Convex Optimization M2

Lecture 7

A. d'Aspremont. Convex Optimization M2. 1/52

Large Scale Optimization

A. d'Aspremont. Convex Optimization M2. 2/52

Outline

m First-order methods: introduction
m Exploiting structure

m First order algorithms

o Subgradient methods
o Gradient methods
o Accelerated gradient methods

m Other algorithms

o Coordinate descent methods
o Localization methods

o Franke-Wolfe

o Dykstra, alternating projection

o Stochastic optimization

A. d’'Aspremont. Convex Optimization M2. 3/52

Coordinate Descent

A. d'Aspremont. Convex Optimization M2. 4/52

Coordinate Descent

We seek to solve o
minimize f(x)
subjectto z € C(C

in the variable £ € R™, with C C R"™ convex.

m Our main assumption here is that C' is a product of simpler sets. We rewrite
the problem
minimize f(x1,...,2p)
subjectto x; € C;, 1=1,...,p

where C = C x ... x C,,.

m This helps if the minimization subproblems
min f(x1,..., ..., 2p)

z,€C;

can be solved very efficiently (or in closed-form).

A. d’'Aspremont. Convex Optimization M2. 5/52

Coordinate Descent

Algorithm. The algorithm simply computes the iterates z(*+1) as

:U,Ekﬂ) — argmin f(a:gm, . ,.Z’,Ek), . ,:c]g“))
x; €Cy
CC;zﬁq) _ @gm) Iy

for a certain i € [1, p|, cycling over all indices in [1, p|.

Convergence.

s Complexity analysis similar to coordinate-wise gradient descent (or steepest

descent in ¢1 norm).

m Need f(x) strongly convex to get linear complexity bound.

m Few clean results outside of this setting.

A. d'Aspremont. Convex Optimization M2.

6/52

Coordinate Descent

Example.

m Consider the box constrained minimization problem

minimize 2l Ax + blx
subject to ||7]|e0 < 1

in the variable £ € R™. We assume A > 0.
m The set ||z||oo < 1is a box, i.e. a product of intervals.
m Each minimization subproblem means solving a second order equation.
m Thedualis

min (b+y)" A" (b+y) — 4|yl
yeR™

which can be interpreted as a penalized regression problem in the
variable y € R™.

A. d'Aspremont. Convex Optimization M2. 7/52

Localization methods

A. d'Aspremont. Convex Optimization M2. 8/52

Localization methods

= Function f: R™ — R convex (and for now, differentiable)
= problem: minimize f

= oracle model: for any x we can evaluate f and Vf(x) (at some cost)

Main assumption: evaluating the gradient is very expensive.

from f(x) > f(xo) + Vf(x0)! (x — 20) we conclude
V(o) (z—20) >0 = f(z)> f(zo)

i.e., all points in halfspace V f(x0)! (x — zg9) > 0 are worse than zg

A. d’'Aspremont. Convex Optimization M2. 9/52

Localization methods

level curves of f

V f (o)

Vf(:z:o)T(:B —x9) >0

m by evaluating V f we rule out a halfspace in our search for x*:

v* € {x | Vf(xo)! (z — z0) <0}

= idea: get one bit of info (on location of x*) by evaluating V f

= for nondifferentiable f, can replace V f(xg) with any subgradient g € df(xg)

A. d'Aspremont. Convex Optimization M2. 10/52

Localization methods

suppose we have evaluated V f(x1),...,V f(xx) then we know

o* € {z | Vf(z)!(z —x;) <0}

Vf(x1)

V f(x2)

V f(xk)

on the basis of Vf(x1),...,Vf(xx), we have localized x* to a polyhedron

question: what is a ‘good’ point xx.1 at which to evaluate V f7

A. d'Aspremont. Convex Optimization M2. 11/52

Localization methods

Basic localization (or cutting-plane) algorithm:

1. after iteration kK — 1 we know z* € Pr_1:

Pr—1 = {ZE | vf(x(z))T(x - x(Z)) <0,i1=1,...,k— 1}

2. evaluate V(%) (or g € 0f(2(¥))) for some 2F) € Pp_4

3. Pri=Pr_1N{z | V("N T(z — 20) <0}

A. d'Aspremont. Convex Optimization M2. 12/52

Localization methods

m Py gives our uncertainty of x* at iteration k
= want to pick (¥) so that P, is as small as possible

= clearly want z®) near center of C'(¥)

A. d'Aspremont. Convex Optimization M2. 13/52

Example: bisection on R

m f:R—R
m Py is interval

= obvious choice: z(¥*1) := midpoint(P},)

bisection algorithm

given interval C' = [l, u] containing x*
repeat

L.z:=(U4+u)/

2. evaluate f/(x

2
)
3. if f(z) <0, [:=

T else u:=x

A. d'Aspremont. Convex Optimization M2. 14/52

Example: bisection on R

Pt

uk—lk
2

length(Pri1) = g1 — lgr1 = = (1/2)length(Px)

and so |ength(73k) = 2_k|ength(730)

A. d'Aspremont. Convex Optimization M2. 15/52

Example: bisection on R

interpretation:

= length(P;) measures our uncertainty in x*

m uncertainty is halved at each iteration; get exactly one bit of info about ™ per
iteration

m # steps required for uncertainty (in x*) < e:

length(Py) initial uncertainty

lo = lo : :
52 € % final uncertainty

question:

m can bisection be extended to R™?

m or is it special since R is linear ordering?

A. d'Aspremont. Convex Optimization M2. 16/52

Center of gravity algorithm

Take z(F*t1) = CG(Py,) (center of gravity)

CG(Pk):/kadx//Pkdx

theorem. if C' C R"” convex, z,, = CG(C), g # 0,
vol (CN{z|g" (z — x¢) <0}) < (1—1/e)vol(C) = 0.63 vol(C)

(independent of dimension n)

hence in CG algorithm, vol(P;) < 0.63* vol(P)

A. d'Aspremont. Convex Optimization M2. 17/52

Center of gravity algorithm

s vol(P;)!/™ measures uncertainty (in z*) at iteration &
= uncertainty reduced at least by 0.63'/™ each iteration
s from this can prove f(z(*)) — f(z*) (later)

m max. # steps required for uncertainty < e:

initial uncertaint
1.51nlog, Y

final uncertainty

(cf. bisection on R)

A. d'Aspremont. Convex Optimization M2. 18/52

Center of gravity algorithm

advantages of CG-method

m guaranteed convergence

m number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

s finding (**1) = CG(Py) is harder than original problem

m P, becomes more complex as k increases
(removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)

A. d'Aspremont. Convex Optimization M2. 19/52

Analytic center cutting-plane method

analytic center of polyhedron P = {z |alz <b;, i=1,...,m} is

AC(P) = argmin — Z log(b; — al 2)

1=1

ACCPM is localization method with next query point 2(*+1) = AC(P},) (found
by Newton's method)

A. d'Aspremont. Convex Optimization M2. 20/52

Outer ellipsoid from analytic center

= let z* be analytic center of P = {z |al 2z <b;, i=1,...,m}

m let H* be Hessian of barrier at o™,

(b; — al'z*)2

m then, PCE={2]| (2 — 2" H*(z — 2*) < m?} (not hard to show)

A. d'Aspremont. Convex Optimization M2. 21/52

Lower bound in ACCPM

= let £ be outer ellipsoid associated with (%)

m a lower bound on optimal value p* is

pro> it (f@®) 4 M7 (z - 2®))
ze&(F)

= F(@®) =y /gBTHE g0

(my, is number of inequalities in P})

= gives simple stopping criterion \/g(FTH®) =1g(k) < ¢/my,

A. d'Aspremont. Convex Optimization M2. 22/52

Best objective and lower bound

since ACCPM isn’'t a descent a method, we keep track of best point found, and
best lower bound

best function value so far: up = I?inkf(x(’“))
1=1,...,

best lower bound so far: [= ‘_Hllanf(ZC(k)) — mpr/g®T Hk)—1g(k)

can stop when up — [<€

A. d'Aspremont. Convex Optimization M2. 23/52

Basic ACCPM

given polyhedron P containing x*

repeat
1. compute =*, the analytic center of P, and H*
2. compute f(x*) and g € 9f(x*)
3. u:=min{u, f(z*)}
L= max{l, f(z*) —my/g"H* g}
4. add inequality g*'(z —2*) <0 to P
until u — [< e

here m is number of inequalities in P

A. d'Aspremont. Convex Optimization M2. 24/52

Dropping constraints

ACCPM adds an inequality to P each iteration, so centering gets harder, more
storage as algorithm progresses

schemes for dropping constraints from P(¥):

= remove all redundant constraints (expensive)
m remove some constraints known to be redundant

m remove constraints based on some relevance ranking

A. d'Aspremont. Convex Optimization M2. 25/52

Dropping constraints in ACCPM

v*is ACof P={z|alx<b; i=1,...,m}, H* is barrier Hessian at z*
. . bz — CLZTZC*
define (ir)relevance measure 7); = —
\/az- H*1q,
T

= 73;/m is normalized distance from hyperplane a; © = b; to outer ellipsoid

)

= if 7; > m, then constraint a! z < b; is redundant

common ACCPM constraint dropping schemes:

= drop all constraints with 7; > m (guaranteed to not change P)

m drop constraints in order of irrelevance, keeping constant number, usually 3n —
n

A. d'Aspremont. Convex Optimization M2. 26/52

Example

PWL objective, n = 10 variables, m = 100 terms

simple ACCPM: f(x(*)) and lower bound f(2)) — m+/g™T Hk)=14(F)

10°
my\/ 9T H R =1g(k)

10°

-2
10}

F(ak)y — p*
107
10_6 | | |
0 50 100 150 200

A. d'Aspremont. Convex Optimization M2. 27/52

ACCPM with constraint dropping

— no dropping
---dropmn; >m

A. d'Aspremont. Convex Optimization M2.

50

200

28/52

ACCPM with constraint dropping

number of inequalities in P:

200

150

100

50 SR
keep 3n
0 I I I
0 50 100 150
k

no dropping

drop n; > m

Cd
R Rl R N P P

.. constraint dropping actually improves convergence (!)

A. d'Aspremont. Convex Optimization M2.

200

The Ellipsoid Method

Challenges in cutting-plane methods:

m can be difficult to compute appropriate next query point

m localization polyhedron grows in complexity as algorithm progresses

can get around these challenges . . .

ellipsoid method is another approach

m developed in 70s by Shor and Yudin
m used in 1979 by Khachian to give polynomial time algorithm for LP

A. d’'Aspremont. Convex Optimization M2. 30/52

Ellipsoid algorithm

idea: localize ™ in an ellipsoid instead of a polyhedron

1. at iteration k we know z* € £F)
2. set £(F+1) .= center(£(¥)); evaluate Vf(z**tD) (or g¥) € af (x(F+D))
3. hence we know
e EXN{z| V(P)T (z — 5Dy <}
(a half-ellipsoid)

4. set £F+D) .= minimum volume ellipsoid covering
k) N {Z | Vf(x(k+1))T(z _ x(k+1)) < O}

A. d'Aspremont. Convex Optimization M2. 31/52

Ellipsoid algorithm

compared to cutting-plane method:

m localization set doesn’'t grow more complicated
m easy to compute query point

m but, we add unnecessary points in step 4

A. d'Aspremont. Convex Optimization M2. 32/52

Properties of ellipsoid method

m reduces to bisection forn =1
= simple formula for £+ given £K) ¥ f(x(F+D)

s £#*1) can be larger than £%) in diameter (max semi-axis length), but is
always smaller in volume

= vol(EF D) < e~z vol(E£)
(note that volume reduction factor depends on n)

A. d’'Aspremont. Convex Optimization M2. 33/52

Example

/
/
/

/
/
/

A. d'Aspremont. Convex Optimization M2.

34/52

Updating the ellipsoid

A. d’'Aspremont. Convex Optimization M2. 35/52

Updating the ellipsoid

(for n > 1) minimum volume ellipsoid containing
EN{z]g'(z—x) <0}

is given by

1

n+1
n? 2 .

n? —1

Ag

I = X —

where g 2 g/\/gTAg

A. d'Aspremont. Convex Optimization M2.

36,52

Stopping criterion

As in the ACCPM case, we can get error bounds on the current iterate.
x* € &L, so

F@®) + V(T (2> — 2F))

> f(:z:(k))—l— inf Vf(a:(k))T(x—x(k))

rec& (k)

F(e®) = /T (@®)T AR f(2®)

=
3

N’
V

simple stopping criterion:

VI E)TABY f(a®) < ¢

A. d'Aspremont. Convex Optimization M2. 37/52

Stopping criterion

)

A. d’'Aspremont. Convex Optimization M2. 38/52

Basic ellipsoid algorithm

ellipsoid described as E(z, A) ={ 2| (z —2)TA Y (z—2) <1}

given ellipsoid £(x, A) containing x*, accuracy € > 0
repeat
1. evaluate Vf(x) (or g € 9f(x))
2. if \/Vf(x)TAV f(x) < ¢, return(z)
3. update ellipsoid
3a. = Vf(x)/\/Vf(a:)TAVf(a:)

3b. x :=x — %ﬂAg
e n? 2 ~~T
3c. A= (A — 2453 A)

n2—1

properties:

= can propagate Cholesky factor of A; get O(n?) update
m not a descent method

m often slow but robust in practice

A. d’'Aspremont. Convex Optimization M2. 39/52

Franke-Wolfe

A. d'Aspremont. Convex Optimization M2. 40/52

Franke-Wolfe

m Classical first order methods for solving

minimize f(x)
subject to x € C,

in x € R"”, with C' C R"” convex, relied on the assumption that the following
subproblem could be solved efficiently

minimize ylz + d(z)
subject to z € C,

in the variable x € R", where d(x) is a strongly convex function.

m | he method detailed here assumes instead that the affine minimization

subproblem
minimize d'z
subjectto z € C
can be solved efficiently for any y € R".

A. d'Aspremont. Convex Optimization M2. 41/52

Franke-Wolfe

Algorithm.

m Choose 2o € C.

m For k=1,... kK™% iterate
1. Compute d € Of(yx)
2. Solve

minimize d'zx
subjectto z € C

in x € R"™, call the solution x,.
3. Update the current point

2
p— _ d—
Tht1 = Tk + L 2(fl?k)

Note that all iterates are feasible.

A. d'Aspremont. Convex Optimization M2. 42/52

Franke-Wolfe

s Complexity. Assume that f is differentiable. Define the curvature C¢ of the
function f(x) as

Cre s () — f(0) - (y— @ V@),
i

The Franke-Wolfe algorithm will then produce an € solution after

4C
Nmax — —f

€

Iterations.

A. d'Aspremont. Convex Optimization M2. 43/52

Franke-Wolfe

s Stopping criterion. At each iteration, we get a lower bound on the optimum
as a byproduct of the affine minimization step. By convexity

flxy) + V(e (xg — z) < f(z), forallzeC

and finally, calling f* the optimal value of problem, we obtain

flag) = [< V(@) (zp — a).

This allows us to bound the suboptimality of iterate at no additional cost.

A. d'Aspremont. Convex Optimization M2. 44/52

Dykstra, alternating projection

A. d'Aspremont. Convex Optimization M2. 45/52

Dykstra, alternating projection

We focus on a simple feasibility problem
find x € C; N Cy

in the variable £ € R™ with C, C5 C R" two convex sets.

We assume now that the projection problems on C; are easier to solve

minimize ||z — y||2
subject to z € C}

in x € R™.

A. d'Aspremont. Convex Optimization M2. 46/52

Dykstra, alternating projection

Algorithm (alternating projection)

m Choose 5 € R".

m For £ =1,... k™% iterate

1. Project on Cy

Th41/2 = argmin ||z — xg||2
xeCl

2. Project on (5

Lk+4+1 = argmin Hﬂf — 37k+1/2H2
xeCly

Convergence. We can show dist(zy, C1 N C5) — 0. Linear convergence provided
some additional regularity assumptions.

A. d'Aspremont. Convex Optimization M2. 47/52

Dykstra, alternating projection

Algorithm (Dykstra)

m Choose xg, zg € R™.

m For £ =1,... k™% iterate

1. Project on C

Th41/2 = argmin ||z — zg||2
zeClq

2. Update
Rk+1/2 = 25131~c+1/2 — %k
3. Project on (5

Lk+1 = argmin ||I‘ — Zk—|—1/2H2
xeCy

4. Update
Zk+1 = 2k + Tyl — Thy1/2

Convergence. Usually faster than simple alternating projection.

A. d'Aspremont. Convex Optimization M2.

48/52

Stochastic Optimization

A. d'Aspremont. Convex Optimization M2. 49/52

Stochastic Optimization

Solve
minimize E[f(z,)]

subject to =z € C,

in z € R", where C' is a simple convex set. The key difference here is that the
function we are minimizing is stochastic.

Batch method. A simple option is to approximate the problem by

minimize Z:’;l f(x,&m)

subject to z € C,

where &; are sampled from the distribution of &.

Sampling is costly, we can do better. . .

A. d’'Aspremont. Convex Optimization M2. 50/52

Stochastic Optimization

Let pc(-) be the Euclidean projection operator on C.

Algorithm (Robust stochastic averaging)

m Choose zg € C and a step sequence v, > 0.

m For £ =1,... k™% iterate

1. Compute a subgradient
g € 0f(zk, &)
2. Update the current point

Lh41 = pc(xk — %9)

A. d'Aspremont. Convex Optimization M2.

51/52

Stochastic Optimization

Complexity.
s Call 7, = Zle ~v;T; and assume

21 « Nf2 _ _
maxEflgls] < M7, and Dc = max [z — yllz

s If we set v; = D¢ /(MV'k), we have

m Furthermore, if we assume

2
E [exp (HJ\QI'LQ)] <e, forallgedf(xg,&) andxzeC

we get

Prob [f(i;k) _ s D \(;EM (12 4+ 2)| < 2exp(—t).

A. d'Aspremont. Convex Optimization M2. 52/52

