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Distortion, embedding problems, . ..

We cannot hope to always get low rank solutions to SDPs, unless we are willing
to admit some distortion. . . The following result from [Ben-Tal, Nemirovski, and

Roos, 2003] gives some guarantees.

Approximate S-lemma. let A;,...,AnN €S, a1,...,any € R and a matrix
X €S, such that

AZ,XEO, TI‘(AZX):O(Z, ZIl,,N

Let € > 0, there exists a matrix Xy such that

log4 N
2

Ozz(l — 6) S rI‘I'(AZXo) S Oéz(l < 6) and Rank(Xo) S 8

€

Proof. Randomization, concentration results on Gaussian quadratic forms.

See [Barvinok, 2002, Ben-Tal, El Ghaoui, and Nemirovski, 2009] for more details.
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Distortion, embedding problems, . ..

A particular case: Given NN vectors v; € R?, construct their Gram matrix
X € Sy, with

X =0, Xy—2Xi+X5=|vi—vll5 45=1,...,N.
The matrices D;; € S,, such that
Tr(D;; X) = X —2X;; + X, 4,5=1,...,N
satisfy D;; = 0. Let € > 0, there exists a matrix Xy with

log 2N

m = Rank(X,) < 16——5—,

€

from which we can extract vectors u; € R™ such that
lvi —vil13 (1 =€) < Jlus —wll5 < [Jvi —v5ll3 (1 +e).

In this setting, the Johnson-Lindenstrauss lemma is a particular case of the
approximate S lemma. . .
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Distortion, embedding problems, . ..

m [he problem of reconstructing an N-point Euclidean metric, given partial
information on pairwise distances between points v;, ¢ = 1,..., N can also be
cast as an SDP, known as and Euclidean Distance Matrix Completion

problem.
find D

subject to 1v!l +v1T — D >0
Di; = Jv; — Uj”%v (4,7) €S
v>0

in the variables D € S,, and v € R", on a subset S C [1, N]%.

m We can add further constraints to this problem given additional structural info
on the configuration.

m Applications in sensor networks, molecular conformation reconstruction etc. . .
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Distortion, embedding problems, . ..

[Dattorro, 2005] 3D map of the USA reconstructed from pairwise distances on
5000 points. Distances reconstructed from Latitude/Longitude data.
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Mixing rates for Markov chains
& maximum variance unfolding
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Mixing rates for Markov chains & unfolding

[Sun, Boyd, Xiao, and Diaconis, 2006]

m Let G = (V, E) be an undirected graph with n vertices and m edges.

» We define a Markov chain on this graph, and let w;; > 0 be the transition
rate for edge (i,j) € V.

m Let 7(t) be the state distribution at time t, its evolution is governed by the

heat equation
dm(t) = —Lw(t)dt
with
—W; ifi# 4, (i,5) €V
L=< 0 if (¢,7) ¢V
2 (i kyey Wik ifi=]
the graph Laplacian matrix, which means

m(t) = e F'm(0).
m The matrix L € S,, satisfies L > 0 and its smallest eigenvalue is zero.
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Mixing rates for Markov chains & unfolding

s With
m(t) = e 7 (0)
the mixing rate is controlled by the second smallest eigenvalue \o(L).

m Since the smallest eigenvalue of L is zero, with eigenvector 1, we have

M(L)>t <= L(w)=tI-(1/n)11"),

m Maximizing the mixing rate of the Markov chain means solving

maximize ¢

subject to  L(w) = t(I— (1/n)11%)
Z(i,j)evdgjwij <1
w >0

in the variable w € R™, with (normalization) parameters dfj > 0.

= Since L(w) is an affine function of the variable w € R™, this is a semidefinite
program in w € R™,

m Numerical solution usually performs better than Metropolis-Hastings.
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Mixing rates for Markov chains & unfolding

m We can also form the dual of the maximum MC mixing rate problem.

m The dual means solving

maximize Tr(X(I— (1/n)111))
subject to  X;; — 2X;; + X;; < dfj, (i,7) e V
X =0,

in the variable X € S,,.

m Here too, we can interpret X as the gram matrix of a set of n vectors v; € R%.
The program above maximizes the variance of the vectors v;

2
Tr(X(I—(1/n)117)) = 3=, [lvillz — 122, vill;
while the constraints bound pairwise distances

Xii — QX%] + ij < d?j — ||UZ _ Uj”% = dlz]

= This is a maximum variance unfolding problem [Weinberger and Saul, 2006,
Sun et al., 2006].
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Mixing rates for Markov chains & unfolding

From [Sun et al., 2006]: we are given pairwise 3D distances for k-nearest
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neighbors in the point set on the right. We plot the maximum variance point set

satisfying these pairwise distance bounds on the right.
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Moment problems & positive polynomials
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Moment problems & positive polynomials

[Nesterov, 2000]. Hilbert's 17t" problem has a positive answer for univariate
polynomials: a polynomial is nonnegative iff it is a sum of squares

N
p(z) = 2%+ apg12®T P+ ...+ a9 >0, forallz <=  p(x) = Zqi(x)Q
i=1

We can formulate this as a linear matrix inequality, let v(x) be the moment vector

we have

Z Aivjui =M =0 < p(z) =v(z) Mv(z) = Z i (ulv(x))?

)

where (\;, u;) are the eigenpairs of M.
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Moment problems & positive polynomials

m The dual to the cone of Sum-of-Squares polynomials is the cone of moment
matrices

o @ 0 qa
E [z =q, i=0,...,d < L
dd 4dd+1 - q2d

= [Putinar, 1993, Lasserre, 2001, Parrilo, 2000] These results can be extended to
multivariate polynomial optimization problems over compact semi-algebraic
sets.

m This forms exponentially large, ill-conditioned semidefinite programs however.
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Collaborative prediction
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Collaborative prediction

m Users assign ratings to a certain number of movies:

- N 4 5
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m Objective: make recommendations for other movies. . .
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Collaborative prediction

m Infer user preferences and movie features from user ratings.

m We use a linear prediction model:

rating;; = u;-rvj

where u; represents user characteristics and v; movie features.
m T his makes collaborative prediction a matrix factorization problem

m Overcomplete representation. . .

A. d'Aspremont. Convex Optimization M2, MVA. 17/22



Collaborative prediction

= Inputs: a matrix of ratings M;; = {—1,+1} for (¢,5) € S, where S is a subset
of all possible user/movies combinations.

s We look for a linear model by factorizing M € R™*™ as:
M=U"V

where U € R™** represents user characteristics and V € R¥*™ movie features.
m Parsimony. . . We want k£ to be as small as possible.

s Output: a matrix X € R"*™ which is a low-rank approximation of the ratings
matrix M.
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Least-Squares

m Choose Means Squared Error as measure of discrepancy.

m Suppose S is the full set, our problem becomes:

min 1X — M|?
{X: Rank(X)=k}

= This is just a singular value decomposition (SVD). . .

Problem: Not true when S is not the full set (partial observations). Also, MSE
not a good measure of prediction performance. . .
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Soft Margin

minimize Rank(X) + ¢ Z max(0,1 — X;,;M,;;)
(i,5)€S
non-convex and numerically hard. . .

= Relaxation result in Fazel et al. [2001]: replace Rank(X) by its convex
envelope on the spectahedron to solve:

minimize || X« + ¢ Z max (0,1 — X;;M,;)
(i,7)€S

where || X ||, is the nuclear norm, i.e. sum of the singular values of X.

m Srebro [2004]: This relaxation also corresponds to multiple large margin SVM

classifications.
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Soft Margin

m The dual of this program:

maximize ) ;. Yi;
subject to ||Y @ M2 <1
0<Y;; <c

in the variable Y € R"*"™ where Y ® M is the Schur (componentwise)
product of Y and M and ||Y'||2 the largest singular value of Y.

= This problem is sparse: Y = ¢ for (i,j) € S°
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