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Today

� Sparsity, low complexity models.

� `1-recovery results: three approaches.

� Extensions: matrix completion, atomic norms.

� Algorithmic implications.
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Low complexity models

Consider the following underdetermined linear system

n

m

A x =

=

b

where A ∈ Rm×n, with n� m.

Can we find the sparsest solution?
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Introduction

� Signal processing: We make a few measurements of a high dimensional
signal, which admits a sparse representation in a well chosen basis (e.g.
Fourier, wavelet). Can we reconstruct the signal exactly?

� Coding: Suppose we transmit a message which is corrupted by a few errors.
How many errors does it take to start losing the signal?

� Statistics: Variable selection in regression (LASSO, etc).
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Introduction

Why sparsity?

� Sparsity is a proxy for power laws. Most results stated here on sparse vectors
apply to vectors with a power law decay in coefficient magnitude.

� Power laws appear everywhere. . .

◦ Zipf law: word frequencies in natural language follow a power law.

◦ Ranking: pagerank coefficients follow a power law.

◦ Signal processing: 1/f signals

◦ Social networks: node degrees follow a power law.

◦ Earthquakes: Gutenberg-Richter power laws

◦ River systems, cities, net worth, etc.
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Introduction

Frequency vs. word in Wikipedia (from Wikipedia).
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Introduction

Frequency vs. magnitude for earthquakes worldwide. Christensen et al. [2002]
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Introduction

Pages vs. Pagerank on web sample. Pandurangan et al. [2006]

A. d’Aspremont. M1 ENS. 8/36



Introduction

� Getting the sparsest solution means solving

minimize Card(x)
subject to Ax = b

which is a (hard) combinatorial problem in x ∈ Rn.

� A classic heuristic is to solve instead

minimize ‖x‖1
subject to Ax = b

which is equivalent to an (easy) linear program.
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Introduction

Assuming |x| ≤ 1, we can replace:

Card(x) =

n∑
i=1

1{xi 6=0}

with

‖x‖1 =

n∑
i=1

|xi|

Graphically, assuming x ∈ [−1, 1] this is:

0

1

−1 1

Card(x)

|x|

x

The l1 norm is the largest convex lower bound on Card(x) in [−1, 1].
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Introduction

Example: we fix A, we draw many sparse signals e and plot the probability of
perfectly recovering e by solving

minimize ‖x‖1
subject to Ax = Ae

in x ∈ Rn, with n = 50 and m = 30.
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Introduction

� Donoho and Tanner [2005] and Candès and Tao [2005] show that for certain
classes of matrices, when the solution e is sparse enough, the solution of the
`1-minimization problem is also the sparsest solution to Ax = Ae.

� Let k = Card(e), this happens even when k = O(m) asymptotically, which is
provably optimal.

� Also obtain bounds on reconstruction error outside of this range.
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Introduction

Similar results exist for rank minimization.

� The `1 norm is replaced by the trace norm on matrices.

� Exact recovery results are detailed in Recht et al. [2007], Candes and Recht
[2008], . . .
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`1 recovery
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Diameter

Kashin and Temlyakov [2007]: Simple relationship between the diameter of a
section of the `1 ball and the size of signals recovered by `1-minimization.

Proposition

Diameter & Recovery threshold. Given a coding matrix A ∈ Rm×n, suppose
that there is some k > 0 such that

sup
Ax=0
‖x‖1≤1

‖x‖2 ≤
1√
k

(1)

then sparse recovery xLP = u is guaranteed if Card(u) ≤ k/4, and

‖u− xLP‖1 ≤ 4 min
{Card(y)≤k/16}

‖u− y‖1

where xLP solves the `1-minimization LP and u is the true signal.
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Diameter

Proof. Kashin and Temlyakov [2007]. Suppose

sup
Ax=0
‖x‖1≤1

‖x‖2 ≤ k−1/2

Let u be the true signal, with Card(u) ≤ k/4. If x satisfies Ax = 0, for any
support set Λ with |Λ| ≤ k/4,∑

i∈Λ

xi ≤
√
|Λ| ‖x‖2 ≤

√
|Λ|/k ‖x‖1 ≤ ‖x‖1/2,

Now let Λ = supp(u) and let v 6= u such that x = v − u satisfies Ax = 0, then

‖v‖1 =
∑
i∈Λ

|ui+xi|+
∑
i/∈Λ

|xi| ≥
∑
i∈Λ

|ui|−
∑
i∈Λ

|xi|+
∑
i/∈Λ

|xi| = ‖u‖1+‖x‖1−2
∑
i∈Λ

|xi|

and
‖x‖1 − 2

∑
i∈Λ

|xi| > 0

means that ‖v‖1 > ‖u‖1, so xLP = u. The error bound follows from similar arg.
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Diameter, low M∗ estimate

Theorem

Low M∗ estimate. Let E ⊂ Rn be a subspace of codimension k chosen
uniformly at random w.r.t. to the Haar measure on Gn,n−k, then

diam(K ∩ E) ≤ c
√
n

k
M(K∗) = c

√
n

k

∫
Sn−1
‖x‖K∗dσ(x)

with probability 1− e−k, where c is an absolute constant.

Proof. See [Pajor and Tomczak-Jaegermann, 1986] for example.

We have M(Bn
∞) ∼

√
log n/n asymptotically. This means that random sections

of the `1 ball with dimension n− k have diameter bounded by

diam(Bn
1 ∩ E) ≤ c

√
log n

k

with high probability, where c is an absolute constant (a more precise analysis
allows the log term to be replaced by log(n/k)).
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Sections of the `1 ball

Results guaranteeing near-optimal bounds on the diameter can be traced back to
Kashin and Dvoretzky’s theorem.

� Kashin decomposition [Kashin, 1977]. Given n = 2m, there exists two
orthogonal m-dimensional subspaces E1, E2 ⊂ Rn such that

1

8
‖x‖2 ≤

1√
n
‖x‖1 ≤ ‖x‖2, for all x ∈ E1 ∪ E2

� In fact, most m-dimensional subspaces satisfy this relationship.
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Atomic norms

We can give another geometric view on the recovery of low complexity models.
Once again, we focus on problem (2), namely

minimize ‖x‖A
subject to Ax = Ax0

and we start by a construction from [Chandrasekaran et al., 2010] on a specific
type of norm penalties, which induce simple representations in a generic setting.

Definition

Atomic norm. Let A ⊂ Rn be a set of atoms. Let ‖ · ‖A be the gauge of A, i.e.

‖x‖A = inf{t > 0 : x ∈ t×Co(A)}

The motivation for this definition is simple, if the centroid of A is at the origin,
we have

‖x‖A = inf

{∑
a∈A

λa : x =
∑
a∈A

λaa, λa ≥ 0

}
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Atomic norms

Depending on A, atomic norms look very familiar.

� Suppose A = {±ei}i=1,...,n where ei is the Euclidean basis of Rn. Then
Co(A) is the `1 ball and ‖x‖A = ‖x‖1.

� Suppose A = {uvT : u, v ∈ Rn, ‖u‖2 = ‖v‖2 = 1}, then Co(A) is the unit
ball of the trace norm and ‖X‖A = ‖X‖∗ when X ∈ Rn×n.

� Suppose A is the set of all orthogonal matrices of dimension n. Its convex hull
is the unit ball of the spectral norm, and ‖X‖A = ‖X‖2 when X ∈ Rn×n.

� Suppose A is the set of all permutations of the list {1, 2, . . . , n}, its convex
hull is called the is the permutahedron (it needs to be recentered) and ‖x‖A is
hard to compute (but can be used as a penalty).
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Atomic norms

Suppose ‖ · ‖A is an atomic norm, focus on

minimize ‖x‖A
subject to Ax = Ax0

(2)

Proposition

Optimality & recovery. We write

TA(x0) = Cone{z − x0 : ‖z‖A ≤ ‖x0‖A}

the tangeant cone at x0. Then x0 is the unique optimal solution of (3) iff

TA(x0) ∩N (A) = {0}
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Atomic norms

� Perfect recovery of x0 by minimizing the atomic norm ‖x‖A occurs when the
intersection of the subspace N (A) and the cone TA(x0) is empty.

� When A is i.i.d. Gaussian with variance 1/m, the probability of the event
TA(x0) ∩N (A) = {0} can be bounded explicitly.

Proposition

[Gordon, 1988] Let A ∈ Rm×n, be i.i.d. Gaussian with Ai,j ∼ N (0, 1/m), let
Ω = TA(x0) ∩Bp

2 be the intersection of the cone TA(x0) with the unit sphere, x0

is the unique minimizer of (3) with probability 1− exp(−(λn − ω(Ω))2/2) if

m ≥ ω(Ω)2 + 1

where

ω(Ω) = E

[
sup
y∈Ω

yTg

]
and λm =

√
2 Γ((m+ 1)/2)

Γ(m/2)
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Atomic norms

The previous result shows that computing the recovery threshold n (number of
samples required to reconstruct the signal x0), it suffices to estimate

ω(Ω) = E

[
sup

y∈TA(x0), ‖y‖2=1

yTg

]

This quantity can be computed for many atomic norms ‖ · ‖A.

� Suppose x0 is a k-sparse vector, ‖x‖A = ‖x‖1 and

ω(Ω)2 ≤ 2k log(p/k) + 5k/4

� Suppose X0 is a rank r matrix in Rm1×m2, then ‖X‖A = ‖X‖∗ and

ω(Ω)2 ≤ r(m1 +m2 − r)

� Suppose X0 is an orthogonal matrix of dimension n, then ‖X‖A = ‖X‖2 and

ω(Ω)2 ≤ 3n2 − n
4

A. d’Aspremont. M1 ENS. 23/36



*

References

J. Bourgain, J. Lindenstrauss, and V. Milman. Minkowski sums and symmetrizations. Geometric aspects of functional analysis, pages 44–66,
1988.

E. Candes and B. Recht. Simple bounds for low-complexity model reconstruction. arXiv preprint arXiv:1106.1474, 2011.

E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):4203–4215, 2005.

E.J. Candes and B. Recht. Exact matrix completion via convex optimization. preprint, 2008.

V. Chandrasekaran, B. Rechtw, P.A. Parrilo, and A.S. Willskym. The convex geometry of linear inverse problems. Arxiv preprint
arXiv:1012.0621, 2010.

K. Christensen, L. Danon, T. Scanlon, and P. Bak. Unified scaling law for earthquakes, 2002.

D. L. Donoho and J. Tanner. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. of the National
Academy of Sciences, 102(27):9446–9451, 2005.

J.J. Fuchs. On sparse representations in arbitrary redundant bases. Information Theory, IEEE Transactions on, 50(6):1341–1344, 2004.

A. Giannopoulos, V.D. Milman, and A. Tsolomitis. Asymptotic formulas for the diameter of sections of symmetric convex bodies. Journal of
Functional Analysis, 223(1):86–108, 2005.

A. A. Giannopoulos and V. D. Milman. On the diameter of proportional sections of a symmetric convex body. International Math. Research
Notices, No. 1 (1997) 5–19., (1):5–19, 1997.

Y. Gordon. On Milman’s inequality and random subspaces which escape through a mesh in Rn. Geometric Aspects of Functional Analysis,
pages 84–106, 1988.

B. Kashin. The widths of certain finite dimensional sets and classes of smooth functions. Izv. Akad. Nauk SSSR Ser. Mat, 41(2):334–351,
1977.

B.S. Kashin and V.N. Temlyakov. A remark on compressed sensing. Mathematical notes, 82(5):748–755, 2007.

A. Pajor and N. Tomczak-Jaegermann. Subspaces of small codimension of finite-dimensional banach spaces. Proceedings of the American
Mathematical Society, 97(4):637–642, 1986.

G. Pandurangan, P. Raghavan, and E. Upfal. Using pagerank to characterize web structure. Internet Mathematics, 3(1):1–20, 2006.

B. Recht, M. Fazel, and P.A. Parrilo. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. Arxiv
preprint arXiv:0706.4138, 2007.

R. Vershynin. Lectures in Geometric Functional Analysis. In preparation, 2011. URL
http://www-personal.umich.edu/~romanv/papers/GFA-book/GFA-book.pdf.

A. d’Aspremont. M1 ENS. 24/36


