## **Convex Optimization**

## **Linear Programming Applications**

- This is the "What's the point?" lecture...
- What can be solved using linear programs?

Just an introduction. . .

A linear program is written

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax = b \\ & x \geq 0, \end{array}$$

in the variable  $x \in \mathbf{R}^n$ . Or in inequality form

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \leq b. \end{array}$ 

# **Linear Program Applications**

- Originally, linear programs considered "toy problems"
- Algorithm came first
- LPs could be solved efficiently, some applications were found
- Successful applications meant publicity
- Tons of applications subsequently discovered...
- Among the most commonly used optimization results today

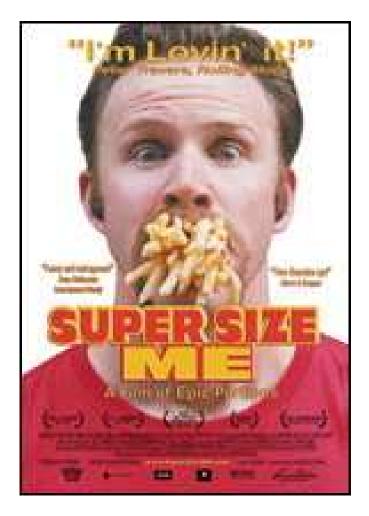
Today, a quick look at applications of linear programming:

- Finance
- Statistics
- Networks
- Game theory
- Structural design
- Scheduling
- Signal processing, etc

The diet problem:

- Resource allocation problem
- Could replace, calories & nutrients by parts in a factory, etc
- Classic first example in linear programming classes
- Follow a 50 years old tradition. . .

## The diet problem



Eating fast food optimally, using linear programming. . .

The diet problem:

- We're given the nutrition facts on burgers, fries, etc
- We need to design our meal so that the quantity of nutrients falls between certain values
- Objective: minimize costs
- Another possibility: minimize calories (optimally healthy fast-food meal)

Easy: this is a linear program...

Data (fictitious). On prices:

| Quarter Pounder w/ Cheese: | 1.84 |
|----------------------------|------|
| McLean Deluxe w/ Cheese:   | 2.19 |
| Big Mac:                   | 1.84 |
| Filet-O-Fish:              | 1.44 |
| McGrilled Chicken:         | 2.29 |
| Fries, small:              | 0.77 |
| Sausage McMuffin:          | 1.29 |
| 1% Lowfat Milk:            | 0.60 |
| Orange Juice:              | 0.72 |

Minimum and maximum values for some type of nutrients:

|          | Min. | Max. |
|----------|------|------|
| Calories | 2000 |      |
| Carbs    | 350  | 375  |
| Protein  | 55   |      |
| VitA     | 100  |      |
| VitC     | 100  |      |
| Calc     | 100  |      |
| Iron     | 100  |      |

## A bit of history: the diet problem

#### Nutrition facts:

|                   | Cal | Carbs | Protein | VitA | VitC | Calc | Iron |
|-------------------|-----|-------|---------|------|------|------|------|
| Quarter Pounder   | 510 | 34    | 28      | 15   | 6    | 30   | 20   |
| McLean Deluxe     | 370 | 35    | 24      | 15   | 10   | 20   | 20   |
| Big Mac           | 500 | 42    | 25      | 6    | 2    | 25   | 20   |
| Filet-O-Fish      | 370 | 38    | 14      | 2    | 0    | 15   | 10   |
| McGrilled Chicken | 400 | 42    | 31      | 8    | 15   | 15   | 8    |
| Fries, small      | 220 | 26    | 3       | 0    | 15   | 0    | 2    |
| Sausage McMuffin  | 345 | 27    | 15      | 4    | 0    | 20   | 15   |
| 1% Lowfat Milk    | 110 | 12    | 9       | 10   | 4    | 30   | 0    |
| Orange Juice      | 80  | 20    | 1       | 2    | 120  | 2    | 2    |

## A bit of history: the diet problem

We can write this as a linear program:

- The variables are  $x_i$ , the quantity of item in the menu we purchase
- We let  $c_i$  be the cost of each item, the total cost of the meal is:

$$\sum_{i=1}^{9} c_i x_i$$

Let A<sub>ij</sub> be the nutrition value for nutrient i in item j, the nutrition constraints are:

$$min_i \leq \sum_{j=1}^{\circ} A_{ij} x_j \leq max_i$$
 for each nutrient  $i$ 

• And of course: all the quantities  $x_i$  have to be positive:  $x_i \ge 0$ 

Minimum cost meal meeting minimum requirements

minimize  $\sum_{i=1}^{9} c_i x_i$ subject to  $\min_i \leq \sum_{j=1}^{9} A_{ij} x_j \leq \max_i$  for each nutrient i $x_i \geq 0$ ,

Solution:

| Quarter Pounder w/ Cheese | 4.38525 |
|---------------------------|---------|
| Fries, small              | 6.14754 |
| 1% Lowfat Milk            | 3.42213 |

Price: 14.85, but 4000 calories. . .

#### **2500 calories** meal meeting minimum requirements

minimize  $\sum_{i=1}^{9} c_i x_i$ <br/>subject to  $\sum_{j=1}^{9} A_{1j} x_j = 2500$ <br/> $\min_i \leq \sum_{j=1}^{9} A_{ij} x_j \leq \max_i \text{ for each nutrient } i = 2, \dots, 7$ <br/> $x_i \geq 0,$ 

Solution:

| Quarter Pounder w/ Cheese | 0.231942 |
|---------------------------|----------|
| McLean Deluxe w/ Cheese   | 3.85465  |
| 1% Lowfat Milk            | 2.0433   |
| Orange Juice              | 9.13408  |

Price goes up: \$16.67...

Can we make a **2000 calories** meal meeting minimum requirements?

minimize 
$$\sum_{i=1}^{9} c_i x_i$$
  
subject to 
$$\sum_{j=1}^{9} A_{1j} x_j = 2000$$
  
$$\min_i \leq \sum_{j=1}^{9} A_{ij} x_j \leq \max_i \text{ for each nutrient } i = 2, \dots, 7$$
  
$$x_i \geq 0,$$

No solution!

• What's the best we can do?

#### Minimum calories meal meeting minimum requirements

minimize  $\sum_{j=1}^{9} A_{1j} x_j$ subject to  $\min_i \leq \sum_{j=1}^{9} A_{ij} x_j \leq \max_i$  for each nutrient  $i = 2, \dots, 7$  $x_i \geq 0$ ,

Solution:

| McLean Deluxe w/ Cheese | 4.08805 |
|-------------------------|---------|
| 1% Lowfat Milk          | 2.04403 |
| Orange Juice            | 9.1195  |

Price is \$16.75, minimum calories: 2467

A few interesting results from this experiment:

- Some problems are **infeasible**, how do we detect that?
- We can't ask for integer results
- Solution: rounding
- But we can't be certain to get the optimal integer solution... (more on this later)

#### Portfolio theory.

- Classic view: mean-variance tradeoff
- Portfolio management: a quadratic program (later)
- Variance is (by far) not the only measure of risk
- Other possibility: **mean absolute deviation**:

$$risk = \frac{1}{T} \sum_{t=1}^{T} |r_t - \bar{r}|$$

where  $r_t = S_t - S_{t-1}$  is the return at time t and  $\bar{r}$  the mean return.

## **Portfolio Optimization**

| Year | US      | US    | S&P   | Wilshire | NASDAQ    | Lehman | EAFE  | Gold  |
|------|---------|-------|-------|----------|-----------|--------|-------|-------|
|      | 3-Month | Gov.  | 500   | 5000     | Composite | Bros.  |       |       |
|      | T-Bills | Long  |       |          |           | Corp.  |       |       |
|      | n       | Bonds |       |          |           | Bonds  |       |       |
| 1973 | 1.075   | 0.942 | 0.852 | 0.815    | 0.698     | 1.023  | 0.851 | 1.677 |
| 1974 | 1.084   | 1.020 | 0.735 | 0.716    | 0.662     | 1.002  | 0.768 | 1.722 |
| 1975 | 1.061   | 1.056 | 1.371 | 1.385    | 1.318     | 1.123  | 1.354 | 0.760 |
| 1976 | 1.052   | 1.175 | 1.236 | 1.266    | 1.280     | 1.156  | 1.025 | 0.960 |
| 1977 | 1.055   | 1.002 | 0.926 | 0.974    | 1.093     | 1.030  | 1.181 | 1.200 |
| 1978 | 1.077   | 0.982 | 1.064 | 1.093    | 1.146     | 1.012  | 1.326 | 1.295 |
| 1979 | 1.109   | 0.978 | 1.184 | 1.256    | 1.307     | 1.023  | 1.048 | 2.212 |
| 1980 | 1.127   | 0.947 | 1.323 | 1.337    | 1.367     | 1.031  | 1.226 | 1.296 |
| 1981 | 1.156   | 1.003 | 0.949 | 0.963    | 0.990     | 1.073  | 0.977 | 0.688 |
| 1982 | 1.117   | 1.465 | 1.215 | 1.187    | 1.213     | 1.311  | 0.981 | 1.084 |
| 1983 | 1.092   | 0.985 | 1.224 | 1.235    | 1.217     | 1.080  | 1.237 | 0.872 |
| 1984 | 1.103   | 1.159 | 1.061 | 1.030    | 0.903     | 1.150  | 1.074 | 0.825 |
| 1985 | 1.080   | 1.366 | 1.316 | 1.326    | 1.333     | 1.213  | 1.562 | 1.006 |
| 1986 | 1.063   | 1.309 | 1.186 | 1.161    | 1.086     | 1.156  | 1.694 | 1.216 |
| 1987 | 1.061   | 0.925 | 1.052 | 1.023    | 0.959     | 1.023  | 1.246 | 1.244 |
| 1988 | 1.071   | 1.086 | 1.165 | 1.179    | 1.165     | 1.076  | 1.283 | 0.861 |
| 1989 | 1.087   | 1.212 | 1.316 | 1.292    | 1.204     | 1.142  | 1.105 | 0.977 |
| 1990 | 1.080   | 1.054 | 0.968 | 0.938    | 0.830     | 1.083  | 0.766 | 0.922 |
| 1991 | 1.057   | 1.193 | 1.304 | 1.342    | 1.594     | 1.161  | 1.121 | 0.958 |
| 1992 | 1.036   | 1.079 | 1.076 | 1.090    | 1.174     | 1.076  | 0.878 | 0.926 |
| 1993 | 1.031   | 1.217 | 1.100 | 1.113    | 1.162     | 1.110  | 1.326 | 1.146 |
| 1994 | 1.045   | 0.889 | 1.012 | 0.999    | 0.968     | 0.965  | 1.078 | 0.990 |

Historical (relative) returns  $S_t/S_{t-1}$  on a few investments. . . (EAFE: Europe, Australia, and Far East).

Markovitz type model:

- We look for a portfolio of N assets with coefficients  $x_i$
- We have an initial budget of \$1
- For a given level of **risk**, we seek to maximize **return**
- When the level of risk (µ) varies, the maximum return defines a set of optimal risk/return tradeoffs: the efficient frontier
- We consider aboslute returns  $r_t = S_t S_{t-1}$ .

## **Portfolio Optimization**

The program to be solved can be written:

maximize  $\frac{1}{T} \sum_{i=1}^{N} \sum_{t=1}^{T} x_i r_{i,t}$ 

(portfolio return)

subject to 
$$\frac{1}{T} \sum_{t=1}^{T} \left| \sum_{i=1}^{N} x_i r_{i,t} - \sum_{i=1}^{N} x_i \overline{r}_i \right| \le \mu$$
 (portfolio risk bounded)  
 $\sum_{i=1}^{N} x_i P_i = 1$  (initial budget)  
 $x_i \ge 0$  (no short sale)

### Is this a linear program?

The following constraint on the absolute value:

 $|x| \le y$ 

is equivalent to:

 $-y \le x \le y$ 

- This means that we can replace each inequality on an absolute value by to inequalities
- We have to introduce additional variables in the original program...

## **Portfolio Optimization**

The new program is written:

maximize  $\frac{1}{T}$ 

$$\frac{1}{T}\sum_{i=1}^{N}\sum_{t=1}^{T}x_{i}r_{i,t}$$

subject to

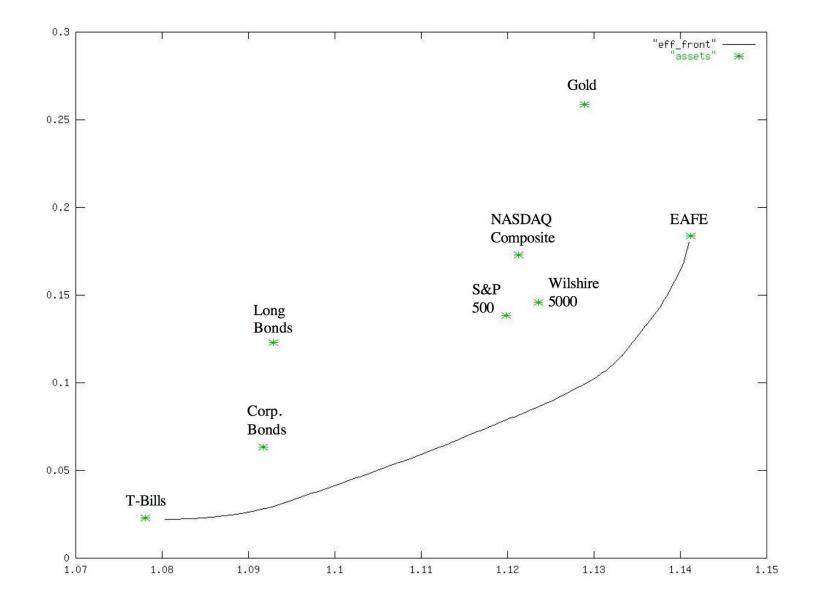
$$\frac{1}{T} \sum_{t=1}^{T} y_t \le \mu \qquad (\text{portfolio risk bounded})$$
$$-y_t \le \left(\sum_{i=1}^{N} x_i r_{i,t} - \sum_{i=1}^{N} x_i \bar{r}_i\right) \le y_t$$
$$\sum_{i=1}^{N} x_i P_i = 1 \qquad (\text{initial budget})$$
$$x_i \ge 0 \qquad (\text{no short sale})$$

#### This is now a linear program!

**ENSAE:** Optimisation

(portfolio return)

### **Portfolio Optimization**

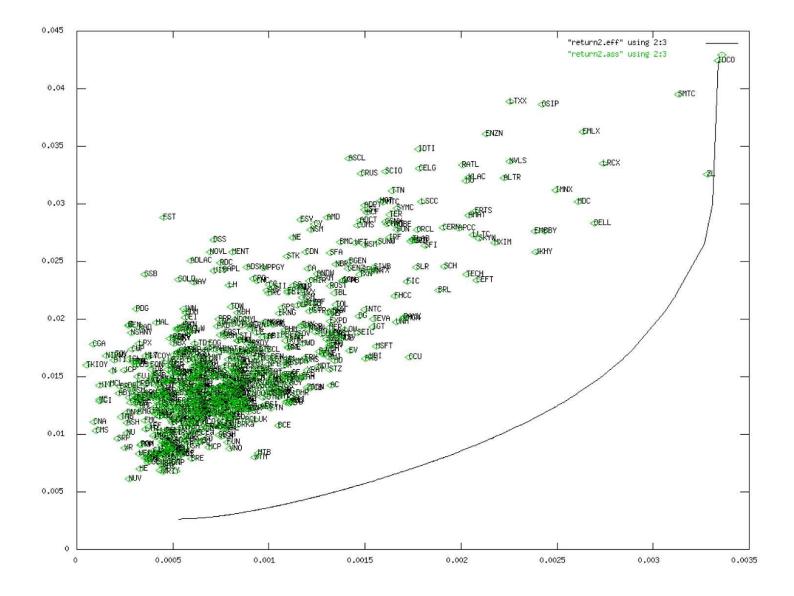


Efficient frontier for a few reference assets (N = 8).

| $\mu$  | US      | Lehman | NASDAQ | Wilshire | Gold  | EAFE  | Reward | Risk  |
|--------|---------|--------|--------|----------|-------|-------|--------|-------|
|        | 3-Month | Bros.  | Comp.  | 5000     |       |       |        |       |
|        | T-Bills | Corp.  |        |          |       |       |        |       |
|        |         | Bonds  |        |          |       |       |        |       |
| 0.1800 |         |        |        |          | 0.017 | 0.983 | 1.141  | 0.180 |
| 0.1538 |         |        |        |          | 0.191 | 0.809 | 1.139  | 0.154 |
| 0.1275 |         |        |        | 0.119    | 0.321 | 0.560 | 1.135  | 0.128 |
| 0.1013 |         |        |        | 0.407    | 0.355 | 0.238 | 1.130  | 0.101 |
| 0.0751 |         |        | 0.340  | 0.180    | 0.260 | 0.220 | 1.118  | 0.075 |
| 0.0488 | 0.172   | 0.492  |        |          | 0.144 | 0.008 | 1.104  | 0.049 |
| 0.0226 | 0.815   | 0.100  | 0.037  |          | 0.041 | 0.008 | 1.084  | 0.022 |

Composition, risk and return of **optimal portfolios** for various values of  $\mu$ .

## **Portfolio Optimization**



Efficient frontier for 719 stocks.

How far is this from the standard mean variance analysis?

- We replace the variance by the deviation
- How do these two measures of "error" compare?

Let's pick an example from statistics:

- Regress a set of data points on a few variables
- Compare least squares regression with least absolute deviation regression

Given N data points  $y_i$  and  $x_i$ , we look for parameters a and b and compute the "best" linear model y = ax + b

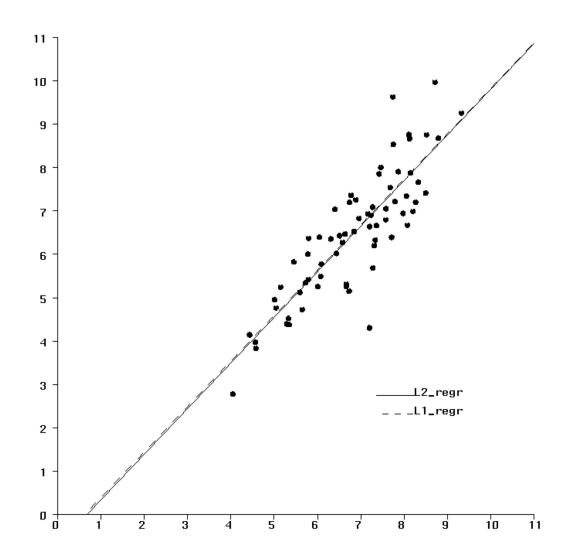
• The usual least squares regression is written:

minimize 
$$\sum_{i=1}^{N} \|y_i - ax_i - b\|^2$$

• The least absolute deviation regression is here:

minimize 
$$\sum_{i=1}^{N} |y_i - ax_i - b|$$

## **Portfolio Optimization**



Not that different here. . .

## **Game Theory**

Two person game.

Count to three and declare:

Paper Scissors Rock

• Winner selected according to:

Rock beats Scissors Paper beats Rock Scissors beats Paper

• We can arrange this in a **payoff matrix**:

$$\begin{array}{cccc} P & S & R \\ P & \left[ \begin{array}{ccc} 0 & 1 & -1 \\ -1 & 0 & 1 \\ R & \left[ \begin{array}{ccc} -1 & 0 & 1 \\ 1 & -1 & 0 \end{array} \right] \end{array} \right]$$

- Playing a fixed (deterministic, pure) strategy is bad: "always stone" is always beaten by paper...
- We know from game theory that there is always a Nash equilibrium involving random (mixed) strategies.
- How do we find these?
- A random strategy is simply a probability vector:

$$\sum_{i=1}^{3} x_i = 1 \text{ and } x_i \ge 0$$

Solving for the equilibrium strategy for both players is a linear program (more details later).

FIR filter design.

**Finite Impulse Response** filter:

$$y_t = \sum_{\tau=0}^{n-1} h_\tau u_{t-\tau}$$

where  $u_t$  is the input signal and  $h_i$  are the filter coefficients

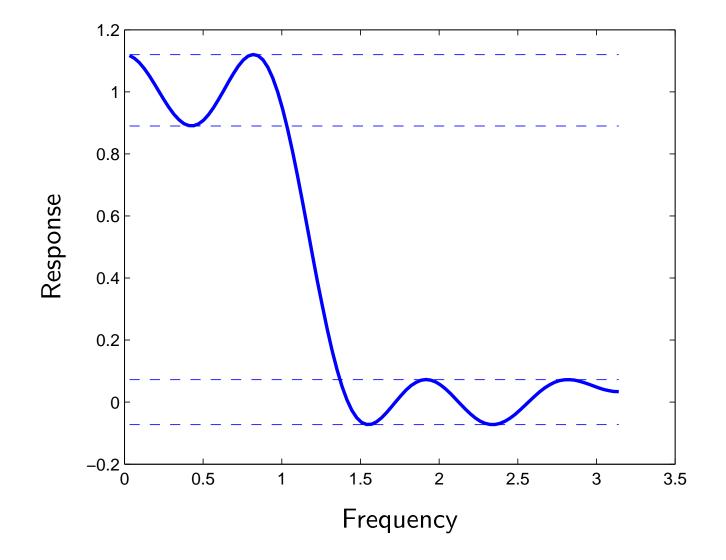
• The magnitude of the **frequency response** of the filter can be written:

$$|\tilde{H}(\omega)| = 2h_0 \cos(N\omega) + 2h_1 \cos((N-1)\omega) + \ldots + h_N$$

• For each particular frequency  $\omega$ , this a **linear** function of the filter coefficients h

Designing a custom filter is just a linear program . . .

## **Signal Processing**



This filter lets **bass** go through and filters out higher frequencies (low-pass)

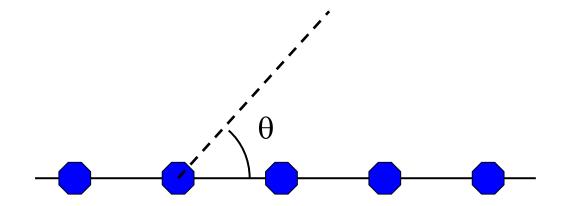


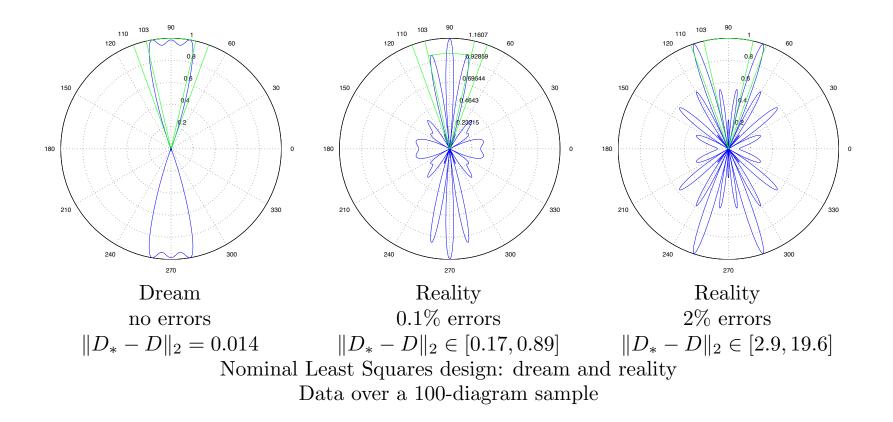
- Wifi (802.11) is another example. . .
- Maximum allowed radiated power (EIRP) is 100mW
- Why? So you don't fry your friend next door, also avoids interferences...
- This power is dissipated in all directions...
- Increase the range: focus most of this power in one direction



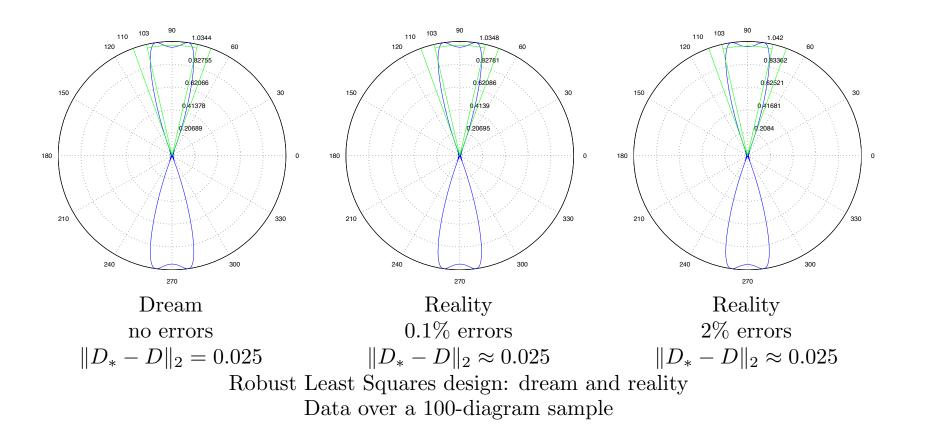
#### **Professional solution.**

- Use multiple antennas
- Use interference patterns to focus most of the power in a particular direction
- Problem is similar to filter design: linear program





Implementation is tricky...



What's next? We will study convex problems.

- Much more general class of problems
- Complexity similar to linear programming
- Similar solvers
- Very very very long list of applications in statistics, engineering, finance, etc.