Convex Optimization

Geometrical and Approximation Problems
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Approximation

m norm approximation
m least-norm problems
m regularized approximation

m robust approximation
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Norm approximation

minimize ||Az — b||

(A€ R™ "™ withm >mn, ||| is a norm on R™)

interpretations of solution z* = argmin,, ||Ax — b|:

= geometric: Ax* is point in R(A) closest to b

m estimation: linear measurement model
y=Ax+v

y are measurements, x is unknown, v iIs measurement error
given y = b, best guess of x is x*
= optimal design: x are design variables (input), Ax is result (output)

x* is design that best approximates desired result b
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examples

m least-squares approximation (|| - ||2): solution satisfies normal equations
AT Az = A"b
(x* = (AT A)~"1ATD if Rank A = n)
m Chebyshev approximation (|| - || ): can be solved as an LP
minimize ¢
subject to —t1 <X Az —b =<1l
= sum of absolute residuals approximation (|| - ||1): can be solved as an LP

minimize 171y
subjectto —y <Az —-b=<y
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Penalty function approximation

minimize  ¢(r1) + -+ + o(rm)
subjectto r=Ax —b

(A€ R™ "™ ¢:R — Ris a convex penalty function)

examples

= quadratic: ¢(u) = u?

m deadzone-linear with width a: dratic

¢(u) = max{0, |u| — a}

dzone-lin.

m log-barrier with limit a:

00 otherwise

gb(u) :{ —a210g(1—(u/a)2) |u| <a 1. _ . | .
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example (m = 100, n = 30): histogram of residuals for penalties

¢(u) = |ul,

Qb(zt) — 2L27

¢(u) = maxq0, ju| —aj,

¢(u) = —log(1 — u?)

L1 ! 1M1 o 1
—2 —1 0 1 2
10F T T T T T ]

@\
I :\\\\\\\\\\\\\\\\\\\\\{FﬂHﬂﬁﬂuﬂﬂ_ﬂﬂ |
- [kl

0 I 1 |_|| 1 |_||_| il |_|I_I|_| =i 10 0 M [0

—2 —1 0 1 2
S 20f -
@]
N
e | _
(g0)
a \MH
D O | [ (== | |_| |_||_||_|.—||_||T||_|.—u—||_||_| Ormh (= h 1

-2 —1 0 1 2
§ 10F T T T T T T ]
S N A
(gv] ~ _ —
0 - =~ - _ - -]
80 -~ _ _ , - _ -
3 0 | I |:|H I HHHHHHHI‘IDH—DQI;L;‘ﬁ: C HHI

—2 —1 0 1 2

r

shape of penalty function has large effect on distribution of residuals
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Huber penalty function (with parameter M)

_ [ ul <M
Puub () = { M@l — M) |u| > M

linear growth for large u makes approximation less sensitive to outliers
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m left: Huber penalty for M =1

= right: affine function f(t) = o + 5t fitted to 42 points t;, y; (circles) using
quadratic (dashed) and Huber (solid) penalty
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Least-norm problems

minimize  ||x||
subject to Ax =1b

(A€ R™ "™ withm <mn, | -] isanormon R")

interpretations of solution x* = argmin 4,._, ||x||:

m geometric: z* is point in affine set {x | Az = b} with minimum distance to 0

= estimation: b = Ax are (perfect) measurements of x; x* is smallest ('most
plausible’) estimate consistent with measurements

= design: = are design variables (inputs); b are required results (outputs)

x* is smallest ('most efficient’) design that satisfies requirements
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examples

m least-squares solution of linear equations (|| - ||2):

can be solved via optimality conditions

2z + Aty =0, Ax =D

= minimum sum of absolute values (|| - ||1): can be solved as an LP

minimize 171y
subjectto —y <z <y, Ax=0>

tends to produce sparse solution x*

extension: least-penalty problem

minimize  ¢(x1) + -+ d(zy)
subject to Az =1b

® : R — R is convex penalty function
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Regularized approximation

minimize (w.r.t. Ri) (||[Ax = b||, [|z||)

A€ R™™ norms on R™ and R" can be different

interpretation: find good approximation Ax ~ b with small x

m estimation: linear measurement model y = Ax + v, with prior knowledge that
||| is small

m optimal design: small x is cheaper or more efficient, or the linear model
y = Ax is only valid for small x

= robust approximation: good approximation Ax ~ b with small z is less
sensitive to errors in A than good approximation with large x
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Scalarized problem

minimize ||Ax — b|| + v||z||

m solution for v > 0 traces out optimal trade-off curve

= other common method: minimize ||Axz — b||? + J||z||* with § > 0
Tikhonov regularization
minimize ||Axz — b||5 + 6||z||5

can be solved as a least-squares problem

2
2

o Al T
minimize Va1 |® 0
solution z* = (AT A+ 6I)"1ATD
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Signal reconstruction

A A

minimize (w.r.t. R%) (|| — Teor|2, ¢(%))

s v € R" is unknown signal
® ZTeor = & + v is (known) corrupted version of x, with additive noise v
= variable & (reconstructed signal) is estimate of x

m ¢ : R" — R is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

n—1 n—1
Pquad(®) = > (Fis1 —23)%,  Gw(®) = ) |Bis1 — &
1=1 1=1
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quadratic smoothing example
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three solutions on trade-off curve

original signal x and noisy signal .o, 1% — oor |2 versus douna ()
cor qua

ENSAE: Optimisation 13/35



total variation reconstruction example
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three solutions on trade-off curve

original signal x and noisy signal z.u; 13 — ooe |2 versus douna ()
cor qua

quadratic smoothing smooths out noise and sharp transitions in signal
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three solutions on trade-off curve
|Z — @cor||2 versus ¢ry(2)

total variation smoothing preserves sharp transitions in signal
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Geometrical Problems
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Geometrical Problems

m extremal volume ellipsoids
m centering

m placement and facility location.
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Minimum volume ellipsoid around a set

Lowner-John ellipsoid of a set C': minimum volume ellipsoid £ s.t. C C &

m parametrize £ as £ = {v | ||Av + b||2 < 1}; w.l.o.g. assume A € S} |

= vol £ is proportional to det A™!; to compute minimum volume ellipsoid,

minimize (over A, b) logdet A~1
subject to SUp,ecc |[Av + b2 <1

convex, but evaluating the constraint can be hard (for general C)
finite set C' = {x1,..., 20}

minimize (over A, b) logdet A™!
subject to |Az; +b]o <1, i=1,....,m

also gives Lowner-John ellipsoid for polyhedron Co{x1,...,x}
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Maximum volume inscribed ellipsoid

maximum volume ellipsoid &£ inside a convex set C' C R"

m parametrize £ as £ = {Bu+d | ||ul|2 < 1}; w.l.o.g. assume B € S” |

m vol £ is proportional to det B; can compute £ by solving

maximize logdet B
subject to  supy,,<1 le(Bu+d) <0

(where Ic(x) =0 for x € C' and I¢(x) = oo for x & C)

convex, but evaluating the constraint can be hard (for general C)
polyhedron {z | alz <b;, i=1,...,m}:

maximize logdet B
subject to || Baills +ald <b;, i=1,....m

(constraint follows from supy,,<1 @; (Bu + d) = ||Bai||2 + ai d)
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Efficiency of ellipsoidal approximations

C' C R" convex, bounded, with nonempty interior

m Lowner-John ellipsoid, shrunk by a factor n, lies inside C

m maximum volume inscribed ellipsoid, expanded by a factor n, covers

example (for two polyhedra in R?)

/
AN

factor n can be improved to \/n if C' is symmetric
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Centering

some possible definitions of ‘center’ of a convex set C"

= center of largest inscribed ball ('Chebyshev center’)
for polyhedron, can be computed via linear programming (page ?7)

= center of maximum volume inscribed ellipsoid (page 19)

.

MVE center is invariant under affine coordinate transformations
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Analytic center of a set inequalities

the analytic center of set of convex inequalities and linear equations
filz) <0, i=1,...,m, Fr=g
is defined as the optimal point of

minimize  —Y " log(—fi(x))
subjectto Fr =g

= more easily computed than MVE or Chebyshev center (see later)

m not just a property of the feasible set: two sets of inequalities can describe the
same set, but have different analytic centers

ENSAE: Optimisation 22/35



analytic center of linear inequalities o’z < b;, i =1,...,m

Tac 1S Minimizer of

$la) = =3 log(bi — alw

inner and outer ellipsoids from analytic center:

ginner C {x | asz < bia 1= 17 “ e 7m} C gouter
where
Einner = {37 ‘ (33 — ajac)Tv2¢(33ac)(3j — Tae < 1}
Eouter = x| (T — CCaC)Tv2¢<3f5ac)(515' — Tac) <m(m — 1)}
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Placement and facility location

s N points with coordinates z; € R® (or R?)
m some positions x; are given; the other x;'s are variables

m for each pair of points, a cost function f;;(z;, ;)

placement problem
minimize ) ;. fi;j(®i, ;)

variables are positions of free points
interpretations

m points represent plants or warehouses; f;; is transportation cost between
facilities ¢ and j

m points represent cells on an IC; f;; represents wirelength
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example: minimize ), . 4 h(||lz; — z;][2), with 6 free points, 27 links

optimal placement for h(z) = z, h(z) = 2%, h(z) = 2

1,

—1 0 1
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Distance matrices
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Distance matrices . . .

m [he problem of reconstructing an N-point Euclidean metric, given partial
information on pairwise distances between points v;, ¢ = 1,..., N can also be
cast as an SDP, known as and Euclidean Distance Matrix Completion

problem.
find D

subject to 1v! +v1T — D >0
Di; = Jv; — vj“%v (4,7) €S
v>0

in the variables D € S,, and v € R", on a subset S C [1, N|.

m We can add further constraints to this problem given additional structural info
on the configuration.

m Applications in sensor networks, molecular conformation reconstruction etc. . .

ENSAE: Optimisation 27/35



Distance matrices . . .

[Dattorro, 2005] 3D map of the USA reconstructed from pairwise distances on
5000 points. Distances reconstructed from Latitude/Longitude data.
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Distance matrices . . .

3D Caffeine. Reconstruct molecules from MRI data...
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Mixing rates for Markov chains
& maximum variance unfolding
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Mixing rates for Markov chains & unfolding

s Let G = (V, F) be an undirected graph with n vertices and m edges.

m We define a Markov chain on this graph, and let w;; > 0 be the transition
rate for edge (i,j) € V.

S8
iSZ AN

)
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Mixing rates for Markov chains & unfolding

m Let 7(t) be the state distribution at time t, its evolution is governed by the
heat equation
dm(t) = —Lw(t)dt

with

— Wiy if i # 7, (7’7])6‘/

Lij=< 0 if (¢,7) ¢V

2 (ikyey Wik ifi=]

the graph Laplacian matrix, which means

m(t) = e 7 (0).
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Mixing rates for Markov chains & unfolding

[Sun, Boyd, Xiao, and Diaconis, 2006]

s Maximizing the mixing rate of the Markov chain means solving

maximize t

subject to  L(w) = t(I— (1/n)11%)
Z(z‘,j)EV dzzjwij <1
w >0

in the variable w € R™, with (normalization) parameters d;; > 0.

= Since L(w) is an affine function of the variable w € R™, this is a semidefinite

program in w € R,
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Mixing rates for Markov chains & unfolding

[Weinberger and Saul, 2006, Sun et al., 2006]

m The dual means solving

maximize Tr(X(I— (1/n)111))
subject to Xm — 2Xz] + ij < Cl%j, (Z,]) cV
X =0,

in the variable X € S,,.

m This is a maximum variance unfolding problem.
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Mixing rates for Markov chains & unfolding
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From [Sun et al., 2006]: we are given pairwise 3D distances for k-nearest
neighbors in the point set on the right. We plot the maximum variance point set
satisfying these pairwise distance bounds on the right.
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