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Outline

� First-order methods: introduction

� Exploiting structure

� First order algorithms

◦ Subgradient methods

◦ Gradient methods

◦ Accelerated gradient methods

� Other algorithms

◦ Coordinate descent methods

◦ Localization methods

◦ Franke-Wolfe

◦ Dykstra, alternating projection

◦ Stochastic optimization
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Coordinate Descent
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Coordinate Descent

We seek to solve
minimize f(x)
subject to x ∈ C

in the variable x ∈ Rn, with C ⊂ Rn convex.

� Our main assumption here is that C is a product of simpler sets. We rewrite
the problem

minimize f(x1, . . . , xp)
subject to xi ∈ Ci, i = 1, . . . , p

where C = C1 × . . .× Cp.

� This helps if the minimization subproblems

min
xi∈Ci

f(x1, . . . , xi, . . . , xp)

can be solved very efficiently (or in closed-form).
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Coordinate Descent

Algorithm. The algorithm simply computes the iterates x(k+1) as

x
(k+1)
i = argmin

xi∈Ci
f(x

(k)
1 , . . . , x

(k)
i , . . . , x(k)

p )

x
(k+1)
j = x

(k)
j , j 6= i

for a certain i ∈ [1, p], cycling over all indices in [1, p].

Convergence.

� Complexity analysis similar to coordinate-wise gradient descent (or steepest
descent in `1 norm).

� Need f(x) strongly convex to get linear complexity bound.

� Few clean results outside of this setting.
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Coordinate Descent

Example.

� Consider the box constrained minimization problem

minimize xTAx+ bTx
subject to ‖x‖∞ ≤ 1

in the variable x ∈ Rn. We assume A � 0.

� The set ‖x‖∞ ≤ 1 is a box, i.e. a product of intervals.

� Each minimization subproblem means solving a second order equation.

� The dual is
min
y∈Rn

(b+ y)TA−1(b+ y)− 4‖y‖1

which can be interpreted as a penalized regression problem in the
variable y ∈ Rn.
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Localization methods
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Localization methods

� Function f : Rn → R convex (and for now, differentiable)

� problem: minimize f

� oracle model: for any x we can evaluate f and ∇f(x) (at some cost)

Main assumption: evaluating the gradient is very expensive.

from f(x) ≥ f(x0) +∇f(x0)
T (x− x0) we conclude

∇f(x0)
T (x− x0) ≥ 0 =⇒ f(x) ≥ f(x0)

i.e., all points in halfspace ∇f(x0)
T (x− x0) ≥ 0 are worse than x0
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Localization methods

∇f(x0)

x0

level curves of f

∇f(x0)
T (x − x0) ≥ 0

� by evaluating ∇f we rule out a halfspace in our search for x?:

x? ∈ {x | ∇f(x0)
T (x− x0) ≤ 0}

� idea: get one bit of info (on location of x?) by evaluating ∇f
� for nondifferentiable f , can replace ∇f(x0) with any subgradient g ∈ ∂f(x0)
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Localization methods

suppose we have evaluated ∇f(x1), . . . ,∇f(xk) then we know

x? ∈ {x | ∇f(xi)T (x− xi) ≤ 0}

x1

x2

xk

∇f(x1)

∇f(x2)

∇f(xk)

on the basis of ∇f(x1), . . . ,∇f(xk), we have localized x? to a polyhedron

question: what is a ‘good’ point xk+1 at which to evaluate ∇f?
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Localization methods

Basic localization (or cutting-plane) algorithm:

1. after iteration k − 1 we know x? ∈ Pk−1:

Pk−1 = {x | ∇f(x(i))T (x− x(i)) ≤ 0, i = 1, . . . , k − 1}

2. evaluate ∇f(x(k)) (or g ∈ ∂f(x(k))) for some x(k) ∈ Pk−1

3. Pk := Pk−1 ∩ {x | ∇f(x(k))T (x− x(k)) ≤ 0}

A. d’Aspremont. Convex Optimization M2. 12/52



Localization methods

Pk−1

x(k) x(k)

∇f(x(k)) ∇f(x(k))

Pk

� Pk gives our uncertainty of x? at iteration k

� want to pick x(k) so that Pk+1 is as small as possible

� clearly want x(k) near center of C(k)
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Example: bisection on R

� f : R→ R
� Pk is interval

� obvious choice: x(k+1) := midpoint(Pk)

bisection algorithm

given interval C = [l, u] containing x?

repeat
1. x := (l + u)/2
2. evaluate f ′(x)
3. if f ′(x) < 0, l := x; else u := x
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Example: bisection on R

Pk

Pk+1

x(k+1)

length(Pk+1) = uk+1 − lk+1 =
uk − lk

2
= (1/2)length(Pk)

and so length(Pk) = 2−klength(P0)
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Example: bisection on R

interpretation:

� length(Pk) measures our uncertainty in x?

� uncertainty is halved at each iteration; get exactly one bit of info about x? per
iteration

� # steps required for uncertainty (in x?) ≤ ε:

log2

length(P0)

ε
= log2

initial uncertainty

final uncertainty

question:

� can bisection be extended to Rn?

� or is it special since R is linear ordering?

A. d’Aspremont. Convex Optimization M2. 16/52



Center of gravity algorithm

Take x(k+1) = CG(Pk) (center of gravity)

CG(Pk) =
∫
Pk
x dx

/∫
Pk
dx

theorem. if C ⊆ Rn convex, xcg = CG(C), g 6= 0,

vol
(
C ∩ {x | gT (x− xcg) ≤ 0}

)
≤ (1− 1/e)vol(C) ≈ 0.63 vol(C)

(independent of dimension n)

hence in CG algorithm, vol(Pk) ≤ 0.63k vol(P0)
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Center of gravity algorithm

� vol(Pk)1/n measures uncertainty (in x?) at iteration k

� uncertainty reduced at least by 0.631/n each iteration

� from this can prove f(x(k))→ f(x?) (later)

� max. # steps required for uncertainty ≤ ε:

1.51n log2

initial uncertainty

final uncertainty

(cf. bisection on R)
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Center of gravity algorithm

advantages of CG-method

� guaranteed convergence

� number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

� finding x(k+1) = CG(Pk) is harder than original problem

� Pk becomes more complex as k increases
(removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)
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Analytic center cutting-plane method

analytic center of polyhedron P = {z | aTi z � bi, i = 1, . . . ,m} is

AC(P) = argmin
z
−

m∑
i=1

log(bi − aTi z)

ACCPM is localization method with next query point x(k+1) = AC(Pk) (found
by Newton’s method)
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Outer ellipsoid from analytic center

� let x∗ be analytic center of P = {z | aTi z � bi, i = 1, . . . ,m}
� let H∗ be Hessian of barrier at x∗,

H∗ = −∇2
m∑
i=1

log(bi − aTi z)

∣∣∣∣∣
z=x∗

=

m∑
i=1

aia
T
i

(bi − aTi x∗)2

� then, P ⊆ E = {z | (z − x∗)TH∗(z − x∗) ≤ m2} (not hard to show)
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Lower bound in ACCPM

� let E(k) be outer ellipsoid associated with x(k)

� a lower bound on optimal value p? is

p? ≥ inf
z∈E(k)

(
f(x(k)) + g(k)T (z − x(k))

)
= f(x(k))−mk

√
g(k)TH(k)−1g(k)

(mk is number of inequalities in Pk)

� gives simple stopping criterion
√
g(k)TH(k)−1g(k) ≤ ε/mk
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Best objective and lower bound

since ACCPM isn’t a descent a method, we keep track of best point found, and
best lower bound

best function value so far: uk = min
i=1,...,k

f(x(k))

best lower bound so far: lk = max
i=1,...,k

f(x(k))−mk

√
g(k)TH(k)−1g(k)

can stop when uk − lk ≤ ε
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Basic ACCPM

given polyhedron P containing x?

repeat
1. compute x∗, the analytic center of P, and H∗

2. compute f(x∗) and g ∈ ∂f(x∗)
3. u := min{u, f(x∗)}
l := max{l, f(x∗)−m

√
gTH∗−1g}

4. add inequality gT (z − x∗) ≤ 0 to P
until u− l < ε

here m is number of inequalities in P
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Dropping constraints

ACCPM adds an inequality to P each iteration, so centering gets harder, more
storage as algorithm progresses

schemes for dropping constraints from P(k):

� remove all redundant constraints (expensive)

� remove some constraints known to be redundant

� remove constraints based on some relevance ranking
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Dropping constraints in ACCPM

x∗ is AC of P = {x | aTi x ≤ bi, i = 1, . . . ,m}, H∗ is barrier Hessian at x∗

define (ir)relevance measure ηi =
bi − aTi x∗√
aTi H

∗−1ai

� ηi/m is normalized distance from hyperplane aTi x = bi to outer ellipsoid

� if ηi ≥ m, then constraint aTi x ≤ bi is redundant

common ACCPM constraint dropping schemes:

� drop all constraints with ηi ≥ m (guaranteed to not change P)

� drop constraints in order of irrelevance, keeping constant number, usually 3n –
5n
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Example

PWL objective, n = 10 variables, m = 100 terms

simple ACCPM: f(x(k)) and lower bound f(x(k))−m
√
g(k)TH(k)−1g(k)

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

k

f(x(k)) − p⋆

mk

√

g(k)TH(k)−1g(k)
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ACCPM with constraint dropping

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

k

uk − p⋆

uk − lk

no dropping

drop ηi > m
keep 3n
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ACCPM with constraint dropping

number of inequalities in P:

0 50 100 150 200
0

50

100

150

200

k

no dropping

drop ηi > m

keep 3n

. . . constraint dropping actually improves convergence (!)
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The Ellipsoid Method

Challenges in cutting-plane methods:

� can be difficult to compute appropriate next query point

� localization polyhedron grows in complexity as algorithm progresses

can get around these challenges . . .

ellipsoid method is another approach

� developed in 70s by Shor and Yudin

� used in 1979 by Khachian to give polynomial time algorithm for LP
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Ellipsoid algorithm

idea: localize x? in an ellipsoid instead of a polyhedron

1. at iteration k we know x? ∈ E(k)

2. set x(k+1) := center(E(k)); evaluate ∇f(x(k+1)) (or g(k) ∈ ∂f(x(k+1)))

3. hence we know

x? ∈ E(k) ∩ {z | ∇f(x(k+1))T (z − x(k+1)) ≤ 0}

(a half-ellipsoid)

4. set E(k+1) := minimum volume ellipsoid covering
E(k) ∩ {z | ∇f(x(k+1))T (z − x(k+1)) ≤ 0}
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Ellipsoid algorithm

E(k)

x(k+1)

∇f(x(k+1))

E(k+1)

compared to cutting-plane method:

� localization set doesn’t grow more complicated

� easy to compute query point

� but, we add unnecessary points in step 4
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Properties of ellipsoid method

� reduces to bisection for n = 1

� simple formula for E(k+1) given E(k), ∇f(x(k+1))

� E(k+1) can be larger than E(k) in diameter (max semi-axis length), but is
always smaller in volume

� vol(E(k+1)) < e−
1

2n vol(E(k))
(note that volume reduction factor depends on n)
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Example

r
x(0)

rx(1)
r

x(2)

r

x(3)
rx(4)

r
x(5)

A. d’Aspremont. Convex Optimization M2. 34/52



Updating the ellipsoid

E(x,A) =
{
z | (z − x)TA−1(z − x) ≤ 1

}

rx

rx+

r

�
�

�	

E

@
@
@R

E+

g
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Updating the ellipsoid

(for n > 1) minimum volume ellipsoid containing

E ∩
{
z | gT (z − x) ≤ 0

}
is given by

x+ = x− 1

n+ 1
Ag̃

A+ =
n2

n2 − 1

(
A− 2

n+ 1
Ag̃g̃TA

)

where g̃
∆
= g

/√
gTAg
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Stopping criterion

As in the ACCPM case, we can get error bounds on the current iterate.

x? ∈ Ek, so

f(x?) ≥ f(x(k)) +∇f(x(k))T (x? − x(k))

≥ f(x(k)) + inf
x∈E(k)

∇f(x(k))T (x− x(k))

= f(x(k))−
√
∇f(x(k))TA(k)∇f(x(k))

simple stopping criterion:√
∇f(x(k))TA(k)∇f(x(k)) ≤ ε
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Stopping criterion

A
A
AK

f(x(k)) −
√

∇f(x(k))TA(k)∇f(x(k))

�
�

�	

f(x(k))

f⋆

k
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Basic ellipsoid algorithm

ellipsoid described as E(x,A) = { z | (z − x)TA−1(z − x) ≤ 1 }

given ellipsoid E(x,A) containing x?, accuracy ε > 0

repeat
1. evaluate ∇f(x) (or g ∈ ∂f(x))
2. if

√
∇f(x)TA∇f(x) ≤ ε, return(x)

3. update ellipsoid

3a. g̃ := ∇f(x)
/√
∇f(x)TA∇f(x)

3b. x := x− 1
n+1Ag̃

3c. A := n2

n2−1

(
A− 2

n+1Ag̃g̃
TA
)

properties:

� can propagate Cholesky factor of A; get O(n2) update

� not a descent method

� often slow but robust in practice
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Franke-Wolfe
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Franke-Wolfe

� Classical first order methods for solving

minimize f(x)
subject to x ∈ C,

in x ∈ Rn, with C ⊂ Rn convex, relied on the assumption that the following
subproblem could be solved efficiently

minimize yTx+ d(x)
subject to x ∈ C,

in the variable x ∈ Rn, where d(x) is a strongly convex function.

� The method detailed here assumes instead that the affine minimization
subproblem

minimize dTx
subject to x ∈ C

can be solved efficiently for any y ∈ Rn.
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Franke-Wolfe

Algorithm.

� Choose x0 ∈ C.

� For k = 1, . . . , kmax iterate

1. Compute d ∈ ∂f(yk)
2. Solve

minimize dTx
subject to x ∈ C

in x ∈ Rn, call the solution xd.
3. Update the current point

xk+1 = xk +
2

k + 2
(d− xk)

Note that all iterates are feasible.
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Franke-Wolfe

� Complexity. Assume that f is differentiable. Define the curvature Cf of the
function f(x) as

Cf , sup
s,x∈M, α∈[0,1],
y=x+α(s−x)

1

α2
(f(y)− f(x)− 〈y − x,∇f(x)〉).

The Franke-Wolfe algorithm will then produce an ε solution after

Nmax =
4Cf
ε

iterations.
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Franke-Wolfe

� Stopping criterion. At each iteration, we get a lower bound on the optimum
as a byproduct of the affine minimization step. By convexity

f(xk) +∇f(xk)T (xd − xk) ≤ f(x), for all x ∈ C

and finally, calling f∗ the optimal value of problem, we obtain

f(xk)− f∗ ≤ ∇f(xk)T (xk − xd).

This allows us to bound the suboptimality of iterate at no additional cost.
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Dykstra, alternating projection
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Dykstra, alternating projection

We focus on a simple feasibility problem

find x ∈ C1 ∩ C2

in the variable x ∈ Rn with C1, C2 ⊂ Rn two convex sets.

We assume now that the projection problems on Ci are easier to solve

minimize ‖x− y‖2
subject to x ∈ Ci

in x ∈ Rn.
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Dykstra, alternating projection

Algorithm (alternating projection)

� Choose x0 ∈ Rn.

� For k = 1, . . . , kmax iterate

1. Project on C1

xk+1/2 = argmin
x∈C1

‖x− xk‖2

2. Project on C2

xk+1 = argmin
x∈C2

‖x− xk+1/2‖2

Convergence. We can show dist(xk, C1 ∩C2)→ 0. Linear convergence provided
some additional regularity assumptions.
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Dykstra, alternating projection

Algorithm (Dykstra)

� Choose x0, z0 ∈ Rn.

� For k = 1, . . . , kmax iterate

1. Project on C1

xk+1/2 = argmin
x∈C1

‖x− zk‖2

2. Update
zk+1/2 = 2xk+1/2 − zk

3. Project on C2

xk+1 = argmin
x∈C2

‖x− zk+1/2‖2

4. Update
zk+1 = zk + xk+1 − xk+1/2

Convergence. Usually faster than simple alternating projection.
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Stochastic Optimization
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Stochastic Optimization

Solve
minimize E[f(x, ξ)]
subject to x ∈ C,

in x ∈ Rn, where C is a simple convex set. The key difference here is that the
function we are minimizing is stochastic.

Batch method. A simple option is to approximate the problem by

minimize
∑m
i=1 f(x, ξm)

subject to x ∈ C,

where ξi are sampled from the distribution of ξ.

Sampling is costly, we can do better. . .
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Stochastic Optimization

Let pC(·) be the Euclidean projection operator on C.

Algorithm (Robust stochastic averaging)

� Choose x0 ∈ C and a step sequence γj > 0.

� For k = 1, . . . , kmax iterate

1. Compute a subgradient
g ∈ ∂f(xk, ξk)

2. Update the current point

xk+1 = pC(xk − γkg)
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Stochastic Optimization

Complexity.

� Call x̃k =
∑k
i=1 γixi and assume

max
x∈C

E[‖g‖22] ≤M2, and DC = max
x,y∈C

‖x− y‖2

� If we set γi = DC/(M
√
k), we have

E[f(x̃k)− f∗] ≤
DCM√

k

� Furthermore, if we assume

E

[
exp

(
‖g‖22
M2

)]
≤ e, for all g ∈ ∂f(xk, ξ) and x ∈ C

we get

Prob

[
f(x̃k)− f∗ ≥

DCM√
k

(12 + 2t)

]
≤ 2 exp(−t).
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