Convex Optimization

Convex Functions
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Today

m basic properties and examples

m operations that preserve convexity

m the conjugate function

m quasiconvex functions

m log-concave and log-convex functions

m convexity with respect to generalized inequalities
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Definition

f:R"™ — R is convex if dom f is a convex set and

flz+ (1—-0)y) <0f(x)+ (1-0)f(y)

forall z,y €cdomf, 0<0<1

(y, f(y))
(z, f(x))

m f is concave if —f is convex

m f is strictly convex if dom f is convex and

f0x+(1=0)y) <O0f(x)+(1—0)f(y)

forx,yedomf, x#y, 0<60<1
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Examples on R

convex:

m affine: ax + b on R, for any a,b € R

m exponential: e**, for any a € R

m powers: x*on R ., fora>1ora<0

= powers of absolute value: |z|P on R, for p > 1

m negative entropy: xlogz on R,

concave:
m affine: ax + b on R, for any a,b € R
m powers: x*on Ry, for0 < a <1

m logarithm: logx on R,
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Examples on R"” and R™*"

affine functions are convex and concave; all norms are convex

examples on R"
= affine function f(x) =alx + b

x norms: ||z, = (300, |2i|P)YP for p > 1; ||7||eo = maxy, |z

examples on R™”" (m x n matrices)

m affine function

FX)=Tr(A"X)+b=) Y A;X;+b

i=1 j=1

= spectral (maximum singular value) norm

f(X) = [ X2 = omax(X) = ()‘maX(XTAX))l/2
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Restriction of a convex function to a line

f: R"™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(z + tv), domg = {t |z +tv € dom f}

is convex (in t) for any x € dom f, v € R"

can check convexity of f by checking convexity of functions of one variable
example. f:S" — R with f(X) =logdet X, dom X =S" |
g(t) = logdet(X +tV) = logdet X + logdet(I +tX Y2V X~1/2)
= logdet X + i log(1 +t\;)
i=1

where ); are the eigenvalues of X ~1/2V/ X ~1/2

g is concave in t (for any choice of X > 0, V'); hence f is concave

ENSAE: Optimisation 6/31



Extended-value extension

extended-value extension f of fis

~

f(z)=f(z), ze€domf,  f(z)=o00, z¢domf

often simplifies notation; for example, the condition
0<0<1 = f(lz+(1-0)y) <Of(z)+(1-6)f(y)

(as an inequality in RU {oco0}), means the same as the two conditions

m dom f is convex

m for x,y € dom f,

0<6<1 = f(Oz+(1—-0)y) <Of(z)+(1—6)f(y)

ENSAE: Optimisation 7/31



First-order condition

f is differentiable if dom f is open and the gradient

(01) 0fx)  Of()
Vi) = ( Ory  Oxo Oz, )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) = f(z) + Vf(z)"(y —x) forall z,y € dom f

f(y)
f@)+ V() (y — =)
(z, f(z))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian V2f(z) € S”,

exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

m f is convex if and only if

V2f(z) =0 forall z € dom f

s if V2f(x) = 0 for all x € dom f, then f is strictly convex
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Examples

P

= Pz + q, V2f(x)

V()

quadratic function: f(z) = (1/2)z! Pz + ql'x + r (with P € S™)

convex if P >0

| Az — b3

least-squares objective: f(x)

convex (for any A)

e N\ NANN N

L7 2N
g

quadratic-over-linear: f(z,y) = z°/y

=i

convex for y > 0

10/31
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log-sum-exp: f(z) =log> ,_, expxy is convex

V2f(2) = 7 ding(2) ~ 7

17,

to show V2f(z) = 0, we must verify that v V2f(x)v > 0 for all v:

,UTv2f<gj)’U — (2 k Zk”k)(%zig::l;)k; (21 Vk2k) > ()

since (3, vizk)® < (02, 2zkvi) (D, 2k) (from Cauchy-Schwarz inequality)

geometric mean: f(z) = ([[,_, zx)*/™ on R", is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set

a-sublevel set of f : R" — R:
Co=f{z € dom [ | f(z) < a}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : R" — R:

epi f = {(z,t) e R""' |z e dom [, f(x) <t}

epi f

f is convex if and only if epi f is a convex set
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Jensen’s inequality

basic inequality: if f is convex, then for 0 < 6 <1,

flz+ (1—0)y) <O0f(z)+(1-0)f(y)

extension: if f is convex, then

f(Ez) < Ef(z)

for any random variable z

basic inequality is special case with discrete distribution

Prob(z =z) =6, Prob(z =y)=1—-26
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show VZf(x) = 0

3. show that f is obtained from simple convex functions by operations that
preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective
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Positive weighted sum & composition with affine function

nonnegative multiple: o f is convex if f is convex, a > 0
sum: f1 + fo convex if fi, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

m log barrier for linear inequalities

f(x) = —Zlog(bi —alx), domf={z|alz<b,i=1,...,m}
i=1

= (any) norm of affine function: f(z) = ||Ax + b
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Pointwise maximum

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fi(x)} is convex

examples

= piecewise-linear function: f(z) = max;—1.. m(alx + b;) is convex

m sum of r largest components of x € R™:
f(@) = xp) 429+ -+ 2y

is convex (x; is ith largest component of x)
proof:

flx) =max{z; +zi,+ - +x;, |1 <i1 <ia < - <ip <n}
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Pointwise supremum

if f(x,y) is convex in x for each y € A, then

g(x) = sup f(z,y)
yeA

IS convex

examples

= support function of a set C: Sc¢(x) = sup, ¢ y''z is convex

m distance to farthest point in a set C:

f(z) = sup ||z -y
yeC

= maximum eigenvalue of symmetric matrix: for X € S”,

AmaX(X): Sup yTXy
lyll2=1
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Composition with scalar functions

composition of g : R — R and h: R — R:

: .. g convex, h convex, h nondecreasing
Is convex if ~ _ _
g concave, h convex, h nonincreasing

f

s proof (for n = 1, differentiable g, h)
f(x) = h"(g(x))g (x)* + W (g(x))g" (x)
m note: monotonicity must hold for extended-value extension h

examples
= exp g(x) is convex if g is convex

m 1/g(x) is convex if g is concave and positive
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Vector composition

composition of ¢ : R® = R* and h : R* = R:

f(z) = h(g(x)) = h(g1(2), g2(x), - . ., gr(z))

: .. g; convex, h convex, h nondecreasing in each argument
f is convex if ~

g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f(@) = g'(x)"'V?h(g(x))g' (z) + Vh(g(z))" g" (z)

examples
m > .~ logg;(x) is concave if g; are concave and positive

= log) " expg;(x) is convex if g; are convex
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Minimization

if f(x,y) is convex in (x,y) and C'is a convex set, then

g(z) = yiggf(x, y)

IS convex

examples

s f(x,y) = a2l Az + 227 By + y! Cy with

[AB

BT C]zo, C >0

minimizing over y gives g(z) = inf, f(x,y) = 21 (A — BC~ !Bz

g is convex, hence Schur complement A — BC~1BT >0

= distance to a set: dist(z,S) = inf,ecg ||z — y|| is convex if S is convex
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Perspective

the perspective of a function f : R” — R is the function ¢ : R” x R — R,
g(x,t) = tf(z/t),  domg={(z,t) |/t € dom f, t >0}
g is convex if f is convex

examples
s f(x) =212 is convex; hence g(z,t) = x1x/t is convex for t > 0

= negative logarithm f(x) = —logx is convex; hence relative entropy
g(x,t) =tlogt — tlogx is convex on R?FJr

m if fis convex, then
g(x) = (cTa: +d)f ((Aa: + b)/(cTa: + d))

is convex on {z | clz+d >0, (Az +b)/(c'z + d) € dom f}
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The conjugate function

the conjugate of a function f is

fy)= sup (y'z— f(z))

xedom f

f(x)

Ay

s
s
s
s
s
s
s
s
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s
s
s
s
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s
s
s
s
s
s
s
s
s
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A0, — £ ()

m f*is convex (even if f is not)

m will be useful in chapter 5
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examples

= negative logarithm f(x) = —logx
f"(y) = sup(zy +logz)
x>0
_ ) —1=log(=y) y <0
N 00 otherwise

s strictly convex quadratic f(z) = (1/2)a? Qz with Q € S™!

f*(y) Sgp(yT:U - (1/2)2" Qx)

1T—l
= 2@/@ Y
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Quasiconvex functions

f: R"™ — R is quasiconvex if dom f is convex and the sublevel sets

So = {z € dom f | f(z) < a}

are convex for all «

m f is quasiconcave if —f is quasiconvex

m f is quasilinear if it is quasiconvex and quasiconcave
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Examples

O \/m Is quasiconvex on R

m ceil(x) =inf{z € Z | z > x} is quasilinear
m logz is quasilinear on Ry |

s f(x1,x2) = x129 IS quasiconcave on Rfur

m linear-fractional function

T b
f(x):%, dom f = {z |clz+d> 0}
is quasilinear
m distance ratio
x—a
fay ="l o f = fa | o alla < Jlz — Blla}
|z — b2

IS quasiconvex
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internal rate of return

s cash flow x = (xg, ..., xy); x; is payment in period i (to us if x; > 0)
m weassume xrg<Oandzg+21+---+x, >0

m present value of cash flow z, for interest rate 7:

n

PV(z,r) = Z(l + )

i=0
= internal rate of return is smallest interest rate for which PV (z,r) = 0:

IRR(z) = inf{r > 0| PV(z,r) =0}

IRR is quasiconcave: superlevel set is intersection of halfspaces

IRR(z) >R <= » (1+r)'z;>0for0<r<R
1=0
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Properties

modified Jensen inequality: for quasiconvex f

0<0<1 = [f(0x+(1-0)y) <max{f(x),f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

fly) < fl2) = V@) (y—2)<0

sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:
fOz+ (1 —0)y) > f(2)’fy)' ™" for0<h<1

f is log-convex if log f is convex

m powers: % on R4 is log-convex for a < 0, log-concave for a > 0

m many common probability densities are log-concave, e.g., normal:

() = 1 o3 a—2)TS  (a—7)

vV (2m)rdet X

m cumulative Gaussian distribution function & is log-concave

1 T
O(r) = E/ e~ /2 dy
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Properties of log-concave functions

m twice differentiable f with convex domain is log-concave if and only if

f@)V2f(z) 2 V@)V ()"

for all x € dom f
m product of log-concave functions is log-concave
m sum of log-concave functions is not always log-concave

m integration: if f: R" x R™ — R is log-concave, then

g(x) = / F(z,y) dy

is log-concave (not easy to show)
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consequences of integration property

m convolution f *x g of log-concave functions f, g is log-concave

(f9)(@) = [ fa = v)gty

m if C C R" convex and y is a random variable with log-concave pdf then
f(x) = Prob(x+y € C)

is log-concave

proof: write f(x) as integral of product of log-concave functions

1 wel

/() Z/g(af+y)p(y) dy,  g(u) :{ 0 uégC,

p is pdf of y
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example: yield function

Y(z) = Prob(z +w € 5)

s r € R": nominal parameter values for product
s w € R": random variations of parameters in manufactured product

m S: set of acceptable values

if S is convex and w has a log-concave pdf, then

m Y is log-concave

= yield regions {z | Y (x) > o} are convex
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