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Large Scale Optimization
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Outline

m First-order methods: introduction
m Exploiting structure

m First order algorithms

o Subgradient methods
o Gradient methods
o Accelerated gradient methods

m Other algorithms

o Coordinate descent methods
o Localization methods

o Franke-Wolfe

o Dykstra, alternating projection

o Stochastic optimization
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First-order methods: introduction

= Most of these methods are very old (1950-. . . )

m Very large catalog of algorithms, no unifying theory as in IPM
m Many variations around a few key algorithmic templates

m Better scaling, worst dependence on precision target

m In practice: algorithmic choices are dictated by problem structure.

What subproblem (projection, etc...) can you solve efficiently?
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First Order Algorithms
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First-order methods: introduction

minimize  f(x)
subjectto z € C
In theory:

m [he theoretical convergence speed of gradient based methods is mostly
controlled by the smoothness of the objective.

= Obviously, the geometry of the (convex) feasible set also has an impact.

Convex objective f(z) Iterations. . .
Nondifferentiable O(1/€%)
Differentiable O(1/€?)
Smooth (Lipschitz gradient) O(1/+/¢)
Strongly convex O(log(1/¢))

In practice:

m Compared to IPM, much larger gap between theoretical complexity guarantees
and empirical performance.

m Conditioning, well-posedness, etc. also have a very strong impact.
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First-order methods: introduction

Solve
minimize  f(x)
subjectto z € C

in x € R™, with C C R™ convex.

Main assumptions in the subgradient/gradient methods that follow:

m The gradient V f(x) or a subgradient can be computed efficiently.

m If C is not R"”, for any y € R"™, the following subproblem can be solved
efficiently
minimize ylxz + d(z)
subjectto z € C

in the variable x € R", where d(z) is a strongly convex function.

Typically, d(x) = ||z||> and this is an Euclidean projection.
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Subgradient Method
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Subgradient Methods

Subgradient

m Suppose that f is a convex function with dom f = R, and that there is a
vector g € R™ such that:

fly) > f(x) +g' (y —x), forallyeR"

m [he vector g is called a subgradient of f at x, we write g € Of.
m Of course, if f is differentiable, the gradient of f at x satisfies this condition

m [he subgradient defines a supporting hyperplane for f at the point z
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Subgradient Methods

Subgradient method:

m Suppose f : R" — R is convex

m We update the current point z; according to:

Thy1 = Tk + QLGk

where g;. is a subgradient of f at xy
m oy IS the step size sequence
m Similar to gradient descent but, not a descent method . . .

m Instead: use the best point and the minimum function value found so far
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Subgradient Methods

Step size strategies:

m Constant step size: ap = h for all k£ > 0
= Constant step length: ay/||gx|| = h for all £ >0

m Square summable but not summable:
oo oo
_ 2
g ap = oo and E ay < 00
k=0 k=0

m Nonsummable diminishing:

oo
E ap =00 and lim ap =0
P k— o0
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Subgradient Methods

Convergence:
Assuming ||g||2 < G, for all g € 3f, we can show

: ) k
ho < dist(z1,2*) + G* >, a7

2
2 i1

For constant step «; = h, this becomes

dist(xq,z*)

ost — [F < G?*h/2
Joest — 7 < Sk + /
to get an € solution, we set h = 2€/G2 and
dist(xq,z")
€

2hk -

hence . )
L dist(x1,2*)G |

- 4e?
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Subgradient Methods

m If the problem has constraints:

minimize  f(x)
subjectto z € C

where C' € R" is a convex set

m Use the Euclidean projection pc(-)

Trp+1 = pc(Tr + argr)

m Similar complexity analysis

m Some numerical examples on piecewise linear minimization. . . Problem
iInstance with n = 10 variables, m = 100 terms
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Subgradient Methods: Numerical Examples

Constant step length, A = 0.05, 0.02,0.005
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Constant step size h = 0.05, 0.02, 0.005
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Diminishing step rule a = 0.1/\/E and square summable step size rule a = 0.1/k.
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Constant step length A = 0.02, diminishing step size rule a = 0.1/\/E, and square
summable step rule a = 0.1/k
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Gradient Descent
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Gradient descent method

general descent method with Az = —V f(x)

given a starting point r € dom f.

repeat
1. Az := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. z := x + tAx.

until stopping criterion is satisfied.

m stopping criterion usually of the form ||V f(z)|2 <€

m convergence result: for strongly convex f,

f@®) = pr < F(f() = p)

c € (0,1) depends on m, (0 line search type.
= this means O(log 1/¢) iterations to get € solution.

m very simple, but often very slow; rarely used in practice
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quadratic problem in R?

flz) = (1/2)(x] + yx3) (v > 0)

with exact line search, starting at 2(%) = (v, 1):
k k
(khy _ (21 kwy _ (=1
Ly =TV <) > Lo =\ ——77
v+1 v+1

m very slow if y>1or v <1

m example for v = 10:
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Accelerated Gradient Methods
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Accelerated Gradient Methods

Solve
minimize  f(x)

subjectto z € C
in x € R™, with C C R"™ convex.

m Additional smoothness assumption: the gradient is Lipschitz continuous
IVf(x) =V [yl < Lljz -yl forallz,yedl

where || - || is the Euclidean norm (to simplify).
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Accelerated Gradient Methods

m Under this new smoothness assumption, we can improve the complexity bound
for the most basic gradient method

Lk4+1 — Tk — th(ZEk)

for some h > 0. We get

i < 2D ) — Sz — 2
M) = 1) = 3y — T+ K (o) = 7

having set h = 1/L.

= Roughly O(1/¢) iterations to get e-solution. This is suboptimal as the lower
complexity bound is O(1/4/€). In what follows, we will see how to reach this

optimal complexity.
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Accelerated Gradient Methods

The fact that the gradient V f(x) is Lipschitz continuous
IVf(z) =V il < Lllz -yl forallz,yeC

has important algorithmic consequences:

m For any o,y € R"™,

Fly) < Fl@)+ Vi) (y —2)+ 5y — ]

and we get a quadratic upper bound on the function f(x).

m This means in particular that if y =z — %Vf(:c) then

f) < F(@) — o IV F (@)

and we get a guaranteed decrease in the function value at each gradient step.
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Accelerated Gradient Methods

We construct an estimate sequence ¢ (x) of the function f(x), together with
sequences = € R™ and A\ > 0, satisfying

or(z) < (1 — Ap) f(2) + Apdpo(x)

and

This means in particular that

f@e) = 7 < Me(o(z™) — f7)

(just plug x* in the inequalities above) so we get convergence if A\ — 0.
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Accelerated Gradient Methods

The function f(x) and its estimate functions ¢x(z):

(1= Ak)f(x) + Akgo(z)

The functions are ¢ (x) are increasingly precise approximations of f(x) around
the optimum and are easier to minimize.
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Accelerated Gradient Methods

Intuition behind the method. Use the fact that the gradient is Lipschitz
continuous.

m The inequality
Fly) < Fla)+ Vi) (g —2) + 5y — ]

helps us build the bounds ¢ (x).

m In fact, we can pick
Or(x) = F, + Yillz — vi?
for some v > 0 and v, € R".

m We get the points x;.1 by making a gradient step starting around the
minimum of ¢x(x) (easy to compute), using the guarantee

f) < f(@) — oIV F @)
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Accelerated Gradient Methods

Also solves minimization problems over simple convex sets C' C R™. Define the
gradient mapping

9c(y,7) =1y — zc(y,7))
where

rco(y,v) = arxgergin (f(y) + V) (z—y)+ %le = y||2)

= Here, gc(y,~y) plays the role of the gradient for constrained problems, and
satisfies

1 7
f(x) > flzc(y, ) + 9c(y:7v) (¢ —y) + 57 l9c (v, NI*+ Sz = yl?
m This means in particular

flze(y,v) < fly) - %Ilgc(yﬁ)\!2

(just set y = x in the previous inequality).
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Accelerated Gradient Methods

Minimize f(x) over C' C R™. Assuming V f(x) is Lipschitz continuous with
constant L and that f(x) is strongly convex with parameter pu > 0.

m Choose x¢p € R™ and o € (0,1), set yg = x¢ and ¢ = u/L.

m For k=1,... kK™ iterate

1. Compute V f(yx) and set

Trpr1 = o (Yk,Y)

2. Compute ag4+1 € (0,1) by solving

2 2
a1 = (1 — apqr)og + qag4

3. Update the current point, with

Ozk(l — Ozk)<

Tka1 — Tk)
5)
Qg + Ol41

Yk+1 = Th41 +
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Accelerated Gradient Methods

Suppose we set ag > +/ /L, we have the following complexity bound

e s {(1-5) - )

where

. o E |2 _QO(QOL_N)
No = (flwo) = f*+ Gllao —a7|) and 7o = T

When the strong convexity parameter p = 0, this means roughly O(1/+/¢)
iterations to get an € solution.

Remarks:

m The iterates y; are not guaranteed to be feasible (in some case, f(x) is not
defined outside of C).

m The norm || - || is Euclidean. Using other norms is sometimes more efficient.

Both issues can be remedied using an extra minimization subproblem.
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