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Abstract

We propose a method for support vector machine classification using indefinite kernels. In-
stead of directly minimizing or stabilizing a nonconvex loss function, our algorithm simultane-
ously computes support vectors and a proxy kernel matrix used in forming the loss. This can be
interpreted as a penalized kernel learning problem where indefinite kernel matrices are treated
as a noisy observations of a true Mercer kernel. Our formulation keeps the problem convex and
relatively large problems can be solved efficiently using the projected gradient or analytic center
cutting plane methods. We compare the performance of our technique with other methods on
several classic data sets.

1 Introduction

A critical step in support vector machine (SVM) classification is choosing a suitable kernel. The
kernel measures similarity between data points and must be positive semidefinite, i.e. satisfy
Mercer’s condition, because it is formed as the Gram matrix of data points in a reproducing
kernel Hilbert space. This condition makes the classification problem convex and preserves strong
duality between the support vector machine and maximum margin classification problems. Here,
we present an algorithm for SVM classification using indefinite kernels, i.e. kernels which do not
satisfy Mercer’s positive semidefiniteness condition.

Our interest in indefinite kernels is motivated by several observations. First, certain similar-
ity measures take advantage of application-specific structure in the data and often display excel-
lent empirical classification performance. Unlike popular kernels used in support vector machine
classification, these similarity matrices are often indefinite, so do not necessarily correspond to a
reproducing kernel Hilbert space (see [1] for a discussion).

In particular, an application of classification with indefinite kernels to image classification using
Earth Mover’s Distance was discussed in [2]. Similarity measures for protein sequences such as the
Smith-Waterman and BLAST scores are indefinite yet have provided hints for constructing useful
positive semidefinite kernels such as those decribed in [3] or have been transformed into positive
semidefinite kernels with good empirical performance (see [4] for example). Tangent distance simi-
larity measures, as described in [5] or [6], are invariant to various simple image transformations and
have also shown excellent performance in optical character recognition. Finally, it is sometimes
impossible to prove that some kernels satisfy Mercer’s condition or the numerical complexity of
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evaluating the exact positive kernel is too high and a proxy (and not necessarily positive semidef-
inite) kernel has to be used instead (see [7] for example). In both cases, our method allows us to
bypass these limitations. Our objective here is to directly use these indefinite similarity measures
for classification.

Our work closely follows in spirit recent results on kernel learning (see [8] or [9]), where the kernel
matrix is learned as a linear combination of given kernels, and the result is explicitly constrained
to be positive semidefinite. While this problem is numerically challenging, [10] adapted the SMO
algorithm to solve the case where the kernel is written as a positively weighted combination of other
kernels. Here, we never numerically optimize the kernel matrix because this part of the problem
can be solved explicitly, which means that the complexity of our method is substantially lower than
that of classical kernel learning algorithms and closer in practice to the algorithm used in [11], who
formulate the multiple kernel learning problem of [10] as a semi-infinite linear program and solve
it with a column generation technique similar to the analytic center cutting plane method we use
here.

1.1 Current results

Several methods have been proposed for dealing with indefinite kernels in SVMs. A first direction
embeds data in a pseudo-Euclidean (pE) space: [12], for example, formulates the classification
problem with an indefinite kernel as that of minimizing the distance between convex hulls formed
from the two categories of data embedded in the pE space. The nonseparable case is handled in
the same manner using reduced convex hulls (see [13] for a discussion on geometric interpretations
in SVM).

Another direction applies direct spectral transformations to indefinite kernels: flipping the
negative eigenvalues or shifting the eigenvalues and reconstructing the kernel with the original
eigenvectors in order to produce a positive semidefinite kernel (see [14] and [2] for example). Yet
another option is to reformulate either the maximum margin problem or its dual in order to use the
indefinite kernel in a convex optimization problem. One reformulation suggested in [15] replaces
the indefinite kernel by the identity matrix and maintains separation using linear constraints. This
method achieves good performance, but the convexification procedure is hard to interpret. Directly
solving the nonconvex problem sometimes gives good results as well (see [16] and [12]) but offers
no guarantees on performance.

1.2 Contributions

In this work, instead of directly transforming the indefinite kernel, we simultaneously learn the
support vector weights and a proxy Mercer kernel matrix by penalizing the distance between this
proxy kernel and the original, indefinite one. Our main result is that the kernel learning part of that
problem can be solved explicitly, meaning that the classification problem with indefinite kernels
can simply be formulated as a perturbation of the positive semidefinite case.

Our formulation can be interpreted as a penalized kernel learning problem with uncertainty
on the input kernel matrix. In that sense, indefinite similarity matrices are seen as noisy observa-
tions of a true positive semidefinite kernel and we learn a kernel that increases the generalization
performance. From a complexity standpoint, while the original SVM classification problem with
indefinite kernel is nonconvex, the penalization we detail here results in a convex problem, hence
can be solved efficiently with guaranteed complexity bounds. This paper builds on the earlier con-
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ference version [17], providing new results on learning with Mercer kernels, more efficient algorithm
formulations and experiments on a broader set of experiments on similarity measures.

The paper is organized as follows. In Section 2 we formulate our main classification result
and detail its interpretation as a penalized kernel learning problem. In Section 3 we describe two
algorithms for solving this problem. Finally, in Section 4, we test the numerical performance of
these methods on various data sets.

Notation

We write Sn (Sn
+) the set of symmetric (positive-semidefinite) matrices of size n. The vector e is

the n-vector of ones. Given a matrix X, λi (X) denotes the ith eigenvalue of X. X+ is the positive
part of the matrix X, i.e. X+ =

∑

i max(0, λi)viv
T
i where λi and vi are the ith eigenvalue and

eigenvector of the matrix X.

2 SVM with indefinite kernels

In this section, we modify the SVM kernel learning problem and formulate a penalized kernel
learning problem on indefinite kernels. We also detail how our framework applies to kernels that
satisfy Mercer’s condition.

2.1 Kernel learning

Let K ∈ Sn be a given kernel matrix and y ∈ Rn be the vector of labels, with Y = diag(y) the
matrix with diagonal y. We formulate the kernel learning problem as in [8] where the authors
minimize an upper bound on the misclassification probability when using SVM with a given kernel
K. This upper bound is the generalized performance measure:

ωC(K) = max
{0≤α≤C,αT y=0}

αT e − Tr(K(Y α)(Y α)T )/2 (1)

where α ∈ Rn and C is the SVM misclassification penalty. This is also the classic 1-norm soft
margin SVM problem. They show that ωC(K) is convex in K and solve problems of the form:

min
K∈K

ωC(K) (2)

in order to learn an optimal kernel K∗ that achieves good generalization performance. When
K is restricted to convex subsets of Sn

+ with constant trace, they show that problem (2) can
be reformulated as a convex program. Further restrictions to K reduce (2) to more tractable
optimization problems such as semidefinite and quadratically constrained quadratic programs. Our
goal is to solve a problem similar to (2) by restricting the distance between a proxy kernel used in
classification and the original indefinite similarity measure.

2.2 Learning from indefinite kernels

The performance measure in (1) is the dual of the SVM classification problem with hinge loss and
quadratic penalty. When K is positive semidefinite, this problem is a convex quadratic program.
Suppose now that we are given an indefinite kernel matrix K0 ∈ Sn. We formulate a new instance of
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problem (2) by restricting K to be a positive semidefinite kernel matrix in some given neighborhood
of the original (indefinite) kernel matrix K0 and solve:

min
{K�0, ‖K−K0‖2

F
≤β}

max
{αT y=0, 0≤α≤C}

αT e −
1

2
Tr(K(Y α)(Y α)T )

in the variables K ∈ Sn and α ∈ Rn, where the parameter β > 0 controls the distance between
the original matrix K0 and the proxy kernel K. This is the kernel learning problem (2) with
K = {K � 0, ‖K − K0‖

2
F ≤ β}. The above problem is infeasible for small values of β, so we

replace here the hard constraint on K by a penalty on the distance between the proxy kernel and
the original indefinite similarity matrix and solve instead:

min
{K�0}

max
{αT y=0, 0≤α≤C}

αT e −
1

2
Tr(K(Y α)(Y α)T ) + ρ‖K − K0‖

2
F (3)

Because (3) is convex-concave and has a compact feasible set, we can switch the max and min to
form the dual:

max
{αT y=0,0≤α≤C}

min
{K�0}

αT e −
1

2
Tr(K(Y α)(Y α)T ) + ρ‖K − K0‖

2
F (4)

in the variables K ∈ Sn and α ∈ Rn, where the parameter ρ > 0 controls the magnitude of the
penalty on the distance between K and K0.

We first note that problem (4) is a convex optimization problem. The inner minimization
problem is a convex conic program on K. Also, as the pointwise minimum of a family of concave
quadratic functions of α, the solution to the inner problem is a concave function of α, hence the
outer optimization problem is also convex (see [18] for further details). Thus, (4) is a concave
maximization problem subject to linear constraints and is therefore a convex problem in α. Our
key result here is that the inner kernel learning optimization problem in (4) can be solved in closed
form.

Theorem 1 Given a similarity matrix K0 ∈ Sn, a vector α ∈ Rn of support vector coefficients
and the label matrix Y = diag(y), the optimal kernel in problem (4) can be computed explicitly as:

K∗ = (K0 + (1/4ρ)(Y α)(Y α)T )+ (5)

where ρ ≥ 0 controls the penalty.

Proof. For a fixed α, the inner minimization problem can be written out as:

min
{K�0}

αT e + ρ(Tr(KT K) − 2Tr(KT (K0 +
1

4ρ
(Y α)(Y α)T )) + Tr(KT

0 K0))

where we have replaced ‖K−K0‖
2
F = Tr((K−K0)

T (K−K0)) and collected similar terms. Adding
and subtracting the constant ρTr((K0+ 1

4ρ(Y α)(Y α)T )T (K0+ 1

4ρ(Y α)(Y α)T )) shows that the inner
minimization problem is equivalent to the following problem:

minimize ‖K − (K0 + 1

4ρ(Y α)(Y α)T )‖2
F

subject to K � 0
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in the variable K ∈ Sn where we have dropped remaining constants from the objective. This is
the projection of the matrix K0 + (1/4ρ)(Y α)(Y α)T on the cone of positive semidefinite matrices
which yields the desired result.

Plugging the explicit solution for the proxy kernel derived in (5) into the classification prob-
lem (4), we get:

max
{αT y=0, 0≤α≤C}

αT e −
1

2
Tr(K∗(Y α)(Y α)T ) + ρ‖K∗ − K0‖

2
F (6)

in the variable α ∈ Rn, where (Y α)(Y α)T is the rank one matrix with coefficients yiαiαjyj. Problem
(6) can be cast as an eigenvalue optimization problem in the variable α. Letting the eigenvalue
decomposition of K0 + (1/4ρ)(Y α)(Y α)T be V DV T , we get K∗ = V D+V T , and with vi the ith

column of V , we can write:

Tr(K∗(Y α)(Y α)T ) = (Y α)T V D+V T (Y α)

=
∑

i

max

(

0, λi

(

K0 +
1

4ρ
(Y α)(Y α)T

))

(αT Y vi)
2.

Using the same technique, we can also rewrite the term ‖K∗ − K0|
2
F using this eigenvalue decom-

position. Our original optimization problem (4) finally becomes:

maximize αT e − 1

2

∑

i max(0, λi(K0 + (Y α)(Y α)T /4ρ))(αT Y vi)
2

+ρ
∑

i (max(0, λi(K0 + (Y α)(Y α)T /4ρ)))2

−2ρ
∑

i Tr((viv
T
i )K0)max(0, λi(K0 + (Y α)(Y α)T /4ρ)) + ρTr(K0K0)

subject to αT y = 0, 0 ≤ α ≤ C

(7)

in the variable α ∈ Rn. By construction, the objective function is concave, hence (7) is a convex
optimization problem in α.

2.3 Interpretation

Our explicit solution of the optimal kernel given in (5) is the projection of a penalized rank-one
update to the indefinite kernel on the cone of positive semidefinite matrices. As ρ tends to infinity,
the rank-one update has less effect and in the limit, the optimal kernel is the kernel given by
zeroing out the negative eigenvalues of the indefinite kernel. This means that if the indefinite
kernel contains a very small amount of noise, the best positive semidefinite kernel to use with SVM
in our framework is the positive part of the indefinite kernel.

This limit as ρ tends to infinity also motivates a heuristic for transforming the kernel on the
testing set. Since negative eigenvalues in the training kernel are thresholded to zero in the limit,
the same transformation should occur for the test kernel. Hence, to measure generalization perfor-
mance, we update the entries of the full kernel corresponding to training instances by the rank-one
update resulting from the optimal solution to (7) and threshold the negative eigenvalues of the full
kernel matrix to zero to produce a Mercer kernel on the test set.
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2.4 Dual problem

As discussed above, problems (3) and (4) are dual. The inner maximization in problem (3) is a
quadratic program in α, whose dual is another quadratic minimization problem. This allows us to
write (3) as a joint minimization problem:

minimize Tr(K−1(Y (e − λ + µ + yν))(Y (e − λ + µ + yν))T )/2 + CµT e + ρ‖K − K0‖
2
F

subject to K � 0, λ, µ ≥ 0
(8)

in the variables K ∈ Sn, λ, µ ∈ Rn and ν ∈ R. This is a quadratic program in the variables λ, µ
(which correspond to the constraints 0 ≤ α ≤ C) and ν (which is the dual variable for the constraint
αT y = 0). As we have seen earlier, any feasible solution α ∈ Rn produces a corresponding proxy
kernel in (5). Plugging this kernel into problem (8) allows us to compute an upper bound on the
optimum value of problem (4) by solving a simple quadratic program in the variables λ, µ, ν. This
result can then be used to bound the duality gap in (7) and track convergence.

2.5 Learning from Mercer kernels

While our central motivation is to use indefinite kernels for SVM classification, one would also
like to analyze what happens when a Mercer kernel is used as input in (4). In this case, we
learn another kernel that decreases the upper bound on generalization performance and produces
perturbed support vectors. We can again interpret the input as a noisy kernel, and as such, one
that will achieve suboptimal performance. If the input kernel is the best kernel to use (i.e. is not
noisy), we will observe that our framework achieves optimal performance as ρ tends to infinity
(through cross validation), otherwise we simply learn a better kernel using a finite ρ.

When the similarity measure K0 is positive semidefinite (i.e. satisfies Mercer’s condition), the
proxy kernel K∗ in Theorem 1 simplifies to a rank-one update of K0:

K∗ = K0 + (1/4ρ)(Y α∗)(Y α∗)T (9)

whereas, for indefinite K0, the solution was to project this matrix on the cone of positive semidefinite
matrices. Plugging (9) into problem (4) gives:

max
{αT y=0, 0≤α≤C}

αT e −
1

2
Tr(K0(Y α)(Y α)T ) −

1

16ρ

∑

i,j

(αiαj)
2 (10)

which is the classic SVM problem given in (1) with a fourth order penalty on the support vectors.
For testing in this framework, we do not need to transform the kernel, only the support vectors
are perturbed. In this case, computing the gradient no longer requires eigenvalue decompositions
at each iteration. Experimental results are shown in Section 4.

2.6 Componentwise penalties

Indefinite SVM can be generalized further with componentwise penalties on the distance between
the proxy kernel and the indefinite kernel K0. We generalize problem (4) to:

max
{αT y=0,0≤α≤C}

min
{K�0}

αT e −
1

2
Tr(K(Y α)(Y α)T ) +

∑

i,j

Hij(Kij − K0ij)
2 (11)
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where H is now a matrix of varying penalties on the componentwise distances. For a specific class
of penalties, the optimal kernel K∗ can be derived explicitly as follows.

Theorem 2 Given a similarity matrix K0 ∈ Sn, a vector α ∈ Rn of support vector coefficients and
the label matrix Y = diag(y), when H is rank-one with Hij = hihj , the optimal kernel in problem
(11) has the explicit form:

K∗ = W−1/2((W 1/2(K0 +
1

4
(W−1/2Y α∗)(W−1/2Y α∗)T )W 1/2)+)W−1/2 (12)

where W is the diagonal matrix with Wii = hi.

Proof. The inner minimization problem to problem (11) can be written out as:

min
{K�0}

∑

i,j

Hij(K
2
ij − 2KijK0ij + K2

0ij) −
1

2

∑

i,j

yiyjαiαjKi,j

Adding and subtracting
∑

i,j Hij(K0ij + 1

4Hij
yiyjαiαj)

2, combining similar terms, and removing

remaining constants leaves the following:

minimize ‖H1/2 ◦ (K − (K0 + 1

4H ◦ (Y α)(Y α)T ))‖2
F

subject to K � 0

where ◦ denotes the Hardamard product, (A ◦ B)ij = aijbij, and (H1/2)ij = H
1/2

ij . This is a

weighted projection problem where Hij is the penalty on (Kij − K0ij)
2. Since H is rank-one, the

result follows from Theorem 3.2 of [19].

Notice that Theorem 2 is a generalization of Theorem 1 where we had H = eeT . In constructing
a rank-one penalty matrix H, we simply assign penalties to each training point. The componentwise
penalty formulation can also be extended to true kernels. If K0 � 0, then K∗ in Theorem 2 simplifies
to a rank-one update of K0:

K∗ = K0 +
1

4
(W−1/2Y α)(W−1/2Y α)T . (13)

where no projection is required here.

3 Algorithms

We now detail two algorithms that can be used to solve problem (7), which maximizes a nondiffer-
entiable concave function subject to convex constraints. An optimal point always exists since the
feasibile set is bounded and nonempty. For numerical stability, in both algorithms, we quadratically
smooth our objective to compute a gradient. We first describe a simple projected gradient method
which has numerically cheap iterations but no fully explicit complexity bound. We then show how
to apply the analytic center cutting plane method whose iterations are numerically more complex
but which converges linearly.
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Smoothing Our objective contains terms of the form max{0, f(x)} for some function f(x), which
are not differentiable (described in the section below). These functions are easily smoothed out
by a Moreau-Yosida regularization technique (see [20] for example). We replace the max by a
continuously differentiable ǫ

2
-approximation as follows:

ϕǫ(f(x)) = max
0≤u≤1

(uf(x) −
ǫ

2
u2).

The gradient is then given by ∇ϕǫ(f(x)) = u∗(x)∇f(x) where u∗(x) = argmax ϕǫ(f(x)).

Gradient Calculating the gradient of the objective function in (7) requires computing the eigen-
value decomposition of a matrix of the form X(α) = K+ρααT . Given a matrix X(α), the derivative
of the ith eigenvalue with respect to α is then given by:

∂λi(X(α))

∂α
= vT

i

∂X(α)

∂α
vi (14)

where vi is the ith eigenvector of X(α). We can then combine this expression with the smooth
approximation above to get the gradient.

3.1 Computing proxy kernels

Because the proxy kernel in (5) only requires a rank one update of a (fixed) eigenvalue decomposi-
tion:

K∗ = (K0 + (1/4ρ)(Y α)(Y α)T )+

we now briefly recall how vi and λi(X(α)) can be computed efficiently in this case (see [21] for
further details). We refer the reader to [22] for another kernel learning example using this method.
Given the eigenvalue decomposition X = V DV T , by changing basis this problem can be reduced
to the decomposition of the diagonal plus rank-one matrix, D + ρuuT , where u = V T α. First, the
updated eigenvalues are determined by solving the secular equations:

det(D + ρuuT − λI) = 0,

which can be done in O(n2). While there is an explicit solution for the eigenvectors corresponding to
these eigenvalues, they are not stable because the eigenvalues are approximated. This instability is
circumvented by computing a vector û such that approximate eigenvalues λ are the exact eigenvalues
of the matrix D + ρûûT , then computing its stable eigenvectors explicitly, where both steps can
be done in O(n2) time. The key is that D + ρûûT is close enough to our original matrix so
that the eigenvalues and eigenvectors are stable approximations of the true values. Finally, the
eigenvectors of our original matrix are computed as V W , with W as the stable eigenvectors of
D + ρûûT . Updating the eigenvalue decomposition is reduced to an O(n2) procedure plus one
matrix multiplication, which is then the complexity of one gradient computation.

We note that eigenvalues of symmetric matrices are not differentiable when some of them have
multiplicities greater than one (see [23] for a discussion). Most kernels tested here were of full rank
with distinct eigenvalues however.

8



3.2 Projected gradient method

The projected gradient method takes a steepest descent step, then projects the new point back onto
the feasible region (see [24] for example). We choose an initial point α0 ∈ Rn and the algorithm
proceeds as follows:

Projected gradient method

1. Compute αi+1 = αi + t∇f(αi).

2. Set αi+1 = pA(αi+1).

3. If gap ≤ ǫ stop, otherwise go back to step 1.

Here, we have assumed that the objective function is differentiable (after smoothing). The
method is only efficient if the projection step is numerically cheap. The complexity of each iteration
then breaks down as follows:
Step 1. This requires an eigenvalue decomposition that is computed in O(n2) plus one matrix
multiplication as described above. We note that a line search would be costly here because it
would require multiple eigenvalue decompositions to recalculate the objective multiple times.
Step 2. This is a projection onto the region A = {αT y = 0, 0 ≤ α ≤ C} and can be solved explicitly
by sorting the vector of entries, with cost O(n log n).
Stopping Criterion. We can compute a duality gap using the results of §2.4 where:

Ki = (K0 + (Y αi)(Y αi)
T /4ρ)+

is the candidate kernel at iteration i and we solve problem (1), which simply means solving a SVM
problem with the positive semidefinite kernel Ki, and produces an upper bound on (7), hence a
bound on the suboptimality of the current solution.
Complexity. The number of iterations required by this method to reach a target precision of ǫ
grows as O(1/ǫ2). See [25] for a complete discussion.

3.3 Analytic center cutting plane method

The analytic center cutting plane method (ACCPM) reduces the feasible region at each iteration
using a new cut computed by evaluating a subgradient of the objective function at the analytic
center of the current feasible set, until the volume of the reduced region converges to the target
precision. This method does not require differentiability. We set A0 = {αT y = 0, 0 ≤ α ≤ C}
which we can write as {A0 ≤ b0} to be our first localization set for the optimal solution. The
method then works as follows (see [24] for a more complete treatment of cutting plane methods):

Analytic center cutting plane method

1. Compute αi as the analytic center of Ai by solving:

αi+1 = argmin
y∈R

n
−

m
∑

i=1

log(bi − aT
i y)

where aT
i represents the ith row of coefficients from the left-hand side of {A0 ≤ b0}.
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2. Compute ∇f(x) at the center αi+1 and update the (polyhedral) localization set:

Ai+1 = Ai ∪ {∇f(αi+1)(α − αi+1) ≥ 0}

3. If gap ≤ ǫ stop, otherwise go back to step 1.

The complexity of each iteration breaks down as follows:
Step 1. This step computes the analytic center of a polyhedron and can be solved in O(n3)
operations using interior point methods for example.
Step 2. This simply updates the polyhedral description. It includes the gradient computation which
again is O(n2) plus one matrix multiplication.
Stopping Criterion. An upper bound is computed by maximizing a first order Taylor approximation
of f(α) at αi over all points in an ellipsoid that covers Ai, which can be computed explicitly.
Complexity. ACCPM is provably convergent in O(n log(1/ǫ)2) iterations when using cut elimination
which keeps the complexity of the localization set bounded. Other schemes are available with
slightly different complexities: a bound of O(n2/ǫ2) is achieved in [26] using (cheaper) approximate
centers for example.

3.4 Matlab Implementation

The two algorithms discussed here were implemented in Matlab for the cases of indefinite (In-
definiteSVM) and positive semidefinite (PerturbSVM) kernels and can be downloaded from the
authors’ webpages in a package called IndefiniteSVM. The ρ penalty parameter is one-dimensional
in the implementation. This package makes use of LIBSVM [27] to produce suboptimality bounds
and track convergence.

4 Experiments

In this section we compare the generalization performance of our technique to other methods apply-
ing SVM classification to indefinite similarity measures. We also examine classification performance
using Mercer kernels. We conclude with experiments showing convergence of our algorithms. All
experiments on Mercer kernels use the LIBSVM library.

4.1 Generalization with indefinite kernels

We compare our method for SVM classification with indefinite kernels to several kernel prepro-
cessing techniques discussed earlier. The first three techniques perform spectral transformations
on the indefinite kernel. The first, called denoise here, thresholds the negative eigenvalues to zero.
The second transformation, called flip, takes the absolute value of all eigenvalues. The last trans-
formation, shift, adds a constant to each eigenvalue making them all positive. See [14] for further
details. We also implemented an SVM modification (denoted Mod SVM ) suggested in [15] where a
nonconvex quadratic objective function is made convex by replacing the indefinite kernel with the
identity matrix. The kernel only appears in linear inequality constraints that separate the data.
Finally, we compare our results with a direct use of SVM classification on the original indefinite
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kernel (SVM converges but the solution is only a stationary point and is not guaranteed to be
optimal).

We first experiment on data from the USPS handwritten digits database [28] using the indefinite
simpson score and the one-sided tangent distance kernel to compare two digits. The tangent distance
is a transformation invariant measure - it assigns high similarity between an image and slightly
rotated or shifted instances - and is known to perform very well on this data set. Our experiments
symmetrize the one-sided tangent distance using the square of the mean tangent distance defined
in [6] and make it a similarity measure by negative exponentiation. We also consider the Simpson
score for this task which is much cheaper to compute (a ratio comparing binary pixels). We finally
analyze three data sets (diabetes, german and ala) from the UCI repository [29] using the indefinite
sigmoid kernel.

The data is randomly divided into training and testing data. We apply 5-fold cross validation
and use an accuracy measure (described below) to determine the optimal parameters C, ρ, and any
kernel inputs. We then train a model with the full training set and optimal parameters and test
on the independent test set.

Data Set # Train # Test λmin λmax

USPS-3-5-SS 767 773 -70.00 903.94

USPS-4-6-SS 829 857 -74.38 819.36

USPS-3-5-TD1 767 773 -0.03 32.70

USPS-4-6-TD1 829 857 -0.56 75.62

diabetes-sig 384 384 -584.64 6.88

german-sig 500 500 -0.32 24.99

a1a-sig 803 802 -1582.3 9.63

Table 1: Summary statistics for the various data sets used in our experiments. The USPS
data comes from the USPS handwritten digits database, the other data sets are taken from
the UCI repository. SS refers to the simpson kernel, TD1 to the one-sided tangent distance
kernel, and sig to the sigmoid kernel. Training and testing sets were divided randomly.
Notice that the simpson and sigmoid kernels are mostly highly indefinite while the one-sided
tangent distance kernel is nearly positive semidefinite. Statistics for sigmoid kernels refer
to the optimal kernel parameterized under cross validation with Indefinite SVM. Spectrums
are based on full kernel, i.e. combining training and testing data.

Table 1 provides summary statistics for these data sets, including the minimum and maximum
eigenvalues of the training similarity matrices. We observe that the simpson and sigmoid kernels
are highly indefinite while the the one-sided tangent distance kernel is nearly positive semidefinite.
The spectrum of sigmoid kernels varies greatly across examples because it is very sensitive to the
sigmoid kernel parameters. Table 2 compares accuracy and recall for denoise, flip, shift, modified
SVM, direct SVM and the indefinite SVM algorithm described in this work.

We observe that indefinite SVM performs favorably using highly indefinite similarity measures
(aside from recall for a1a), while, somewhat predictably, the performance is equal across all methods
when the kernels are not highly indefinite (the proxy kernel is very close to the original one).
As expected, classification using the tangent distance outperforms classification with the simpson
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score but, as mentioned above, the simpson score is cheaper to compute. We also note that other
documented classification results on this USPS data set perform multi-classification, while here we
only perform binary classification.

4.2 Generalization with Mercer kernels

Using this time linear and gaussian (Mercer) kernels on the USPS data set, we now compare
classification performance using regular SVM and the penalized kernel learning problem (10) of
Section 2.5, which we call PerturbSVM here. We also test these two techniques on Mercer kernels
formed using noisy data sets (created by adding uniformly distributed noise in the USPS data set),
in which case PerturbSVM can be seen as optimally denoised support vector classification. We
again cross-validate on a training set and test on the same independent group of examples used in
the experiments above. The results are summarized in Table 3.

These results show that PerturbSVM performs at least as well in almost all cases. As expected,
noise decreased generalization performance in all experiments. When performance is comparable, ρ
is chosen to be very high implying no perturbation is necessary. Except in the USPS-3-5-gaussian
example, the value of ρ selected was not the highest possible for each test where PerturbSVM
outperforms SVM in at least one measure; this implies that the support vectors were perturbed to
improve classification. Overall, when zero or moderate noise is present, PerturbSVM does improve
performance over regular SVM. When too much noise is present however (pixel data with range
in [−1, 1] was modified with uniform noise in [−2, 2] before the data was normalized to [0,1]), the
performance of both techniques is comparable.

4.3 Convergence

We ran our two algorithms on data sets created by randomly perturbing the four USPS data sets
used above. Average results and standard deviation are displayed in Figure 1 in semilog scale (note
that the codes were not stopped here to show convergence, but duality gap improvement targets
are usually much smaller than 10−8). As expected, ACCPM converges much faster (in fact linearly)
to a higher precision while each iteration requires solving a linear program of size n. The gradient
projection method converges faster in the beginning but stalls at higher precision, however each
iteration only requires a rank one update on an eigenvalue decomposition.

We finally examine the computing time of Indefinite SVM using the projected gradient method.
Figure 2 shows total runtime (left) and average iteration runtime (right) for varying problem dimen-
sions on an example from the USPS data with simpson kernel. Note that the number of iterations
required varies widely (between 200 and 1000 iterations in this experiment) as a function of ρ, C,
the chosen kernel and the stepsize.

5 Conclusion

We have proposed a technique for support vector machine classification with indefinite kernels,
using a proxy kernel which can be computed explicitly. We also show how this framework can be
used to improve generalization performance with potentially noisy Mercer kernels. We give two
provably convergent algorithms for solving this problem on relatively large data sets. Our initial
experiments show that our method fares quite favorably compared to other techniques handling
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Figure 1: Convergence plots for ACCPM (left) & projected gradient method (right) on
randomly perturbed USPS data sets (average gap versus iteration number, dashed lines at
plus and minus one standard deviation). ACCPM converges linearly to a higher precision
while the gradient projection method converges faster in the beginning but stalls at a higher
precision.

indefinite kernels in the SVM framework and, in the limit, provides a clear interpretation for some
of these heuristics.
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Data Set Measure Denoise Flip Shift Mod SVM SVM Indefinite SVM

USPS-3-5-SS
Accuracy 95.47 95.73 90.43 95.21 69.47 95.99

Recall 94.50 95.46 92.11 95.22 67.94 96.41

USPS-3-5-TD1
Accuracy 97.41 97.41 97.41 97.28 97.41 97.41

Recall 96.41 96.41 96.41 95.69 96.41 96.41

USPS-4-6-SS
Accuracy 98.25 98.25 94.28 97.90 84.36 98.0

Recall 98.87 99.32 93.68 98.65 81.72 99.32

USPS-4-6-TD1
Accuracy 98.60 98.60 98.60 98.25 98.60 98.60

Recall 100.0 100.0 100.0 100.0 100.0 100.0

diabetes-sig
Accuracy 74.22 71.62 74.74 72.14 73.44 71.62

Recall 81.20 83.20 84.00 76.00 79.60 86.40

german-sig
Accuracy 71.00 70.80 76.40 73.20 71.80 76.40

Recall 70.86 70.29 90.57 75.14 72.29 90.86

a1a-sig
Accuracy 81.42 80.92 81.92 80.92 81.42 82.92

Recall 80.20 61.93 53.30 69.54 80.20 38.07

Table 2: Indefinite SVM performs favorably for the highly indefinite simpson and sigmoidal
kernels. Performance is equivalent for the nearly positive semidefinite one-sided tangent
distance kernel. The performance measures are: Accuracy = TP+TN

TP+TN+FP+FN
and Recall =

TP

TP+FN
.

Unperturbed Noisy

Data Set Measure SVM Perturb SVM SVM Indefinite SVM

USPS-3-5-linear
Accuracy 95.60 96.51 89.13 90.17

Recall 94.74 96.41 85.89 90.91

USPS-4-6-linear
Accuracy 98.60 98.60 95.80 95.80

Recall 98.87 98.87 95.71 95.71

USPS-3-5-gaussian
Accuracy 97.41 97.93 88.88 88.88

Recall 97.13 98.09 89.00 89.47

USPS-4-6-gaussian
Accuracy 99.18 99.18 95.45 95.57

Recall 99.32 99.32 95.71 95.92

Table 3: Performance measures for USPS data using linear and gaussian kernels. Unper-
turbed refers to classification of the original data and Noisy refers to classification of data
that is perturbed by uniform noise. Perturb SVM perturbs the support vectors to improve
generalization. However, performance is lower for both techniques in the presence of high
noise.
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