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Today

� Convex optimization: introduction

� Course organization and other gory details...
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Convex Optimization
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Convex Optimization

� How do we identify easy and hard problems?

� Convexity: why is it so important?

� Modeling: how do we recognize easy problems in real applications?

� Algorithms: how do we solve these problems in practice?
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Introduction

Convexity.

Convex Not convex

Key message from complexity theory: as the problem dimension gets large

� all convex problems are easy,

� most nonconvex problems are hard.
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Introduction

Convex problem.

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

f0, f1, . . . , fm are convex functions, the equality constraints are all affine.

� Strong assumption, yet surprisingly expressive.

� Good convex approximations of nonconvex problems.
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Introduction

First-order condition. Differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) +∇f(x)T (y − x)

First-order approximation of f is global underestimator
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Least squares (LS)

minimize ‖Ax− b‖22
A ∈ Rm×n, b ∈ Rm are parameters; x ∈ Rn is variable

� Complete theory (existence & uniqueness, sensitivity analysis . . . )

� Several algorithms compute (global) solution reliably

� We can solve dense problems with n = 1000 vbles, m = 10000 terms

� By exploiting structure (e.g., sparsity) can solve far larger problems

. . . LS is a (widely used) technology
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Linear program (LP)

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

c, ai ∈ Rn are parameters; x ∈ Rn is variable

� Nearly complete theory
(existence & uniqueness, sensitivity analysis . . . )

� Several algorithms compute (global) solution reliably

� Can solve dense problems with n = 1000 vbles, m = 10000 constraints

� By exploiting structure (e.g., sparsity) can solve far larger problems

. . . LP is a (widely used) technology
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Quadratic program (QP)

minimize ‖Fx− g‖22
subject to aTi x ≤ bi, i = 1, . . . ,m

� Combination of LS & LP

� Same story . . . QP is a technology

� Reliability: Programmed on chips to solve real-time problems

� Classic application: portfolio optimization
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The bad news

� LS, LP, and QP are exceptions

� Most optimization problems, even some very simple looking ones, are
intractable

� The objective of this class is to show you how to recognize the nice ones. . .

� Many, many applications across all fields. . .
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Polynomial minimization

minimize p(x)

p is polynomial of degree d; x ∈ Rn is variable

� Except for special cases (e.g., d = 2) this is a very difficult problem

� Even sparse problems with size n = 20, d = 10 are essentially intractable

� All algorithms known to solve this problem require effort exponential in n
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What makes a problem easy or hard?

Classical view:

� linear is easy

� nonlinear is hard(er)
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What makes a problem easy or hard?

Emerging (and correct) view:

. . . the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.

— R. Rockafellar, SIAM Review 1993
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Convex Optimization

A brief history. . .

� The field is about 50 years old.

� Starts with the work of Von Neumann, Kuhn and Tucker, etc

� Explodes in the 60’s with the advent of “relatively” cheap and efficient
computers. . .

� Key to all this: fast linear algebra

� Some of the theory developed before computers even existed. . .
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Linear programming & the simplex method

Linear Programming, history:

� First solution by Dantzig in the late 40’s. Famous story. . .

� At the time, programs were solved by hand, the algorithm reflects this.

� In 1972, Klee and Minty show that the simplex has an exponential worst case
complexity

� Low complexity of linear programming proved (in theory) by Nemirovski, Yudin
and Khachiyan in the USSR in 1976.

� First efficient algorithm with provably low complexity discovered by Karmarkar
at Bell Labs in 1984.
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Linear programming & the simplex method

Also in 1948. . .
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Linear programming & the simplex method

� First serious LP solved: 9 variables and 77 constraints.

� It took 120 man-days to solve it. . .

� Computing power: A few air force soldiers stuck in a room for a few days.

� Sixty years later, the same (mostly) algorithm is used to solve problems with
millions of variables.
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Optimization

Always the same process: starting from a particular application. . .

� Modeling: model your problem as a member of a particular class of problems
that can be solved efficiently (a linear program for example).

� Solving: feed this problem to your favorite solver. If that’s not possible, write
an algorithm to solve it.
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Course Organization
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Course Plan

� Convex analysis & modeling

� Duality

� Applications

� Algorithms: interior point methods, first order methods.
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Website

Course website with lecture notes, homework, etc.

http://www.di.ens.fr/~aspremon/ENSAE.html

� TDs

� Final exam: TBD
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Short blurb

� Contact info on http://www.di.ens.fr/~aspremon

� Email: aspremon@ens.fr

� Dual PhDs: Ecole Polytechnique & Stanford University

� Interests: Optimization, machine learning, statistics & finance.
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References

� All lecture notes will be posted online

� Textbook: Convex Optimization by Lieven Vandenberghe and Stephen Boyd,
available online at:

http://www.stanford.edu/~boyd/cvxbook/

� See also Ben-Tal and Nemirovski (2001), “Lectures On Modern Convex
Optimization: Analysis, Algorithms, And Engineering Applications”, SIAM.

http://www2.isye.gatech.edu/~nemirovs/

� Nesterov (2003), “Introductory Lectures on Convex Optimization”, Springer.

� Nesterov and Nemirovskii (1994), “Interior Point Polynomial Algorithms in
Convex Programming”, SIAM.
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