
Convex Optimization

Geometrical and Approximation Problems
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Approximation

� norm approximation

� least-norm problems

� regularized approximation

� robust approximation
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Norm approximation

minimize ‖Ax− b‖

(A ∈ Rm×n with m ≥ n, ‖ · ‖ is a norm on Rm)

interpretations of solution x? = argminx ‖Ax− b‖:

� geometric: Ax? is point in R(A) closest to b

� estimation: linear measurement model

y = Ax+ v

y are measurements, x is unknown, v is measurement error

given y = b, best guess of x is x?

� optimal design: x are design variables (input), Ax is result (output)

x? is design that best approximates desired result b
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examples

� least-squares approximation (‖ · ‖2): solution satisfies normal equations

ATAx = AT b

(x? = (ATA)−1AT b if RankA = n)

� Chebyshev approximation (‖ · ‖∞): can be solved as an LP

minimize t
subject to −t1 � Ax− b � t1

� sum of absolute residuals approximation (‖ · ‖1): can be solved as an LP

minimize 1Ty
subject to −y � Ax− b � y
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Penalty function approximation

minimize φ(r1) + · · ·+ φ(rm)
subject to r = Ax− b

(A ∈ Rm×n, φ : R→ R is a convex penalty function)

examples

� quadratic: φ(u) = u2

� deadzone-linear with width a:

φ(u) = max{0, |u| − a}

� log-barrier with limit a:

φ(u) =

{
−a2 log(1− (u/a)2) |u| < a
∞ otherwise
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example (m = 100, n = 30): histogram of residuals for penalties

φ(u) = |u|, φ(u) = u2, φ(u) = max{0, |u| − a}, φ(u) = − log(1− u2)
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shape of penalty function has large effect on distribution of residuals
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Huber penalty function (with parameter M)

φhub(u) =

{
u2 |u| ≤M
M(2|u| −M) |u| > M

linear growth for large u makes approximation less sensitive to outliers
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� left: Huber penalty for M = 1

� right: affine function f(t) = α+ βt fitted to 42 points ti, yi (circles) using
quadratic (dashed) and Huber (solid) penalty
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Least-norm problems

minimize ‖x‖
subject to Ax = b

(A ∈ Rm×n with m ≤ n, ‖ · ‖ is a norm on Rn)

interpretations of solution x? = argminAx=b ‖x‖:

� geometric: x? is point in affine set {x | Ax = b} with minimum distance to 0

� estimation: b = Ax are (perfect) measurements of x; x? is smallest (’most
plausible’) estimate consistent with measurements

� design: x are design variables (inputs); b are required results (outputs)

x? is smallest (’most efficient’) design that satisfies requirements
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examples

� least-squares solution of linear equations (‖ · ‖2):

can be solved via optimality conditions

2x+ATν = 0, Ax = b

� minimum sum of absolute values (‖ · ‖1): can be solved as an LP

minimize 1Ty
subject to −y � x � y, Ax = b

tends to produce sparse solution x?

extension: least-penalty problem

minimize φ(x1) + · · ·+ φ(xn)
subject to Ax = b

φ : R→ R is convex penalty function
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Regularized approximation

minimize (w.r.t. R2
+) (‖Ax− b‖, ‖x‖)

A ∈ Rm×n, norms on Rm and Rn can be different

interpretation: find good approximation Ax ≈ b with small x

� estimation: linear measurement model y = Ax+ v, with prior knowledge that
‖x‖ is small

� optimal design: small x is cheaper or more efficient, or the linear model
y = Ax is only valid for small x

� robust approximation: good approximation Ax ≈ b with small x is less
sensitive to errors in A than good approximation with large x

ENSAE: Optimisation 10/35



Scalarized problem

minimize ‖Ax− b‖+ γ‖x‖

� solution for γ > 0 traces out optimal trade-off curve

� other common method: minimize ‖Ax− b‖2 + δ‖x‖2 with δ > 0

Tikhonov regularization

minimize ‖Ax− b‖22 + δ‖x‖22

can be solved as a least-squares problem

minimize

∥∥∥∥[ A√
δI

]
x−

[
b
0

]∥∥∥∥2
2

solution x? = (ATA+ δI)−1AT b
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Signal reconstruction

minimize (w.r.t. R2
+) (‖x̂− xcor‖2, φ(x̂))

� x ∈ Rn is unknown signal

� xcor = x+ v is (known) corrupted version of x, with additive noise v

� variable x̂ (reconstructed signal) is estimate of x

� φ : Rn → R is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

φquad(x̂) =

n−1∑
i=1

(x̂i+1 − x̂i)2, φtv(x̂) =

n−1∑
i=1

|x̂i+1 − x̂i|
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quadratic smoothing example
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three solutions on trade-off curve
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total variation reconstruction example
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original signal x and noisy signal xcor
three solutions on trade-off curve
‖x̂− xcor‖2 versus φquad(x̂)

quadratic smoothing smooths out noise and sharp transitions in signal

ENSAE: Optimisation 14/35



i

x
x
c
o
r

0

0

500

500

1000

1000

1500

1500

2000

2000

−2

−2

−1

−1

0

0

1

1

2

2

i

x̂
x̂

x̂

0

0

0

500

500

500

1000

1000

1000

1500

1500

1500

2000

2000

2000

−2

−2

−2

0

0

0

2

2

2

original signal x and noisy signal xcor
three solutions on trade-off curve
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total variation smoothing preserves sharp transitions in signal
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Geometrical Problems
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Geometrical Problems

� extremal volume ellipsoids

� centering

� placement and facility location.
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Minimum volume ellipsoid around a set

Löwner-John ellipsoid of a set C: minimum volume ellipsoid E s.t. C ⊆ E

� parametrize E as E = {v | ‖Av + b‖2 ≤ 1}; w.l.o.g. assume A ∈ Sn
++

� vol E is proportional to detA−1; to compute minimum volume ellipsoid,

minimize (over A, b) log detA−1

subject to supv∈C ‖Av + b‖2 ≤ 1

convex, but evaluating the constraint can be hard (for general C)

finite set C = {x1, . . . , xm}:

minimize (over A, b) log detA−1

subject to ‖Axi + b‖2 ≤ 1, i = 1, . . . ,m

also gives Löwner-John ellipsoid for polyhedron Co{x1, . . . , xm}
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Maximum volume inscribed ellipsoid

maximum volume ellipsoid E inside a convex set C ⊆ Rn

� parametrize E as E = {Bu+ d | ‖u‖2 ≤ 1}; w.l.o.g. assume B ∈ Sn
++

� vol E is proportional to detB; can compute E by solving

maximize log detB
subject to sup‖u‖2≤1 IC(Bu+ d) ≤ 0

(where IC(x) = 0 for x ∈ C and IC(x) =∞ for x 6∈ C)

convex, but evaluating the constraint can be hard (for general C)

polyhedron {x | aTi x ≤ bi, i = 1, . . . ,m}:

maximize log detB
subject to ‖Bai‖2 + aTi d ≤ bi, i = 1, . . . ,m

(constraint follows from sup‖u‖2≤1 a
T
i (Bu+ d) = ‖Bai‖2 + aTi d)

ENSAE: Optimisation 19/35



Efficiency of ellipsoidal approximations

C ⊆ Rn convex, bounded, with nonempty interior

� Löwner-John ellipsoid, shrunk by a factor n, lies inside C

� maximum volume inscribed ellipsoid, expanded by a factor n, covers C

example (for two polyhedra in R2)

factor n can be improved to
√
n if C is symmetric
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Centering

some possible definitions of ‘center’ of a convex set C:

� center of largest inscribed ball (’Chebyshev center’)

for polyhedron, can be computed via linear programming (page ??)

� center of maximum volume inscribed ellipsoid (page 19)

xchebxcheb xmve

MVE center is invariant under affine coordinate transformations
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Analytic center of a set inequalities

the analytic center of set of convex inequalities and linear equations

fi(x) ≤ 0, i = 1, . . . ,m, Fx = g

is defined as the optimal point of

minimize −∑m
i=1 log(−fi(x))

subject to Fx = g

� more easily computed than MVE or Chebyshev center (see later)

� not just a property of the feasible set: two sets of inequalities can describe the
same set, but have different analytic centers
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analytic center of linear inequalities aTi x ≤ bi, i = 1, . . . ,m

xac is minimizer of

φ(x) = −
m∑
i=1

log(bi − aTi x)
xac

inner and outer ellipsoids from analytic center:

Einner ⊆ {x | aTi x ≤ bi, i = 1, . . . ,m} ⊆ Eouter

where

Einner = {x | (x− xac)T∇2φ(xac)(x− xac ≤ 1}
Eouter = {x | (x− xac)T∇2φ(xac)(x− xac) ≤ m(m− 1)}
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Placement and facility location

� N points with coordinates xi ∈ R2 (or R3)

� some positions xi are given; the other xi’s are variables

� for each pair of points, a cost function fij(xi, xj)

placement problem
minimize

∑
i6=j fij(xi, xj)

variables are positions of free points

interpretations

� points represent plants or warehouses; fij is transportation cost between
facilities i and j

� points represent cells on an IC; fij represents wirelength
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example: minimize
∑

(i,j)∈A h(‖xi − xj‖2), with 6 free points, 27 links

optimal placement for h(z) = z, h(z) = z2, h(z) = z4
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Distance matrices

ENSAE: Optimisation 26/35



Distance matrices . . .

� The problem of reconstructing an N -point Euclidean metric, given partial
information on pairwise distances between points vi, i = 1, . . . , N can also be
cast as an SDP, known as and Euclidean Distance Matrix Completion
problem.

find D
subject to 1vT + v1T −D � 0

Dij = ‖vi − vj‖22, (i, j) ∈ S
v ≥ 0

in the variables D ∈ Sn and v ∈ Rn, on a subset S ⊂ [1, N ]2.

� We can add further constraints to this problem given additional structural info
on the configuration.

� Applications in sensor networks, molecular conformation reconstruction etc. . .
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Distance matrices . . .

494 CHAPTER 5. EUCLIDEAN DISTANCE MATRIX

(a)

(b)

(c)

(d)

(f) (e)

Figure 140: Map of United States of America showing some state boundaries
and the Great Lakes. All plots made by connecting 5020 points. Any
difference in scale in (a) through (d) is artifact of plotting routine.
(a) Shows original map made from decimated (latitude, longitude) data.
(b) Original map data rotated (freehand) to highlight curvature of Earth.
(c) Map isometrically reconstructed from an EDM (from distance only).
(d) Same reconstructed map illustrating curvature.
(e)(f) Two views of one isotonic reconstruction (from comparative distance);
problem (1181) with no sort constraint Π d (and no hidden line removal).

[Dattorro, 2005] 3D map of the USA reconstructed from pairwise distances on
5000 points. Distances reconstructed from Latitude/Longitude data.
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Distance matrices . . .

3D Caffeine. Reconstruct molecules from MRI data...
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Mixing rates for Markov chains
& maximum variance unfolding
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Mixing rates for Markov chains & unfolding

� Let G = (V,E) be an undirected graph with n vertices and m edges.

� We define a Markov chain on this graph, and let wij ≥ 0 be the transition
rate for edge (i, j) ∈ V .

Larger example

50 nodes, 200 edges

max-degree best constant optimal
ρ = ‖W − (1/n)11T‖ .971 .947 .902

τ = 1/ log(1/ρ) 33.5 18.3 9.7

ICM 2006 Madrid, August 29, 2006 22
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Mixing rates for Markov chains & unfolding

� Let π(t) be the state distribution at time t, its evolution is governed by the
heat equation

dπ(t) = −Lπ(t)dt
with

Lij =


−wij if i 6= j, (i, j) ∈ V
0 if (i, j) /∈ V∑

(i,k)∈V wik if i = j

the graph Laplacian matrix, which means

π(t) = e−Ltπ(0).
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Mixing rates for Markov chains & unfolding

[Sun, Boyd, Xiao, and Diaconis, 2006]

� Maximizing the mixing rate of the Markov chain means solving

maximize t
subject to L(w) � t(I− (1/n)11T )∑

(i,j)∈V d
2
ijwij ≤ 1

w ≥ 0

in the variable w ∈ Rm, with (normalization) parameters d2ij ≥ 0.

� Since L(w) is an affine function of the variable w ∈ Rm, this is a semidefinite
program in w ∈ Rm.
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Mixing rates for Markov chains & unfolding

[Weinberger and Saul, 2006, Sun et al., 2006]

� The dual means solving

maximize Tr(X(I− (1/n)11T ))
subject to Xii − 2Xij +Xjj ≤ d2ij, (i, j) ∈ V

X � 0,

in the variable X ∈ Sn.

� This is a maximum variance unfolding problem.
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Mixing rates for Markov chains & unfolding• similar to semidefinite embedding for unsupervised learning of
manifolds (Weinberger & Saul 2004)

• surprise: duality between fastest mixing Markov process and maximum
variance unfolding

ICM 2006 Madrid, August 29, 2006 46

From [Sun et al., 2006]: we are given pairwise 3D distances for k-nearest
neighbors in the point set on the right. We plot the maximum variance point set
satisfying these pairwise distance bounds on the right.
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