variance reduction

Running time -

87

	Stochastic optimization problems
	Plain gradient methods
	Stochastic gradient methods
	Finite sums
	Popular stochastic algorithms
	Randomized coordinate descent
	Conclusion

