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Today

� This is the “What’s the point?” lecture. . .

� What can be solved using linear programs?

Just an introduction. . .
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Linear Programs

A linear program is written

minimize cTx
subject to Ax = b

x ≥ 0,

in the variable x ∈ Rn. Or in inequality form

minimize cTx
subject to Ax ≤ b.
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Linear Program Applications
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Linear Programming: applications

� Originally, linear programs considered “toy problems”

� Algorithm came first

� LPs could be solved efficiently, some applications were found

� Successful applications meant publicity

� Tons of applications subsequently discovered. . .

� Among the most commonly used optimization results today
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Linear Programming: applications

Today, a quick look at applications of linear programming:

� Finance

� Statistics

� Networks

� Game theory

� Structural design

� Scheduling

� Signal processing, etc
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A bit of history: the diet problem

The diet problem:

� Resource allocation problem

� Could replace, calories & nutrients by parts in a factory, etc

� Classic first example in linear programming classes

� Follow a 50 years old tradition. . .
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The diet problem

Eating fast food optimally, using linear programming. . .
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A bit of history: the diet problem

The diet problem:

� We’re given the nutrition facts on burgers, fries, etc

� We need to design our meal so that the quantity of nutrients falls between
certain values

� Objective: minimize costs

� Another possibility: minimize calories (optimally healthy fast-food meal)

Easy: this is a linear program. . .
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A bit of history: the diet problem

Data (fictitious). On prices:

Quarter Pounder w/ Cheese: 1.84
McLean Deluxe w/ Cheese: 2.19
Big Mac: 1.84
Filet-O-Fish: 1.44
McGrilled Chicken: 2.29
Fries, small: 0.77
Sausage McMuffin: 1.29
1% Lowfat Milk: 0.60
Orange Juice: 0.72
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A bit of history: the diet problem

Minimum and maximum values for some type of nutrients:

Min. Max.
Calories 2000
Carbs 350 375
Protein 55
VitA 100
VitC 100
Calc 100
Iron 100
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A bit of history: the diet problem

Nutrition facts:

Cal Carbs Protein VitA VitC Calc Iron
Quarter Pounder 510 34 28 15 6 30 20
McLean Deluxe 370 35 24 15 10 20 20
Big Mac 500 42 25 6 2 25 20
Filet-O-Fish 370 38 14 2 0 15 10
McGrilled Chicken 400 42 31 8 15 15 8
Fries, small 220 26 3 0 15 0 2
Sausage McMuffin 345 27 15 4 0 20 15
1% Lowfat Milk 110 12 9 10 4 30 0
Orange Juice 80 20 1 2 120 2 2
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A bit of history: the diet problem

We can write this as a linear program:

� The variables are xi, the quantity of item in the menu we purchase

� We let ci be the cost of each item, the total cost of the meal is:

9∑
i=1

cixi

� Let Aij be the nutrition value for nutrient i in item j, the nutrition constraints
are:

mini ≤
9∑
j=1

Aijxj ≤ maxi for each nutrient i

� And of course: all the quantities xi have to be positive: xi ≥ 0
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A bit of history: the diet problem

Minimum cost meal meeting minimum requirements

minimize
∑9
i=1 cixi

subject to mini ≤
∑9
j=1Aijxj ≤ maxi for each nutrient i

xi ≥ 0,

Solution:

Quarter Pounder w/ Cheese 4.38525
Fries, small 6.14754
1% Lowfat Milk 3.42213

Price: 14.85, but 4000 calories. . .
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A bit of history: the diet problem

2500 calories meal meeting minimum requirements

minimize
∑9
i=1 cixi

subject to
∑9
j=1A1jxj = 2500

mini ≤
∑9
j=1Aijxj ≤ maxi for each nutrient i = 2, . . . , 7

xi ≥ 0,

Solution:

Quarter Pounder w/ Cheese 0.231942
McLean Deluxe w/ Cheese 3.85465
1% Lowfat Milk 2.0433
Orange Juice 9.13408

Price goes up: $16.67. . .
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A bit of history: the diet problem

Can we make a 2000 calories meal meeting minimum requirements?

minimize
∑9
i=1 cixi

subject to
∑9
j=1A1jxj = 2000

mini ≤
∑9
j=1Aijxj ≤ maxi for each nutrient i = 2, . . . , 7

xi ≥ 0,

� No solution!

� What’s the best we can do?
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A bit of history: the diet problem

Minimum calories meal meeting minimum requirements

minimize
∑9
j=1A1jxj

subject to mini ≤
∑9
j=1Aijxj ≤ maxi for each nutrient i = 2, . . . , 7

xi ≥ 0,

Solution:

McLean Deluxe w/ Cheese 4.08805
1% Lowfat Milk 2.04403
Orange Juice 9.1195

Price is $16.75, minimum calories: 2467
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A bit of history: the diet problem

A few interesting results from this experiment:

� Some problems are infeasible, how do we detect that?

� We can’t ask for integer results

� Solution: rounding

� But we can’t be certain to get the optimal integer solution. . .
(more on this later)
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Finance

Portfolio theory.

� Classic view: mean-variance tradeoff

� Portfolio management: a quadratic program (later)

� Variance is (by far) not the only measure of risk

� Other possibility: mean absolute deviation:

risk =
1

T

T∑
t=1

|rt − r̄|

where rt = St − St−1 is the return at time t and r̄ the mean return.
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Portfolio Optimization

Historical (relative) returns St/St−1 on a few investments. . .
(EAFE: Europe, Australia, and Far East).
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Portfolio Optimization

Markovitz type model:

� We look for a portfolio of N assets with coefficients xi

� We have an initial budget of $1

� For a given level of risk, we seek to maximize return

� When the level of risk (µ) varies, the maximum return defines a set of optimal
risk/return tradeoffs: the efficient frontier

� We consider aboslute returns rt = St − St−1.
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Portfolio Optimization

The program to be solved can be written:

maximize
1

T

N∑
i=1

T∑
t=1

xiri,t (portfolio return)

subject to
1

T

T∑
t=1

∣∣∣∣∣
N∑
i=1

xiri,t −
N∑
i=1

xir̄i

∣∣∣∣∣ ≤ µ (portfolio risk bounded)

N∑
i=1

xiPi = 1 (initial budget)

xi ≥ 0 (no short sale)

Is this a linear program?
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Portfolio Optimization

� The following constraint on the absolute value:

|x| ≤ y

is equivalent to:
−y ≤ x ≤ y

� This means that we can replace each inequality on an absolute value by to
inequalities

� We have to introduce additional variables in the original program. . .

ENSAE: Optimisation 23/40



Portfolio Optimization

The new program is written:

maximize
1

T

N∑
i=1

T∑
t=1

xiri,t (portfolio return)

subject to
1

T

T∑
t=1

yt ≤ µ (portfolio risk bounded)

−yt ≤
(∑N

i=1 xiri,t −
∑N
i=1 xir̄i

)
≤ yt

N∑
i=1

xiPi = 1 (initial budget)

xi ≥ 0 (no short sale)

This is now a linear program!
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Portfolio Optimization

Efficient frontier for a few reference assets (N = 8).
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Portfolio Optimization

Composition, risk and return of optimal portfolios for various values of µ.
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Portfolio Optimization

Efficient frontier for 719 stocks.

ENSAE: Optimisation 27/40



Statistics: Regression

How far is this from the standard mean variance analysis?

� We replace the variance by the deviation

� How do these two measures of “error” compare?

Let’s pick an example from statistics:

� Regress a set of data points on a few variables

� Compare least squares regression with least absolute deviation regression
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Statistics: Regression

Given N data points yi and xi, we look for parameters a and b and compute the
“best” linear model y = ax+ b

� The usual least squares regression is written:

minimize
N∑
i=1

‖yi − axi − b‖2

� The least absolute deviation regression is here:

minimize
N∑
i=1

|yi − axi − b|
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Portfolio Optimization

Not that different here. . .
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Game Theory

Two person game.

� Count to three and declare:

Paper Scissors Rock

� Winner selected according to:

Rock beats Scissors
Paper beats Rock

Scissors beats Paper

� We can arrange this in a payoff matrix:

P S R
P
S
R

 0 1 −1
−1 0 1

1 −1 0
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Game Theory

� Playing a fixed (deterministic, pure) strategy is bad: “always stone” is always
beaten by paper. . .

� We know from game theory that there is always a Nash equilibrium involving
random (mixed) strategies.

� How do we find these?

� A random strategy is simply a probability vector:

3∑
i=1

xi = 1 and xi ≥ 0

� Solving for the equilibrium strategy for both players is a linear program (more
details later).
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Signal Processing

FIR filter design.

� Finite Impulse Response filter:

yt =

n−1∑
τ=0

hτut−τ

where ut is the input signal and hi are the filter coefficients

� The magnitude of the frequency response of the filter can be written:

|H̃(ω)| = 2h0 cos(Nω) + 2h1 cos((N − 1)ω) + . . .+ hN

� For each particular frequency ω, this a linear function of the filter coefficients h

Designing a custom filter is just a linear program . . .
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Signal Processing
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This filter lets bass go through and filters out higher frequencies (low-pass)
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Wifi

� Wifi (802.11) is another example. . .

� Maximum allowed radiated power (EIRP) is 100mW

� Why? So you don’t fry your friend next door, also avoids interferences. . .

� This power is dissipated in all directions. . .

� Increase the range: focus most of this power in one direction
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Wifi
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Wifi

Professional solution.

� Use multiple antennas

� Use interference patterns to focus most of the power in a particular direction

� Problem is similar to filter design: linear program

!
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Wifi
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Implementation is tricky. . .
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Wifi
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Convex interpolation

What’s next? We will study convex problems.

� Much more general class of problems

� Complexity similar to linear programming

� Similar solvers

� Very very very long list of applications in statistics, engineering, finance, etc.
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