Maximum Margin Matrix Factorization using
Smooth Semidefinite Optimization

Alexandre d’Aspremont, Nathan Srebro

ORFE, Princeton University & CS, University of Toronto

Thanks to Yurii Nesterov for numerous suggestions!

A. d'Aspremont, INFORMS, Nov. 13 2005.



Introduction

e Users assign ratings to a certain number of movies:
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e Objective: make recommendations for other movies. . .
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Collaborative prediction

e Infer user preferences and movie features from user ratings.

e \We use a linear prediction model:

T

rating;; = u; v;

where u; represents user characteristics and v; movie features.
e This makes collaborative prediction a matrix factorization problem

e Overcomplete representation. . .
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Collaborative prediction
e Inputs: a matrix of ratings M;; = {—1,+1} for (i,j) € S, where S is a
subset of all possible user/movies combinations.
e We look for a linear model by factorizing M € R"*™ as:
M=U"V

where U € R™"*k represents user characteristics and V' € R*>™ movie
features.

e Parsimony. .. \We want k£ to be as small as possible.

e Output: a matrix X € R"*" which is a low-rank approximation of the
ratings matrix M.
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Least-Squares

e Choose Means Squared Error as measure of discrepancy.

e Suppose S is the full set, our problem becomes:
min 1X — M|?

{X: Rank(X)=k}

e This is just a singular value decomposition (SVD). . .

Problem: Not true when S is not the full set (partial observations). Also,
MSE not a good measure of prediction performance. . .
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Soft Margin

minimize Rank(X)+c¢ )  max(0,1 — X;;M;;)
(i,7)€S
non-convex and numerically hard. . .

e Relaxation result in Fazel, Hindi & Boyd (2001): replace Rank(X) by its
convex envelope on the spectahedron to solve:

minimize || X« + ¢ Z max(0,1 — X;; M;;)
(2,5)€S

where || X || is the nuclear norm, i.e. sum of the singular values of X.

e Srebro (2004): This relaxation also corresponds to multiple large margin
SVM classifications.
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Soft Margin

e The dual of this program:
maximize ) ;. Y,
subject to ||Y © M2 <1
0<Y;; <c

in the variable Y € R"*™, where Y ® M is the Schur (componentwise)
product of Y and M and ||Y |2 the largest singular value of Y.

e This problem is sparse: Y = c for (i, j) € S°
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Semidefinite Program

e How do we solve it?

e Rewrite the dual
maximize ) ;. Yi;
subject to ||Y @ M2 <1

0<Y;;<c
as:
maximize ) ;. Yi;
subject to v é M)T _(YI@ M) =~ 0
0<Y;; <c

which is a sparse semidefinite program in Y € R"*"".
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Complexity

Complexity?

e Small subset S: the dual in Y is sparse, primal (in ratings X) is dense.
e Interior point solvers work fine for problem sizes up to 400...

e \We need to solve much larger instances.

e High precision is not necessary. . .
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Smoothing Technique

e Solution, formulate this as a saddle problem using binary search:

minimize ~ Amax ([ _(YéM)T _(YI@M) D

subject to ), Yi; =1
0<Y;;<c

for some ¢t > 0.

e Use the smoothing technique in Nesterov (2005): first-order algorithm
with optimal complexity of O(1/e¢).

e Homogeneity means we also get a solution to:
maximize .. Y

subject to ||Y @ M2 <1
0<Y;; <c*
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Nesterov’'s method

Assuming problem has a particular min-max structure:

e Regularization. Add strongly convex penalty inside the min-max
representation to produce an e-approximation of f with Lipschitz
continuous gradient (generalized Moreau-Yosida regularization step, see
Lemaréchal & Sagastizabal (1997) for example).

e Optimal first order minimization. Use optimal first order scheme for
Lipschitz continuous functions detailed in Nesterov (1983) to the solve
the regularized problem.

Caveat: Only efficient if the subproblems involved in these steps can be
solved explicitly or very efficiently. . . Change of granularity: larger number of
cheaper iterations.
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Regularization

Replace \™#*(X') by

For a good choice of u:

e f,(X) is an e-approximation of f.

e f,(X) has a Lipschitz continuous gradient with constant L = O(1/e).
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First-Order Minimization

The minimization algorithm in Nesterov (1983) then involves the following
steps:

Choose € > 0 and set Xy = (1, For k =0,...,N(¢) do

1. Compute f, and Vf,

2. Find
Y, = argminy {Tr(Vf(Xp)(Y — Xg)) + 2L ||Y — Xil|% : YV € O}

3. Find 7, =
arg min x {L€62||XH +F TR (VAX) (X — X))« X € Ql}.

4. Update X = kL—l—SZk + Z—iéyk
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Numerical Cost

At each iteration:

e Step 1: computes f and V f and is a (full) eigenvalue decomposition (in
fact SVD here, because of structure)

e Step 2 & 3: involve projections on a the set:
Q1 ={Y: Zinij:t: OSY’USC}
and are numerically easy.

Complexity, i.e. maximum number of iterations to reach absolute precision ¢

4v/m + n + mnc?

€

with each iteration (roughly) costing O(mn? + n?).
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Numerical Results

e No movies to recommend but. . .

e Compare CPU time and memory usage for CSDP and smooth
optimization code.

e Both codes are C/MEX with calls to (dense) LAPACK/BLAS.
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Numerical Results
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Figure 1: CPU time and memory usage versus n.
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Numerical Results

Large scale tests on a 3,06 Ghz CPU with 2Gb RAM:

n 1% observed

10% observed

50% observed

100 2 sec
178 2 sec
316 19 sec

562 3:27 min
1000 34:35 min
1778  5:44:07 hours
3162 57:23:09 hours
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3 sec
18 sec
2:34 min
3:37 min
41:15 min
6:40:06 hours
67:35:34 hours

10 sec
35 sec
2:41 min
19:11 min
1:35:28 hours
19:09:49 hours
62:12:21 hours

17



References

Fazel, M., Hindi, H. & Boyd, S. (2001), ‘A rank minimization heuristic with
application to minimum order system approximation’, Proceedings
American Control Conference 6, 4734-4739.

Lemaréchal, C. & Sagastizabal, C. (1997), ‘Practical aspects of the
Moreau-Yosida regularization: theoretical preliminaries’, SIAM Journal
on Optimization 7(2), 367-385.

Nesterov, Y. (1983), ‘A method of solving a convex programming problem
with convergence rate O(1/k?)’, Soviet Mathematics Doklady
27(2), 372-376.

Nesterov, Y. (2005), ‘Smooth minimization of nonsmooth functions’,
Mathematical Programming, Series A 103, 127-152.

Srebro, N. (2004), Learning with Matrix Factorization, PhD thesis,
Massachusetts Institute of Technology.

A. d'Aspremont, INFORMS, Nov. 13 2005. 18



