
Convex Optimization

First order methods

ENSAE: Optimisation 1/37



Today

� Large scale problems: complexity

� First-order methods

ENSAE: Optimisation 2/37



Large scale problems

� Some problems coming from statistics, biology scheduling etc may have more
than 106 variables

� A matrix of dimension 104 requires 800Mb of memory in double precision

� Also: a high target precision is not always necessary

ENSAE: Optimisation 3/37



First-order methods

ENSAE: Optimisation 4/37



Subgradient Methods

Subgradient

� Suppose that f is a convex function with domf = Rn, and that there is a
vector g ∈ Rn such that:

f(y) ≥ f(x) + gT (y − x), for all y ∈ Rn

� The vector g is called a subgradient of f at x

� Of course, if f is differentiable, the gradient of f at x satisfies this condition

� The subgradient defines a supporting hyperplane for f at the point x

ENSAE: Optimisation 5/37



Subgradient Methods

Subgradient method:

� Suppose f : Rn → R is convex

� We update the current point xk according to:

xk+1 = xk + αkgk

where gk is a subgradient of f at xk

� αk is the step size sequence

� Similar to gradient descent but, not a descent method . . .

� Instead: use the best point and the minimum function value found so far

ENSAE: Optimisation 6/37



Subgradient Methods

Step size strategies:

� Constant step size: αk = h for all k ≥ 0

� Constant step length: αk/‖gk‖ = h for all k ≥ 0

� Square summable but not summable:

∞∑
k=0

αk =∞ and
∞∑
k=0

α2
k <∞

� Nonsummable diminishing:

∞∑
k=0

αk =∞ and lim
k→∞

αk = 0

ENSAE: Optimisation 7/37



Subgradient Methods

Convergence:

Assuming ‖g‖2 ≤ G, for all g ∈ ∂f , we can show

fbest − f? ≤
dist(x1, x

∗) +G2
∑k

i=1α
2
i

2
∑k

i=1αi

For constant step αi = h, this becomes

fbest − f? ≤
dist(x1, x

∗)

2hk
+G2h/2

to get an ε solution, we set h = 2ε/G2 and

dist(x1, x
∗)

2hk
≤ ε

hence

k ≥ dist(x1, x
∗)G2

4ε2
.

ENSAE: Optimisation 8/37



Subgradient Methods

� If the problem has constraints:

minimize f(x)
subject to x ∈ C

where C ⊂ Rn is a convex set

� Use the Euclidean projection pC(gk) of the subgradient gk on C

xk+1 = xk + αkpC(gk)

� Some numerical examples on piecewise linear minimization. . . Problem
instance with n = 10 variables, m = 100 terms

ENSAE: Optimisation 9/37



Subgradient Methods: Numerical Examples

Constant step length, h = 0.05, 0.02, 0.005

0 100 200 300 400 500
10

−2

10
−1

10
0

h = 0.05
h = 0.02
h = 0.005

k

f
(x

(k
) )
−

p
⋆

ENSAE: Optimisation 10/37



Constant step size h = 0.05, 0.02, 0.005

0 100 200 300 400 500
10

−2

10
−1

10
0

h = 0.05
h = 0.02
h = 0.005

k

f
(x

(k
) )
−

p
⋆

ENSAE: Optimisation 11/37



Diminishing step rule α = 0.1/
√
k and square summable step size rule α = 0.1/k.

0 50 100 150 200 250
10

−2

10
−1

10
0

α = .1/
√
k

α = .1/k

k

f
(x

(k
) )
−

p
⋆

ENSAE: Optimisation 12/37



Constant step length h = 0.02, diminishing step size rule α = 0.1/
√
k, and square

summable step rule α = 0.1/k

0 500 1000 1500 2000 2500 3000 3500
10

−3

10
−2

10
−1

10
0

h = 0.02

α = .1/
√
k

α = .1/k

k

f
(k

)
b
e
st
−

p
⋆

ENSAE: Optimisation 13/37



Localization methods

ENSAE: Optimisation 14/37



Localization methods

minimize f(x)

� Function f : Rn → R convex (and for now, differentiable)

� oracle model: for any x we can evaluate f and ∇f(x) (at some cost)

f convex means f(x) ≥ f(x0) +∇f(x0)T (x− x0) and

∇f(x0)T (x− x0) ≥ 0 =⇒ f(x) ≥ f(x0)

i.e., all points in halfspace ∇f(x0)T (x− x0) ≥ 0 are worse than x0

ENSAE: Optimisation 15/37



∇f(x0)

x0

level curves of f

∇f(x0)
T (x − x0) ≥ 0

� by evaluating ∇f we rule out a halfspace in our search for x?:

x? ∈ {x | ∇f(x0)T (x− x0) ≤ 0}

� idea: get one bit of info (on location of x?) by evaluating ∇f
� for nondifferentiable f , can replace ∇f(x0) with any subgradient g ∈ ∂f(x0)

ENSAE: Optimisation 16/37



Suppose we have evaluated ∇f(x1), . . . ,∇f(xk) then we know

x? ∈ {x | ∇f(xi)T (x− xi) ≤ 0}

x1

x2

xk

∇f(x1)

∇f(x2)

∇f(xk)

on the basis of ∇f(x1), . . . ,∇f(xk), we have localized x? to a polyhedron

question: what is a ‘good’ point xk+1 at which to evaluate ∇f?

ENSAE: Optimisation 17/37



Localization algorithm

Basic localization (or cutting-plane) algorithm:

1. after iteration k − 1 we know x? ∈ Pk−1:

Pk−1 = {x | ∇f(x(i))T (x− x(i)) ≤ 0, i = 1, . . . , k − 1}

2. evaluate ∇f(x(k)) (or g ∈ ∂f(x(k))) for some x(k) ∈ Pk−1

3. Pk := Pk−1 ∩ {x | ∇f(x(k))T (x− x(k)) ≤ 0}

ENSAE: Optimisation 18/37



Pk−1

x(k) x(k)

∇f(x(k)) ∇f(x(k))

Pk

� Pk gives our uncertainty of x? at iteration k

� want to pick x(k) so that Pk+1 is as small as possible

� clearly want x(k) near center of C(k)

ENSAE: Optimisation 19/37



Example: bisection on R

� f : R→ R

� Pk is interval

� obvious choice: x(k+1) := midpoint(Pk)

bisection algorithm

given interval C = [l, u] containing x?

repeat
1. x := (l + u)/2
2. evaluate f ′(x)
3. if f ′(x) < 0, l := x; else u := x

ENSAE: Optimisation 20/37



Pk

Pk+1

x(k+1)

length(Pk+1) = uk+1 − lk+1 =
uk − lk

2
= (1/2)length(Pk)

and so length(Pk) = 2−klength(P0)

ENSAE: Optimisation 21/37



interpretation:

� length(Pk) measures our uncertainty in x?

� uncertainty is halved at each iteration; get exactly one bit of info about x? per
iteration

� # steps required for uncertainty (in x?) ≤ ε:

log2
length(P0)

ε
= log2

initial uncertainty

final uncertainty

question:

� can bisection be extended to Rn?

� or is it special since R is linear ordering?

ENSAE: Optimisation 22/37



Center of gravity algorithm

Take x(k+1) = CG(Pk) (center of gravity)

CG(Pk) =

∫
Pk

x dx

/∫
Pk

dx

theorem. if C ⊆ Rn convex, xcg = CG(C), g 6= 0,

vol
(
C ∩ {x | gT (x− xcg) ≤ 0}

)
≤ (1− 1/e)vol(C) ≈ 0.63 vol(C)

(independent of dimension n)

hence in CG algorithm, vol(Pk) ≤ 0.63k vol(P0)

ENSAE: Optimisation 23/37



� vol(Pk)
1/n measures uncertainty (in x?) at iteration k

� uncertainty reduced at least by 0.631/n each iteration

� from this can prove f(x(k))→ f(x?) (later)

� max. # steps required for uncertainty ≤ ε:

1.51n log2
initial uncertainty

final uncertainty

(cf. bisection on R)

ENSAE: Optimisation 24/37



advantages of CG-method

� guaranteed convergence

� number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

� finding x(k+1) = CG(Pk) is harder than original problem

� Pk becomes more complex as k increases
(removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)

ENSAE: Optimisation 25/37



Analytic center cutting-plane method

analytic center of polyhedron P = {z | aTi z � bi, i = 1, . . . ,m} is

AC(P) = argmin
z
−

m∑
i=1

log(bi − aTi z)

ACCPM is localization method with next query point x(k+1) = AC(Pk) (found
by Newton’s method)

ENSAE: Optimisation 26/37



Outer ellipsoid from analytic center

� let x∗ be analytic center of P = {z | aTi z � bi, i = 1, . . . ,m}
� let H∗ be Hessian of barrier at x∗,

H∗ = −∇2
m∑
i=1

log(bi − aTi z)

∣∣∣∣∣
z=x∗

=

m∑
i=1

aia
T
i

(bi − aTi x∗)2

� then, P ⊆ E = {z | (z − x∗)TH∗(z − x∗) ≤ m2} (not hard to show)

ENSAE: Optimisation 27/37



Lower bound in ACCPM

let E(k) be outer ellipsoid associated with x(k)

a lower bound on optimal value p? is

p? ≥ inf
z∈E(k)

(
f(x(k)) + g(k)T (z − x(k))

)
= f(x(k))−mk

√
g(k)TH(k)−1g(k)

(mk is number of inequalities in Pk)

gives simple stopping criterion
√
g(k)TH(k)−1g(k) ≤ ε/mk

ENSAE: Optimisation 28/37



Best objective and lower bound

since ACCPM isn’t a descent a method, we keep track of best point found, and
best lower bound

best function value so far: uk = min
i=1,...,k

f(x(k))

best lower bound so far: lk = max
i=1,...,k

f(x(k))−mk

√
g(k)TH(k)−1g(k)

can stop when uk − lk ≤ ε

ENSAE: Optimisation 29/37



Basic ACCPM

given polyhedron P containing x?

repeat
1. compute x∗, the analytic center of P, and H∗

2. compute f(x∗) and g ∈ ∂f(x∗)
3. u := min{u, f(x∗)}
l := max{l, f(x∗)−m

√
gTH∗−1g}

4. add inequality gT (z − x∗) ≤ 0 to P
until u− l < ε

here m is number of inequalities in P

ENSAE: Optimisation 30/37



Dropping constraints

add an inequality to P each iteration, so centering gets harder, more storage as
algorithm progresses

schemes for dropping constraints from P(k):

� remove all redundant constraints (expensive)

� remove some constraints known to be redundant

� remove constraints based on some relevance ranking

ENSAE: Optimisation 31/37



Dropping constraints in ACCPM

x∗ is AC of P = {x | aTi x ≤ bi, i = 1, . . . ,m}, H∗ is barrier Hessian at x∗

define (ir)relevance measure ηi =
bi − aTi x∗√
aTi H

∗−1ai

� ηi/m is normalized distance from hyperplane aTi x = bi to outer ellipsoid

� if ηi ≥ m, then constraint aTi x ≤ bi is redundant

ENSAE: Optimisation 32/37



Example

PWL objective, n = 10 variables, m = 100 terms

simple ACCPM: f(x(k)) and lower bound f(x(k))−m
√
g(k)TH(k)−1g(k)

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

k

f(x(k)) − p⋆

mk

√

g(k)TH(k)−1g(k)

ENSAE: Optimisation 33/37



simple ACCPM: uk (best objective value) and lk (best lower bound)

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

k

uk − p⋆

uk − lk

ENSAE: Optimisation 34/37



ACCPM with constraint dropping

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

k

uk − p⋆

uk − lk

no dropping

drop ηi > m
keep 3n

. . . constraint dropping actually improves convergence (!)

ENSAE: Optimisation 35/37



ACCPM with constraint dropping

number of inequalities in P:

0 50 100 150 200
0

50

100

150

200

k

no dropping

drop ηi > m

keep 3n

ENSAE: Optimisation 36/37


