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Barrier Method

� inequality constrained minimization

� logarithmic barrier function and central path

� barrier method

� feasibility and phase I methods

� complexity analysis via self-concordance

� generalized inequalities
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Inequality constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
(1)

� fi convex, twice continuously differentiable

� A ∈ Rp×n with RankA = p

� we assume p? is finite and attained

� we assume problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained
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Examples

� LP, QP, QCQP, GP

� entropy maximization with linear inequality constraints

minimize
∑n

i=1 xi log xi
subject to Fx � g

Ax = b

with dom f0 = Rn
++

� differentiability may require reformulating the problem, e.g., piecewise-linear
minimization or `∞-norm approximation via LP

� SDPs and SOCPs are better handled as problems with generalized inequalities
(see later)
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Logarithmic barrier

reformulation of (1) via indicator function:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where I−(u) = 0 if u ≤ 0, I−(u) =∞ otherwise (indicator function of R−)

approximation via logarithmic barrier

minimize f0(x)− (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

� an equality constrained problem

� for t > 0, −(1/t) log(−u) is a smooth
approximation of I−

� approximation improves as t→∞
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logarithmic barrier function

φ(x) = −
m∑
i=1

log(−fi(x)), domφ = {x | f1(x) < 0, . . . , fm(x) < 0}

� convex (follows from composition rules)

� twice continuously differentiable, with derivatives

∇φ(x) =

m∑
i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =

m∑
i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑
i=1

1

−fi(x)
∇2fi(x)
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Central path

� for t > 0, define x?(t) as the solution of

minimize tf0(x) + φ(x)
subject to Ax = b

(for now, assume x?(t) exists and is unique for each t > 0)

� central path is {x?(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx?(t) is tangent to level
curve of φ through x?(t)

c

x⋆ x⋆(10)
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Dual points on central path

x = x?(t) if there exists a w such that

t∇f0(x) +

m∑
i=1

1

−fi(x)
∇fi(x) +ATw = 0, Ax = b

� therefore, x?(t) minimizes the Lagrangian

L(x, λ?(t), ν?(t)) = f0(x) +

m∑
i=1

λ?i (t)fi(x) + ν?(t)T (Ax− b)

where we define λ?i (t) = 1/(−tfi(x?(t)) and ν?(t) = w/t

� this confirms the intuitive idea that f0(x
?(t))→ p? if t→∞:

p? ≥ g(λ?(t), ν?(t))

= L(x?(t), λ?(t), ν?(t))

= f0(x
?(t))−m/t
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Interpretation via KKT conditions

x = x?(t), λ = λ?(t), ν = ν?(t) satisfy

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

2. dual constraints: λ � 0

3. approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m∑
i=1

λi∇fi(x) +ATν = 0

difference with KKT is that condition 3 replaces λifi(x) = 0
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Force field interpretation

centering problem (for problem with no equality constraints)

minimize tf0(x)−
∑m

i=1 log(−fi(x))

force field interpretation

� tf0(x) is potential of force field F0(x) = −t∇f0(x)

� − log(−fi(x)) is potential of force field Fi(x) = (1/fi(x))∇fi(x)

the forces balance at x?(t):

F0(x
?(t)) +

m∑
i=1

Fi(x
?(t)) = 0
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example
minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

� objective force field is constant: F0(x) = −tc

� constraint force field decays as inverse distance to constraint hyperplane:

Fi(x) =
−ai

bi − aTi x
, ‖Fi(x)‖2 =

1

dist(x,Hi)

where Hi = {x | aTi x = bi}

−c

−3c

t = 1 t = 3
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Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ε > 0.

repeat

1. Centering step. Compute x?(t) by minimizing tf0 + φ, subject to Ax = b.
2. Update. x := x?(t).
3. Stopping criterion. quit if m/t < ε.
4. Increase t. t := µt.

� terminates with f0(x)− p? ≤ ε (stopping criterion follows from
f0(x

?(t))− p? ≤ m/t)

� centering usually done using Newton’s method, starting at current x

� choice of µ involves a trade-off: large µ means fewer outer iterations, more
inner (Newton) iterations; typical values: µ = 10–20

� several heuristics for choice of t(0)
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Convergence analysis

number of outer (centering) iterations: exactly

⌈
log(m/(εt(0)))

logµ

⌉

plus the initial centering step (to compute x?(t(0)))

centering problem
minimize tf0(x) + φ(x)

see convergence analysis of Newton’s method

� tf0 + φ must have closed sublevel sets for t ≥ t(0)

� classical analysis requires strong convexity, Lipschitz condition

� analysis via self-concordance requires self-concordance of tf0 + φ
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Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

Newton iterations
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� starts with x on central path (t(0) = 1, duality gap 100)

� terminates when t = 108 (gap 10−6)

� centering uses Newton’s method with backtracking

� total number of Newton iterations not very sensitive for µ ≥ 10
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geometric program (m = 100 inequalities and n = 50 variables)

minimize log
(∑5

k=1 exp(aT0kx+ b0k)
)

subject to log
(∑5

k=1 exp(aTikx+ bik)
)
≤ 0, i = 1, . . . ,m

Newton iterations
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family of standard LPs (A ∈ Rm×2m)

minimize cTx
subject to Ax = b, x � 0

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances
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number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase I methods

feasibility problem: find x such that

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) s
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b
(3)

� if x, s feasible, with s < 0, then x is strictly feasible for (2)

� if optimal value p̄? of (3) is positive, then problem (2) is infeasible

� if p̄? = 0 and attained, then problem (2) is feasible (but not strictly);
if p̄? = 0 and not attained, then problem (2) is infeasible
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sum of infeasibilities phase I method

minimize 1Ts
subject to s � 0, fi(x) ≤ si, i = 1, . . . ,m

Ax = b

for infeasible problems, produces a solution that satisfies many more inequalities
than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

bi − aT
i xmax
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left: basic phase I solution; satisfies 39 inequalities
right: sum of infeasibilities phase I solution; satisfies 79 inequalities
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example: family of linear inequalities Ax � b+ γ∆b

� data chosen to be strictly feasible for γ > 0, infeasible for γ ≤ 0

� use basic phase I, terminate when s < 0 or dual objective is positive
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number of iterations roughly proportional to log(1/|γ|)
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Complexity analysis via self-concordance

same assumptions as on page 4, plus:

� sublevel sets (of f0, on the feasible set) are bounded

� tf0 + φ is self-concordant with closed sublevel sets

second condition

� holds for LP, QP, QCQP

� may require reformulating the problem, e.g.,

minimize
∑n

i=1 xi log xi
subject to Fx � g

−→ minimize
∑n

i=1 xi log xi
subject to Fx � g, x � 0

� needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply
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Newton iterations per centering step: from self-concordance theory

#Newton iterations ≤ µtf0(x) + φ(x)− µtf0(x+)− φ(x+)

γ
+ c

� bound on effort of computing x+ = x?(µt) starting at x = x?(t)

� γ, c are constants (depend only on Newton algorithm parameters)

� from duality (with λ = λ?(t), ν = ν?(t)):

µtf0(x) + φ(x)− µtf0(x+)− φ(x+)

= µtf0(x)− µtf0(x+) +

m∑
i=1

log(−µtλifi(x+))−m logµ

≤ µtf0(x)− µtf0(x+)− µt
m∑
i=1

λifi(x
+)−m−m logµ

≤ µtf0(x)− µtg(λ, ν)−m−m logµ

= m(µ− 1− logµ)
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total number of Newton iterations (excluding first centering step)

#Newton iterations ≤ N =

⌈
log(m/(t(0)ε))

logµ

⌉(
m(µ− 1− logµ)

γ
+ c

)

µ

N

1 1.1 1.2
0

1 104

2 104

3 104

4 104

5 104

figure shows N for typical values of γ, c,

m = 100,
m

t(0)ε
= 105

� confirms trade-off in choice of µ

� in practice, #iterations is in the tens; not very sensitive for µ ≥ 10
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polynomial-time complexity of barrier method

� for µ = 1 + 1/
√
m:

N = O

(√
m log

(
m/t(0)

ε

))
� number of Newton iterations for fixed gap reduction is O(

√
m)

� multiply with cost of one Newton iteration (a polynomial function of problem
dimensions), to get bound on number of flops

this choice of µ optimizes worst-case complexity; in practice we choose µ fixed
(µ = 10, . . . , 20)
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Generalized inequalities

minimize f0(x)
subject to fi(x) �Ki

0, i = 1, . . . ,m
Ax = b

� f0 convex, fi : Rn → Rki, i = 1, . . . ,m, convex with respect to proper cones
Ki ∈ Rki

� fi twice continuously differentiable

� A ∈ Rp×n with RankA = p

� we assume p? is finite and attained

� we assume problem is strictly feasible; hence strong duality holds and dual
optimum is attained

examples of greatest interest: SOCP, SDP
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Generalized logarithm for proper cone

ψ : Rq → R is generalized logarithm for proper cone K ⊆ Rq if:

� domψ = intK and ∇2ψ(y) ≺ 0 for y �K 0

� ψ(sy) = ψ(y) + θ log s for y �K 0, s > 0 (θ is the degree of ψ)

examples

� nonnegative orthant K = Rn
+: ψ(y) =

∑n
i=1 log yi, with degree θ = n

� positive semidefinite cone K = Sn
+:

ψ(Y ) = log detY (θ = n)

� second-order cone K = {y ∈ Rn+1 | (y21 + · · ·+ y2n)1/2 ≤ yn+1}:

ψ(y) = log(y2n+1 − y21 − · · · − y2n) (θ = 2)
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properties (without proof): for y �K 0,

∇ψ(y) �K∗ 0, yT∇ψ(y) = θ

� nonnegative orthant Rn
+: ψ(y) =

∑n
i=1 log yi

∇ψ(y) = (1/y1, . . . , 1/yn), yT∇ψ(y) = n

� positive semidefinite cone Sn
+: ψ(Y ) = log detY

∇ψ(Y ) = Y −1, Tr(Y∇ψ(Y )) = n

� second-order cone K = {y ∈ Rn+1 | (y21 + · · ·+ y2n)1/2 ≤ yn+1}:

ψ(y) =
2

y2n+1 − y21 − · · · − y2n


−y1

...
−yn
yn+1

 , yT∇ψ(y) = 2
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Logarithmic barrier and central path

logarithmic barrier for f1(x) �K1 0, . . . , fm(x) �Km 0:

φ(x) = −
m∑
i=1

ψi(−fi(x)), domφ = {x | fi(x) ≺Ki
0, i = 1, . . . ,m}

� ψi is generalized logarithm for Ki, with degree θi

� φ is convex, twice continuously differentiable

central path: {x?(t) | t > 0} where x?(t) solves

minimize tf0(x) + φ(x)
subject to Ax = b
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Dual points on central path

x = x?(t) if there exists w ∈ Rp,

t∇f0(x) +

m∑
i=1

Dfi(x)T∇ψi(−fi(x)) +ATw = 0

(Dfi(x) ∈ Rki×n is derivative matrix of fi)

� therefore, x?(t) minimizes Lagrangian L(x, λ?(t), ν?(t)), where

λ?i (t) =
1

t
∇ψi(−fi(x?(t))), ν?(t) =

w

t

� from properties of ψi: λ
?
i (t) �K∗i

0, with duality gap

f0(x
?(t))− g(λ?(t), ν?(t)) = (1/t)

m∑
i=1

θi

A. d’Aspremont. Convex Optimization M2. 29/36



example: semidefinite programming (with Fi ∈ Sp)

minimize cTx
subject to F (x) =

∑n
i=1 xiFi +G � 0

� logarithmic barrier: φ(x) = log det(−F (x)−1)

� central path: x?(t) minimizes tcTx− log det(−F (x)); hence

tci −Tr(FiF (x?(t))−1) = 0, i = 1, . . . , n

� dual point on central path: Z?(t) = −(1/t)F (x?(t))−1 is feasible for

maximize Tr(GZ)
subject to Tr(FiZ) + ci = 0, i = 1, . . . , n

Z � 0

� duality gap on central path: cTx?(t)−Tr(GZ?(t)) = p/t
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Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ε > 0.

repeat

1. Centering step. Compute x?(t) by minimizing tf0 + φ, subject to Ax = b.
2. Update. x := x?(t).
3. Stopping criterion. quit if (

∑
i θi)/t < ε.

4. Increase t. t := µt.

� only difference is duality gap m/t on central path is replaced by
∑

i θi/t

� number of outer iterations: ⌈
log((

∑
i θi)/(εt

(0)))

logµ

⌉

� complexity analysis via self-concordance applies to SDP, SOCP
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Examples

second-order cone program (50 variables, 50 SOC constraints in R6)

Newton iterations

d
u
a
li
ty

g
a
p

µ = 2µ = 50 µ = 200

0 20 40 60 80

10−6

10−4

10−2

100

102

µ

N
ew

to
n
it
er
a
ti
o
n
s

20 60 100 140 180
0

40

80

120

semidefinite program (100 variables, LMI constraint in S100)

Newton iterations
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family of SDPs (A ∈ Sn, x ∈ Rn)

minimize 1Tx
subject to A+ diag(x) � 0

n = 10, . . . , 1000, for each n solve 100 randomly generated instances
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Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

� update primal and dual variables at each iteration; no distinction between inner
and outer iterations

� often exhibit superlinear asymptotic convergence

� search directions can be interpreted as Newton directions for modified KKT
conditions

� can start at infeasible points

� cost per iteration same as barrier method
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Interior-point methods: summary

� Interior point methods (IPM) are very reliable on small scale problems.

◦ Example: SDP of dimension 100, SOCP with less than a thousand variables.

◦ Most conic problems with a couple of hundred variables can formulated and
solved very quickly using preprocessors such as CVX.

� IPM often efficient on larger problems if KKT system has some structure
(sparsity, blocks, etc).

◦ Large scale linear programs with thousands of variables are routinely solved
by free or commercial solvers using IPM (e.g. SDPT3, MOSEK, GLPK,
CPLEX, etc.).

◦ Much larger sparse LPs can also be solved efficiently using the same
techniques.

� Not workable for very large problems.

◦ For some problems, e.g. semidefinite programs, exploiting structure in IPM
is hard.

◦ First order methods (using the gradient only) seem to be the only option for
extremely large problems
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Semidefinite programming: CVX

Solving the maxcut relaxation

max. Tr(XC)
s.t. diag(X) = 1

X � 0,

is written as follows in CVX/MATLAB

cvx begin

. variable X(n,n) symmetric

. maximize trace(C*X)

. subject to

. diag(X)==1

. X==semidefinite(n)

cvx end
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