Convex Optimization

First order methods

ENSAE: Optimisation 1/37

Today

m Large scale problems: complexity

m First-order methods

ENSAE: Optimisation 2/37

Large scale problems

m Some problems coming from statistics, biology scheduling etc may have more
than 10° variables

= A matrix of dimension 10* requires 800Mb of memory in double precision

m Also: a high target precision is not always necessary

ENSAE: Optimisation 3/37

First-order methods

ENSAE: Optimisation 4/37

Subgradient Methods

Subgradient

m Suppose that f is a convex function with domf = R", and that there is a
vector g € R" such that:

fly)> f(@)+g" (y—=), forallyeR"

m [he vector g is called a subgradient of f at z
m Of course, if f is differentiable, the gradient of f at x satisfies this condition

m [he subgradient defines a supporting hyperplane for f at the point z

ENSAE: Optimisation 5/37

Subgradient Methods

Subgradient method:

m Suppose f: R" — R is convex

m We update the current point ;. according to:

Th41 = Tk + OLGk

where g; is a subgradient of f at xy
m «y IS the step size sequence
m Similar to gradient descent but, not a descent method . . .

m Instead: use the best point and the minimum function value found so far

ENSAE: Optimisation 6/37

Subgradient Methods

Step size strategies:

m Constant step size: ap = h for all k£ > 0
s Constant step length: ay/||gx|| = h for all £ >0

m Square summable but not summable:
) ©.@)
_ 2
E ap = oo and E aj < 00
k=0 k=0

s Nonsummable diminishing:

0
E ar =00 and lim ap =0
P k— o0

ENSAE: Optimisation

7/37

Subgradient Methods

Convergence:
Assuming ||gll2 < G, for all g € 9f, we can show

dist(:z:l, CE*) + G2 Zf:l O‘%

foest — [<
es 22f21&i

For constant step «; = h, this becomes

dist(xq,z")
2hk

fbest_f*g —|—G2h/2

to get an e solution, we set h = 2¢/G? and

dist(xq,z*)
2hk -

€

hence .)
. dist(xq,2*)G |

— 4e2

ENSAE: Optimisation

8/37

Subgradient Methods

m If the problem has constraints:

minimize f(x)
subjectto z € C

where C C R" is a convex set

m Use the Euclidean projection pc(gy) of the subgradient g; on C

Tp11 = Tk + axpc(9gr)

s Some numerical examples on piecewise linear minimization. . . Problem
iInstance with n = 10 variables, m = 100 terms

ENSAE: Optimisation 9/37

Subgradient Methods: Numerical Examples

Constant step length, A = 0.05, 0.02,0.005

10° |
e h=0.05
-- h=0.02
— h =0.005
X
.y
|
10
=
1 1] I) - A ! 1 '
it g it ,"*"n e ‘H o -ln-.; o, ',,'i ;h
ll'llhl l‘ |I'i'r¥'||r' || ll I\Illl ”’l.\“\n" Y ' II‘
f i ':n'll'l::ll'“l h b ” \" : \ |||||"|||.
| | 1:‘ 1 | I | : H"
| | . 1y v || l | l‘
I tl
v
-2
10 Il Il Il Il
0 100 200 300 400 500
k

ENSAE: Optimisation 10/37

Constant step size h = 0.05, 0.02, 0.005

10° . . . |
‘‘‘‘‘‘ h=0.05
-- h=0.02
; — h =0.005
* Ay
4 VAL R TR N
| 555'.".,! FEA R |t L “f,l FARW N
: J'|| 3 0 r“ hi dy g Y il it ST T | @i.’l'f'l,llf]"
—1| T WA Al A A 5 l'l 'll\l' ! ?‘ Ly 1 234
SNl i 1""’"'.";”"{"?*:1 e v ‘fi'y,«g““:h'?uw\:»*"ugt':-w:‘f‘ys'.:i&:g:e;
= 'H'\ ' |,':| 'us..l.lllu:u‘.,l,ii.,l“ W'|l|, ¥ ,l'n,"'p;'lh,hli_
S8 1 | 1 HIIII' :” |! | il “l';' "
N~ i I , |I 1| ! f , 'l | ,I
Q‘\ | I “ 1 I I | y I |
-2
10 | | | |
0 100 200 300 400 500
k

ENSAE: Optimisation 11/37

Diminishing step rule a = 0.1/\/E and square summable step size rule « = 0.1/k.

A — Zi'ﬁff |
)

;\'\10—1, va'M | t
% : '4’ W[} “]‘\ E
= T

10_ ! ! ! !
0 50 100 150 200 250

ENSAE: Optimisation 12/37

Constant step length h = 0.02, diminishing step size rule a = 0.1/\/E, and square
summable step rule « = 0.1/k

10 ¢ ‘
— a=.1/Vk |
— a=.1/k |
10 |
X [
=
|
+
—~ W
3
x _2
al L — ?
10_3 ! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500
k

ENSAE: Optimisation

13/37

Localization methods

ENSAE: Optimisation 14/37

Localization methods

minimize f(x)

= Function f: R" — R convex (and for now, differentiable)

= oracle model: for any x we can evaluate f and V f(x) (at some cost)

f convex means f(z) > f(xo) + Vf(zo)! (z — x¢) and

V(o) (@ —20) 20 = f(z) = f(xo)

i.e., all points in halfspace V f(x0)! (x — zg) > 0 are worse than z;

ENSAE: Optimisation

15/37

level curves of f

Lo

V f (o)

Vf(:co)T(:c —x9) >0

m by evaluating V f we rule out a halfspace in our search for x*:

v* € {x | Vf(xo)! (z — x0) <0}

= idea: get one bit of info (on location of x*) by evaluating V f

= for nondifferentiable f, can replace V f(xg) with any subgradient g € 0f(xg)

ENSAE: Optimisation 16/37

Suppose we have evaluated V f(z1),..., Vf(xr) then we know
v* € {z | Vf(z:)"(x —x;) <0}

Vf(z1)

V f(x2)

V f(xk)

on the basis of Vf(x1),...,Vf(xk), we have localized x* to a polyhedron

question: what is a ‘good’ point xx11 at which to evaluate Vf7?

ENSAE: Optimisation 17/37

Localization algorithm

Basic localization (or cutting-plane) algorithm:

1. after iteration £ — 1 we know x* € Pp_1:

2. evaluate Vf(2*) (or g € 0f(2(¥))) for some zF) € Pp_4

3. Ppi=Pr_1N{z | V)T (z — 2F)) <0}

ENSAE: Optimisation 18/37

m P gives our uncertainty of ™ at iteration k
m want to pick (%) so that Pr1 1s as small as possible

= clearly want z®) near center of C'(F)

ENSAE: Optimisation 19/37

Example: bisection on R

= f:R—R

m Py is interval

= obvious choice: z(kt1) .= midpoint(Py)

repeat

2. evaluate f/(
3. if f'(z) <0,

1. 2= (+u)/

bisection algorithm

given interval C' = [l, u| containing z*

2
)
[=

T else u:=x

ENSAE: Optimisation

20/37

PO P

up, — lg

length(Pri1) = upr1 — lgr1 = = (1/2)length(Py)

and so length(Py) = 2_klength(770)

ENSAE: Optimisation 21/37

interpretation:

= length(P;,) measures our uncertainty in x*

m uncertainty is halved at each iteration; get exactly one bit of info about =™ per
iteration

m # steps required for uncertainty (in x*) < e:

length(Py) initial uncertainty

log; = log,

final uncertainty

question:

m can bisection be extended to R™?

m or is it special since R is linear ordering?

ENSAE: Optimisation 22/37

Center of gravity algorithm

Take z(**t1) = CG(Py;,) (center of gravity)

CG(Pk)kadx/Lkdx

theorem. if C' C R" convex, z.; = CG(C), g # 0,
vol (CN{z | g"(z —xe) <0}) < (1—1/€) vol(C) ~ 0.63 vol(C)

(independent of dimension n)

hence in CG algorithm, vol(P;) < 0.63* vol(P)

ENSAE: Optimisation 23/37

s vol(P;)!/™ measures uncertainty (in z*) at iteration &
= uncertainty reduced at least by 0.63!/™ each iteration
s from this can prove f(z(*)) — f(z*) (later)

m max. # steps required for uncertainty < e:

initial uncertainty

1.51nl : .
1082 final uncertainty

(cf. bisection on R)

ENSAE: Optimisation 24/37

advantages of CG-method

m guaranteed convergence

m number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

s finding (¥ = CG(Py,) is harder than original problem

m P, becomes more complex as k increases
(removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)

ENSAE: Optimisation 25/37

Analytic center cutting-plane method

analytic center of polyhedron P = {z |alz <b;, i=1,...,m} is

AC(P) = argmin — Z log(b; — a; z)

1=1

ACCPM is localization method with next query point 2(*+1) = AC(P},) (found
by Newton's method)

ENSAE: Optimisation 26/37

Outer ellipsoid from analytic center

= let o* be analytic center of P ={z |al 2z <b;, i=1,...,m}

m let H* be Hessian of barrier at =™,

m m r
. auj,a/?:
H* = —-V? Zlog(bi - atz'rz) - Z (b; — aT:C*)2

m then, PCE={z| (2 —2*) ' H*(2 — 2*) < m?} (not hard to show)

ENSAE: Optimisation 27/37

Lower bound in ACCPM

let £F) be outer ellipsoid associated with z(*)

a lower bound on optimal value p* is

p* > inf (f(:c(k)) + gWT (7 — x(k)))
ze&F)

— (&™) = /g T H R~ 1g(k)

(myg is number of inequalities in Py)

gives simple stopping criterion /gMTH®)—1g(k) < ¢/my,

ENSAE: Optimisation 28/37

Best objective and lower bound

since ACCPM isn't a descent a method, we keep track of best point found, and
best lower bound

best function value so far: ug = r{linkf(x(k))
1=1,...,

best lower bound so far: [= ,_nalaxkf(x(k)) — my\/ gRT H (k) —1g(k)

can stop when up — [, < €

ENSAE: Optimisation 29/37

Basic ACCPM

given polyhedron P containing x*

repeat
1. compute z*, the analytic center of P, and H*
2. compute f(x*) and g € Of(z*)
3. u:=min{u, f(x*)}
[= max{l, f(a*) - mv/gTH" g}
4. add inequality g’ (z —2*) <0 to P
until u — [< e

here m is number of inequalities in P

ENSAE: Optimisation

30/37

Dropping constraints

add an inequality to ‘P each iteration, so centering gets harder, more storage as

algorithm progresses

schemes for dropping constraints from P(%):

= remove all redundant constraints (expensive)
m remove some constraints known to be redundant

m remove constraints based on some relevance ranking

ENSAE: Optimisation

31/37

Dropping constraints in ACCPM

z*is ACof P={z|alx <b; i=1,...,m}, H* is barrier Hessian at z*

T, .*
b —a; x

Trr«—1,.
(]

define (ir)relevance measure 7; =

T

= 7);/m is normalized distance from hyperplane a; = = b; to outer ellipsoid

= if 7; > m, then constraint a! x < b; is redundant

ENSAE: Optimisation 32/37

Example

PWL objective, n = 10 variables, m = 100 terms

simple ACCPM: f(z(®)) and lower bound f(z*)) — m+/gF)TH &) ~14(k)

10°
e/ 9T H =1 (k)

10°

-2
10 ¢
Fa®)y - p*
107
10_6 1 1 1
0 50 100 150 200

k

ENSAE: Optimisation 33/37

simple ACCPM: uy, (best objective value) and [; (best lower bound)

0 50 100 150 200

ENSAE: Optimisation 34/37

ACCPM with constraint dropping

— no dropping
---dropm; >m

50

.. . constraint dropping actually improves convergence (!)

ENSAE: Optimisation

200

35/37

ACCPM with constraint dropping

number of inequalities in P:

200

150

100

50 avTeNnsNA"AT]
keep 3n
O ! ! !
0 50 100 150
k

ENSAE: Optimisation

no dropping

dropmn; > m

-
SN2 \NAaA ”~

200

