Convex Optimization

First order methods
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Today

m Large scale problems: complexity

m First-order methods
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Large scale problems

m Some problems coming from statistics, biology scheduling etc may have more
than 10° variables

= A matrix of dimension 10* requires 800Mb of memory in double precision

m Also: a high target precision is not always necessary
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First-order methods
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Subgradient Methods

Subgradient

m Suppose that f is a convex function with domf = R", and that there is a
vector g € R" such that:

fly)> f(@)+g" (y—=), forallyeR"

m [he vector g is called a subgradient of f at z
m Of course, if f is differentiable, the gradient of f at x satisfies this condition

m [he subgradient defines a supporting hyperplane for f at the point z
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Subgradient Methods

Subgradient method:

m Suppose f: R" — R is convex

m We update the current point ;. according to:

Th41 = Tk + OLGk

where g; is a subgradient of f at xy
m «y IS the step size sequence
m Similar to gradient descent but, not a descent method . . .

m Instead: use the best point and the minimum function value found so far
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Subgradient Methods

Step size strategies:

m Constant step size: ap = h for all k£ > 0
s Constant step length: ay/||gx|| = h for all £ >0

m Square summable but not summable:
) ©.@)
_ 2
E ap = oo and E aj < 00
k=0 k=0

s Nonsummable diminishing:

0
E ar =00 and lim ap =0
P k— o0
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Subgradient Methods

Convergence:
Assuming ||gll2 < G, for all g € 9f, we can show

dist(:z:l, CE*) + G2 Zf:l O‘%

foest — [ <
es 22f21&i

For constant step «; = h, this becomes

dist(xq,z")
2hk

fbest_f*g —|—G2h/2

to get an e solution, we set h = 2¢/G? and

dist(xq,z*)
2hk -

€

hence . )
. dist(xq,2*)G |

— 4e2
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Subgradient Methods

m If the problem has constraints:

minimize  f(x)
subjectto z € C

where C C R" is a convex set

m Use the Euclidean projection pc(gy) of the subgradient g; on C

Tp11 = Tk + axpc(9gr)

s Some numerical examples on piecewise linear minimization. . . Problem
iInstance with n = 10 variables, m = 100 terms
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Subgradient Methods: Numerical Examples

Constant step length, A = 0.05, 0.02,0.005
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Constant step size h = 0.05, 0.02, 0.005
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Diminishing step rule a = 0.1/\/E and square summable step size rule « = 0.1/k.
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Constant step length h = 0.02, diminishing step size rule a = 0.1/\/E, and square
summable step rule « = 0.1/k
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Localization methods
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Localization methods

minimize f(x)

= Function f: R" — R convex (and for now, differentiable)

= oracle model: for any x we can evaluate f and V f(x) (at some cost)

f convex means f(z) > f(xo) + Vf(zo)! (z — x¢) and

V(o) (@ —20) 20 = f(z) = f(xo)

i.e., all points in halfspace V f(x0)! (x — zg) > 0 are worse than z;
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level curves of f

Lo

V f (o)

Vf(:co)T(:c —x9) >0

m by evaluating V f we rule out a halfspace in our search for x*:

v* € {x | Vf(xo)! (z — x0) <0}

= idea: get one bit of info (on location of x*) by evaluating V f

= for nondifferentiable f, can replace V f(xg) with any subgradient g € 0f(xg)
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Suppose we have evaluated V f(z1),..., Vf(xr) then we know
v* € {z | Vf(z:)"(x —x;) <0}

Vf(z1)

V f(x2)

V f(xk)

on the basis of Vf(x1),...,Vf(xk), we have localized x* to a polyhedron

question: what is a ‘good’ point xx11 at which to evaluate Vf7?
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Localization algorithm

Basic localization (or cutting-plane) algorithm:

1. after iteration £ — 1 we know x* € Pp_1:

2. evaluate Vf(2*) (or g € 0f(2(¥))) for some zF) € Pp_4

3. Ppi=Pr_1N{z | V)T (z — 2F)) <0}
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m P gives our uncertainty of ™ at iteration k
m want to pick (%) so that Pr1 1s as small as possible

= clearly want z®) near center of C'(F)
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Example: bisection on R

= f:R—R

m Py is interval

= obvious choice: z(kt1) .= midpoint(Py)

repeat

2. evaluate f/(
3. if f'(z) <0,

1. 2= (+u)/

bisection algorithm

given interval C' = [l, u| containing z*

2
)
[ =

T else u:=x
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PO P

up, — lg

length(Pri1) = upr1 — lgr1 = = (1/2)length(Py)

and so length(Py) = 2_klength(770)
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interpretation:

= length(P;,) measures our uncertainty in x*

m uncertainty is halved at each iteration; get exactly one bit of info about =™ per
iteration

m # steps required for uncertainty (in x*) < e:

length(Py) initial uncertainty

log; = log,

final uncertainty

question:

m can bisection be extended to R™?

m or is it special since R is linear ordering?
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Center of gravity algorithm

Take z(**t1) = CG(Py;,) (center of gravity)

CG(Pk)kadx/Lkdx

theorem. if C' C R" convex, z.; = CG(C), g # 0,
vol (CN{z | g"(z —xe) <0}) < (1—1/€) vol(C) ~ 0.63 vol(C)

(independent of dimension n)

hence in CG algorithm, vol(P;) < 0.63* vol(P)
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s vol(P;)!/™ measures uncertainty (in z*) at iteration &
= uncertainty reduced at least by 0.63!/™ each iteration
s from this can prove f(z(*)) — f(z*) (later)

m max. # steps required for uncertainty < e:

initial uncertainty

1.51nl : .
1082 final uncertainty

(cf. bisection on R)
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advantages of CG-method

m guaranteed convergence

m number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

s finding (¥ = CG(Py,) is harder than original problem

m P, becomes more complex as k increases
(removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)
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Analytic center cutting-plane method

analytic center of polyhedron P = {z |alz <b;, i=1,...,m} is

AC(P) = argmin — Z log(b; — a; z)

1=1

ACCPM is localization method with next query point 2(*+1) = AC(P},) (found
by Newton's method)
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Outer ellipsoid from analytic center

= let o* be analytic center of P ={z |al 2z <b;, i=1,...,m}

m let H* be Hessian of barrier at =™,

m m r
. auj,a/?:
H* = —-V? Zlog(bi - atz'rz) - Z (b; — aT:C*)2

m then, PCE={z| (2 —2*) ' H*(2 — 2*) < m?} (not hard to show)
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Lower bound in ACCPM

let £F) be outer ellipsoid associated with z(*)

a lower bound on optimal value p* is

p* > inf (f(:c(k)) + gWT (7 — x(k)))
ze&F)

— (&™) = /g T H R~ 1g(k)

(myg is number of inequalities in Py)

gives simple stopping criterion /gMTH®)—1g(k) < ¢/my,
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Best objective and lower bound

since ACCPM isn't a descent a method, we keep track of best point found, and
best lower bound

best function value so far: ug = r{linkf(x(k))
1=1,...,

best lower bound so far: [ = ,_nalaxkf(x(k)) — my\/ gRT H (k) —1g(k)

can stop when up — [, < €
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Basic ACCPM

given polyhedron P containing x*

repeat
1. compute z*, the analytic center of P, and H*
2. compute f(x*) and g € Of(z*)
3. u:=min{u, f(x*)}
[ = max{l, f(a*) - mv/gTH" g}
4. add inequality g’ (z —2*) <0 to P
until u — [ < e

here m is number of inequalities in P

ENSAE: Optimisation

30/37



Dropping constraints

add an inequality to ‘P each iteration, so centering gets harder, more storage as

algorithm progresses

schemes for dropping constraints from P(%):

= remove all redundant constraints (expensive)
m remove some constraints known to be redundant

m remove constraints based on some relevance ranking
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Dropping constraints in ACCPM

z*is ACof P={z|alx <b; i=1,...,m}, H* is barrier Hessian at z*

T, .*
b —a; x

Trr«—1,.
(]

define (ir)relevance measure 7; =

T

= 7);/m is normalized distance from hyperplane a; = = b; to outer ellipsoid

= if 7; > m, then constraint a! x < b; is redundant
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Example

PWL objective, n = 10 variables, m = 100 terms

simple ACCPM: f(z(®)) and lower bound f(z*)) — m+/gF)TH &) ~14(k)
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simple ACCPM: uy, (best objective value) and [; (best lower bound)

0 50 100 150 200
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ACCPM with constraint dropping

— no dropping
---dropm; >m

50

.. . constraint dropping actually improves convergence (!)
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ACCPM with constraint dropping

number of inequalities in P:
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