Maximum Margin Matrix Factorization using Smooth Semidefinite Optimization

Alexandre d'Aspremont, Nathan Srebro

ORFE, Princeton University & CS, University of Toronto

Thanks to Yurii Nesterov for numerous suggestions!

Introduction

• Users assign *ratings* to a certain number of movies:

												21
Users		2		1			4				5	
		2 5		4				?		1		3
			3		5			2				
	4		*	?			5		3		?	
			4		1	3				5		
				2				1	?			4
		1					5		5		4	
			2		?	5		?		4		
		3		3		1		5		2		1
		3				1			2		3	
		4			5	1			3			
			3				3	?			5	
	2	?		1	ř	1						
			5			2	?		4		4	
		1		3		1	5		4		4 5 ?	
	1		2			4				5	?	
					V	10	vi	es				

• Objective: make recommendations for other movies. . .

Collaborative prediction

- Infer user preferences and movie features from user ratings.
- We use a linear prediction model:

$$rating_{ij} = u_i^T v_j$$

where u_i represents user characteristics and v_i movie features.

- This makes collaborative prediction a matrix factorization problem
- Overcomplete representation. . .

Collaborative prediction

- Inputs: a matrix of ratings $M_{ij} = \{-1, +1\}$ for $(i, j) \in S$, where S is a subset of all possible user/movies combinations.
- We look for a linear model by factorizing $M \in \mathbf{R}^{n \times m}$ as:

$$M = U^T V$$

where $U \in \mathbf{R}^{n \times k}$ represents user characteristics and $V \in \mathbf{R}^{k \times m}$ movie features.

- ullet Parsimony. . . We want k to be as small as possible.
- **Output**: a matrix $X \in \mathbb{R}^{n \times m}$ which is a low-rank approximation of the ratings matrix M.

Least-Squares

- Choose Means Squared Error as measure of discrepancy.
- Suppose S is the full set, our problem becomes:

$$\min_{\{X: \operatorname{Rank}(X)=k\}} \|X - M\|^2$$

• This is just a *singular value decomposition* (SVD). . .

Problem: Not true when S is not the full set (partial observations). Also, MSE not a good measure of prediction performance. . .

Soft Margin

minimize
$$\operatorname{\mathbf{Rank}}(X) + c \sum_{(i,j) \in S} \max(0, 1 - X_{ij}M_{ij})$$

non-convex and numerically hard. . .

• Relaxation result in Fazel, Hindi & Boyd (2001): replace $\mathbf{Rank}(X)$ by its convex envelope on the spectahedron to solve:

minimize
$$||X||_* + c \sum_{(i,j) \in S} \max(0, 1 - X_{ij}M_{ij})$$

where $||X||_*$ is the *nuclear norm*, *i.e.* sum of the singular values of X.

 Srebro (2004): This relaxation also corresponds to multiple large margin SVM classifications.

Soft Margin

The dual of this program:

maximize
$$\sum_{ij} Y_{ij}$$
 subject to $\|Y \odot M\|_2 \le 1$ $0 \le Y_{ij} \le c$

in the variable $Y \in \mathbb{R}^{n \times m}$, where $Y \odot M$ is the Schur (componentwise) product of Y and M and $||Y||_2$ the largest singular value of Y.

• This problem is *sparse*: $Y_{ij}^* = c$ for $(i,j) \in S^c$

Semidefinite Program

- How do we solve it?
- Rewrite the dual

maximize
$$\sum_{ij} Y_{ij}$$
 subject to $\|Y \odot M\|_2 \le 1$ $0 \le Y_{ij} \le c$

as:

$$\begin{array}{ll} \text{maximize} & \sum_{ij} Y_{ij} \\ \text{subject to} & \begin{bmatrix} I & -(Y \odot M) \\ -(Y \odot M)^T & I \end{bmatrix} \succeq 0 \\ 0 \leq Y_{ij} \leq c \\ \end{array}$$

which is a sparse *semidefinite program* in $Y \in \mathbf{R}^{n \times m}$.

Complexity

Complexity?

- Small subset S: the dual in Y is sparse, primal (in ratings X) is dense.
- Interior point solvers work fine for problem sizes up to 400...
- We need to solve much larger instances.
- High precision is not necessary. . .

Smoothing Technique

• Solution, formulate this as a saddle problem using binary search:

$$\begin{array}{ll} \text{minimize} & \lambda^{\max} \left(\begin{bmatrix} I & -(Y \odot M) \\ -(Y \odot M)^T & I \end{bmatrix} \right) \\ \text{subject to} & \sum_{ij} Y_{ij} = t \\ 0 \leq Y_{ij} \leq c \end{array}$$

for some t > 0.

- Use the smoothing technique in Nesterov (2005): first-order algorithm with optimal complexity of $O(1/\epsilon)$.
- Homogeneity means we also get a solution to:

$$\begin{array}{ll} \text{maximize} & \sum_{ij} Y_{ij} \\ \text{subject to} & \|Y \odot M\|_2 \leq 1 \\ & 0 \leq Y_{ij} \leq c^* \end{array}$$

Nesterov's method

Assuming problem has a particular min-max structure:

- Regularization. Add strongly convex penalty inside the min-max representation to produce an ϵ -approximation of f with Lipschitz continuous gradient (generalized Moreau-Yosida regularization step, see Lemaréchal & Sagastizábal (1997) for example).
- Optimal first order minimization. Use optimal first order scheme for Lipschitz continuous functions detailed in Nesterov (1983) to the solve the regularized problem.

Caveat: Only efficient if the subproblems involved in these steps can be solved explicitly or very efficiently. . . Change of *granularity*: larger number of cheaper iterations.

Regularization

Replace $\lambda^{\max}(X)$ by

$$f_{\mu}(X) = \mu \log \left(\sum_{i=1}^{k} e^{\frac{\lambda_i}{\mu}} \right).$$

For a good choice of μ :

- $f_{\mu}(X)$ is an ϵ -approximation of f.
- $f_{\mu}(X)$ has a Lipschitz continuous gradient with constant $L = O(1/\epsilon)$.

First-Order Minimization

The minimization algorithm in Nesterov (1983) then involves the following steps:

Choose
$$\epsilon > 0$$
 and set $X_0 = \beta I_n$, For $k = 0, \dots, N(\epsilon)$ do

- 1. Compute f_{μ} and ∇f_{μ}
- 2. Find $Y_k = \arg\min_{Y} \{ \mathbf{Tr}(\nabla f_{\epsilon}(X_k)(Y X_k)) + \frac{1}{2}L_{\epsilon} \|Y X_k\|_F^2 : Y \in \mathcal{Q}_1 \}.$
- 3. Find $Z_k = \arg\min_{X} \left\{ L_{\epsilon} \beta^2 ||X|| + \sum_{i=0}^{k} \frac{i+1}{2} \operatorname{Tr}(\nabla f_{\epsilon}(X_i)(X X_i)) : X \in \mathcal{Q}_1 \right\}.$
- 4. Update $X_k = \frac{2}{k+3}Z_k + \frac{k+1}{k+3}Y_k$.

Numerical Cost

At each iteration:

- Step 1: computes f and ∇f and is a (full) eigenvalue decomposition (in fact SVD here, because of structure)
- **Step 2 & 3**: involve projections on a the set:

$$Q_1 = \{Y : \sum_{ij} Y_{ij} = t, \ 0 \le Y_{ij} \le c\}$$

and are numerically easy.

Complexity, i.e. maximum number of iterations to reach absolute precision ϵ

$$\frac{4\sqrt{m+n+mnc^2}}{\epsilon}$$

with each iteration (roughly) costing $O(mn^2 + n^3)$.

Numerical Results

- No movies to recommend but...
- Compare CPU time and memory usage for CSDP and smooth optimization code.
- Both codes are C/MEX with calls to (dense) LAPACK/BLAS.

Numerical Results

Figure 1: CPU time and memory usage versus n.

Numerical Results

Large scale tests on a 3,06 Ghz CPU with 2Gb RAM:

n	1% observed	10% observed	50% observed
100	2 sec	3 sec	10 sec
178	2 sec	18 sec	35 sec
316	19 sec	2:34 min	2:41 min
562	3:27 min	3:37 min	19:11 min
1000	34:35 min	41:15 min	1:35:28 hours
1778	5:44:07 hours	6:40:06 hours	19:09:49 hours
3162	57:23:09 hours	67:35:34 hours	62:12:21 hours

References

- Fazel, M., Hindi, H. & Boyd, S. (2001), 'A rank minimization heuristic with application to minimum order system approximation', *Proceedings American Control Conference* **6**, 4734–4739.
- Lemaréchal, C. & Sagastizábal, C. (1997), 'Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries', *SIAM Journal on Optimization* **7**(2), 367–385.
- Nesterov, Y. (1983), 'A method of solving a convex programming problem with convergence rate $O(1/k^2)$ ', Soviet Mathematics Doklady **27**(2), 372–376.
- Nesterov, Y. (2005), 'Smooth minimization of nonsmooth functions', *Mathematical Programming, Series A* **103**, 127–152.
- Srebro, N. (2004), Learning with Matrix Factorization, PhD thesis, Massachusetts Institute of Technology.