Optimisation Combinatoire et Convexe

First Order Methods: part I
First Order Methods: Part One.

- Introduction
 - Exploiting structure
 - Classification
- Gradient/projection based methods
 - Acceleration
 - Optimal complexity, resisting oracles
Interior Point Methods, Newton.

- Even with efficient linear algebra, exploiting structure in the KKT system computing the Newton step, the cost of one iteration becomes prohibitive.
- The dependence on the precision target is logarithmic $O(\log(1/\epsilon))$: Newton’s method produces high precision solutions, which is often unnecessary.
- Very good agreement between theoretical complexity bounds and empirical performance:
 - Two convergence phases for Newton’s method (damped, quadratic).
 - Dimension independence: only precision improvement matters in Newton’s iterations.
 - Very good dependence on precision target.
 - Affine invariance: immune to conditioning issues.

Unfortunately: does not scale forever...
Introduction

First order methods.

- Dependence on precision is polynomial $O(1/\epsilon^\alpha)$, not logarithmic $O(\log(1/\epsilon))$. This is OK in many applications (stats, etc).
- Run a much larger number of cheaper iterations. No Hessian means significantly lower memory and CPU costs per iteration.
- Lack of second order information means conditioning issues have much more impact on numerical performance.
- Much greater gap between theoretical complexity bounds and empirical performance.
- No unified analysis (self-concordance for IPM): large library of disparate methods.
- Algorithmic choices strictly constrained by problem structure.

Objective: classify these techniques, study their performance & complexity.
Introduction

First order methods. Algorithmic choices based on problem structure.

- Some optimization subproblems can be solved very efficiently (thresholding, binary search, SVD, etc).
- Classify algorithms according to these subproblems:
 - **Projection.** Project the current iterate on a simple convex set, according to a certain norm. Iterates are mostly based on projected gradient steps.
 - **Centering.** Solve a centering problem at each iteration and compute a subgradient at the center to localize the solution.
 - **Affine maximization.** Solve an affine maximization problem over the feasible set.
 - **Partial optimization.** Solve the minimization problem over a subset of the variables.
- Solving large-scale programs means solving a long sequence of these subproblems.
Gradient/projection methods
Gradient/projection methods: introduction

Solve

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C
\end{align*}
\]

in \(x \in \mathbb{R}^n \), with \(C \subset \mathbb{R}^n \) convex.

Main assumptions in the subgradient/gradient methods that follow:

- The gradient \(\nabla f(x) \) or a subgradient can be computed efficiently.
- If \(C \) is not \(\mathbb{R}^n \), for any \(y \in \mathbb{R}^n \), the following subproblem can be solved efficiently

\[
\begin{align*}
\text{minimize} & \quad y^T x + d(x) \\
\text{subject to} & \quad x \in C
\end{align*}
\]

in the variable \(x \in \mathbb{R}^n \), where \(d(x) \) is a strongly convex function. Typically, \(d(x) = \|x\|_2^2 \) and this is an Euclidean projection.

We will always assume that \(C \) is simple enough so that this projection step can be solved efficiently.
Subgradient. Definition.

- Suppose that f is a convex function with $\text{dom} f = \mathbb{R}^n$, and that there is a vector $g \in \mathbb{R}^n$ such that:

\[
f(y) \geq f(x) + g^T(y - x), \quad \text{for all } y \in \mathbb{R}^n
\]

- The vector g is called a **subgradient** of f at x, we write $g \in \partial f$.

- Of course, if f is differentiable, the gradient of f at x satisfies this condition.

- The subgradient defines a **supporting hyperplane** for f at the point x.
Gradient methods

\[
\text{minimize } f(x) \\
\text{subject to } x \in C
\]

In theory...

- The theoretical convergence speed of gradient based methods is mostly controlled by the smoothness of the objective.

<table>
<thead>
<tr>
<th>Convex objective (f(x))</th>
<th>Iterations. . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nondifferentiable</td>
<td>(O(1/\epsilon^2))</td>
</tr>
<tr>
<td>Differentiable</td>
<td>(O(1/\epsilon^2))</td>
</tr>
<tr>
<td>Smooth (Lipschitz gradient)</td>
<td>(O(1/\sqrt{\epsilon}))</td>
</tr>
<tr>
<td>Strongly convex</td>
<td>(O(\log(1/\epsilon)))</td>
</tr>
</tbody>
</table>

- Obviously, the geometry of the (convex) feasible set also has an impact.

In practice...

- Compared to IPM, much larger gap between theoretical complexity guarantees and empirical performance.
- Conditioning, well-posedness, etc. also have a very strong impact.
Subgradient Methods

Subgradient method.

- **Algorithm.** At each iteration k, update the current point x_k according to:

$$x_{k+1} = x_k + \alpha_k g_k$$

where g_k is a subgradient of f at x_k

- α_k is the step size sequence

- Similar to gradient descent but, not a descent method . . .

- Instead: use the best point and the minimum function value found so far
Subgradient methods

Step size strategies:

- Constant step size: \(\alpha_k = h \) for all \(k \geq 0 \)
- Constant step length: \(\alpha_k / \|g_k\| = h \) for all \(k \geq 0 \)
- Square summable but not summable:
 \[
 \sum_{k=0}^{\infty} \alpha_k = \infty \quad \text{and} \quad \sum_{k=0}^{\infty} \alpha_k^2 < \infty
 \]
- Nonsummable diminishing:
 \[
 \sum_{k=0}^{\infty} \alpha_k = \infty \quad \text{and} \quad \lim_{k \to \infty} \alpha_k = 0
 \]
Subgradient methods: convergence

Convergence proof. For standard gradient descent methods, convergence is based on the function value decreasing at each step. Here, the function value often increases, but the *Euclidean distance to the optimal set* converges.

Proposition

Subgradient method complexity. Assuming $\|g\|_2 \leq G$, for all $g \in \partial f$, the subgradient method with step size α_i satisfies

$$f_{\text{best}} - f^* \leq \text{dist}(x_1, x^*)^2 + G^2 \sum_{i=1}^{k} \alpha_i^2 \cdot \frac{2\sum_{i=1}^{k} \alpha_i}{\alpha_i}$$

Proof. We have

$$\|x^{(k+1)} - x^*\|_2^2 = \|x^{(k)} - \alpha_k g^{(k)} - x^*\|_2^2$$

$$= \|x^{(k)} - x^*\|_2^2 - 2\alpha_k g^{(k)}^T (x^{(k)} - x^*) + \alpha_k^2 \|g^{(k)}\|_2^2$$

$$\leq \|x^{(k)} - x^*\|_2^2 - 2\alpha_k (f(x^{(k)}) - f^*) + \alpha_k^2 \|g^{(k)}\|_2^2,$$
where $f^* = f(x^*)$. The last line follows from the definition of subgradient, which gives

$$ f(x^*) \geq f(x^{(k)}) + g^{(k)T}(x^* - x^{(k)}). $$

Applying the inequality above recursively, we have

$$ \|x^{(k+1)} - x^*\|_2^2 \leq \|x^{(1)} - x^*\|_2^2 - 2 \sum_{i=1}^{k} \alpha_i (f(x^{(i)}) - f^*) + \sum_{i=1}^{k} \alpha_i^2 \|g^{(i)}\|_2^2. $$

Using $\|x^{(k+1)} - x^*\|_2^2 \geq 0$ we have

$$ 2 \sum_{i=1}^{k} \alpha_i (f(x^{(i)}) - f^*) \leq \|x^{(1)} - x^*\|_2^2 + \sum_{i=1}^{k} \alpha_i^2 \|g^{(i)}\|_2^2. $$

Combining this with

$$ \sum_{i=1}^{k} \alpha_i (f(x^{(i)}) - f^*) \geq \left(\sum_{i=1}^{k} \alpha_i \right) \min_{i=1,\ldots,k} (f(x^{(i)}) - f^*), $$
we have the inequality

\[
\begin{align*}
\min_{i=1,\ldots,k} f(x^{(i)}) - f^* & \leq \|x^{(1)} - x^*\|_2^2 + \sum_{i=1}^{k} \alpha_i^2 \|g^{(i)}\|_2^2 \\
& \leq \frac{\|x^{(1)} - x^*\|_2^2 + \sum_{i=1}^{k} \alpha_i^2 \|g^{(i)}\|_2^2}{2 \sum_{i=1}^{k} \alpha_i}.
\end{align*}
\]

(1)

Finally, using the assumption \(\|g^{(k)}\|_2 \leq G\), we obtain the basic inequality

\[
\begin{align*}
\min_{i=1,\ldots,k} f(x^{(i)}) - f^* & \leq \|x^{(1)} - x^*\|_2^2 + G^2 \sum_{i=1}^{k} \alpha_i^2 \\
& \leq \frac{\|x^{(1)} - x^*\|_2^2 + G^2 \sum_{i=1}^{k} \alpha_i^2}{2 \sum_{i=1}^{k} \alpha_i}.
\end{align*}
\]

(2)

Since \(x^*\) is any minimizer of \(f\), we can state that

\[
\begin{align*}
\min_{i=1,\ldots,k} f(x^{(i)}) - f^* & \leq \frac{\text{dist}(x^{(1)}, X^*)^2 + G^2 \sum_{i=1}^{k} \alpha_i^2}{2 \sum_{i=1}^{k} \alpha_i}.
\end{align*}
\]

\[\blacksquare\]
Subgradient methods: convergence

Constant step size. If $\alpha_k = h$, we have

$$f_{\text{best}}^{(k)} - f^* \leq \frac{\text{dist}(x^{(1)}, X^*)^2 + G^2 h^2 k}{2hk}.$$

To get an ϵ solution, we set $h = \frac{2\epsilon}{G^2}$ and

$$\frac{\text{dist}(x_1, X^*)^2}{2hk} \leq \epsilon$$

hence the following bound on the number of iterations

$$k \geq \frac{\text{dist}(x_1, X^*)^2 G^2}{4\epsilon^2}.$$
Subgradient methods: convergence

Square summable but not summable. Now suppose

\[\|\alpha\|_2^2 = \sum_{k=1}^{\infty} \alpha_k^2 < \infty, \quad \sum_{k=1}^{\infty} \alpha_k = \infty. \]

Then we have

\[f^{(k)}_{\text{best}} - f^* \leq \frac{\text{dist}(x^{(1)}, X^*)^2 + G^2 \|\alpha\|_2^2}{2 \sum_{i=1}^{k} \alpha_i}, \]

which converges to zero as \(k \to \infty \). In other words, the subgradient method converges (in the sense \(f^{(k)}_{\text{best}} \to f^* \)).
Subgradient Methods

If the problem has constraints:

$$\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C
\end{align*}$$

where $C \subset \mathbb{R}^n$ is a convex set

- Use the Euclidean projection $p_C(\cdot)$

$$x_{k+1} = p_C(x_k + \alpha_k g_k)$$

- Similar complexity analysis

- Some numerical examples on piecewise linear minimization. . . Problem instance with $n = 10$ variables, $m = 100$ terms

“In theory, there is no difference between theory and practice. In practice, there is...”
Subgradient Methods: Numerical Examples

Constant step length, $h = 0.05, 0.02, 0.005$

![Graph showing the behavior of $f(x(k)) - p^*$ for different step lengths h]
Subgradient Methods: Numerical Examples

Constant step size $h = 0.05, 0.02, 0.005$
Subgradient Methods: Numerical Examples

Diminishing step rule $\alpha = 0.1/\sqrt{k}$ and square summable step size rule $\alpha = 0.1/k$.

![Graph showing the comparison of two step size rules: $\alpha = 0.1/\sqrt{k}$ (blue line) and $\alpha = 0.1/k$ (red line). The vertical axis represents $f(x(k)) - p^*$, and the horizontal axis represents k.](image-url)
Subgradient Methods: Numerical Examples

Constant step length $h = 0.02$, diminishing step size rule $\alpha = 0.1/\sqrt{k}$, and square summable step rule $\alpha = 0.1/k$
Accelerated Gradient Methods
Accelerated Gradient Methods

Solve

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C
\end{align*}
\]

in \(x \in \mathbb{R}^n \), with \(C \subset \mathbb{R}^n \) convex.

- Additional smoothness assumption: the gradient is Lipschitz continuous

\[
\|\nabla f(x) - \nabla f(y)\|_* \leq L\|x - y\| \quad \text{for all } x, y \in C
\]

where \(\| \cdot \| \) is a norm.

- We will also study the case where the function is strongly convex, i.e. there exists \(\mu > 0 \)

\[
f(y) \geq f(x) + (y - x)^T \nabla f(x) + \frac{\mu}{2}\|y - x\|^2 \quad \text{for all } x, y \in C
\]

where \(\| \cdot \| \) is a norm. But acceleration works even when \(\sigma = 0 \).
Accelerated Gradient Methods

The fact that the gradient $\nabla f(x)$ is Lipschitz continuous

$$\|\nabla f(x) - \nabla f(y)\|_* \leq L\|x - y\| \quad \text{for all } x, y \in C$$

has important algorithmic consequences:

- For any $x, y \in \mathbb{R}^n$,

 $$f(y) \leq f(x) + \nabla f(x)^T(y - x) + \frac{L}{2}\|y - x\|^2$$

 and we get a **quadratic upper bound** on the function $f(x)$.

- This means in particular that if $y = x - \frac{1}{L} \nabla f(x)$, then

 $$f(y) \leq f(x) - \frac{1}{2L}\|\nabla f(x)\|^2$$

 and we get a guaranteed **decrease in the function value** at each gradient step.
Suppose we seek to solve
\[\min f(x) \]
over \(x \in \mathbb{R}^n \), assuming \(\nabla f(x) \) is Lipschitz continuous with constant \(L \).

Consider the following method (due to Adrien Taylor), based on [Nesterov, 1983].

\[\text{For } k = 1, \ldots, k^{max} \text{ iterate} \]

1. Set \(y_{k+1} = (1 - \tau_k) y_k + \tau_k z_k - \alpha_k \nabla f(y_k). \)

2. Set \(z_{k+1} = z_k - \gamma_k \nabla f(y_{k+1}). \)

where the parameters are set using the value of a time varying sequence \(A_k \)

\[\tau_k = \frac{A_{k+1} - A_k}{A_{k+1}}, \quad \alpha_k = \frac{A_k}{LA_{k+1}}, \quad \gamma_k = \frac{A_{k+1} - A_k}{L}. \]
Theorem

Convergence. Let f be L-smooth and convex. For all values $A_k \geq 0$ the iterates satisfy

$$A_{k+1}(f(y_{k+1}) - f(x_*)) + \frac{L}{2} \| z_{k+1} - x_* \|^2 \leq A_k(f(y_k) - f(x_*)) + \frac{L}{2} \| z_k - x_* \|^2,$$

if A_k is monotonically increasing and $A_{k+1} - (A_k - A_{k+1})^2 \geq 0$.

Proof. Perform a weighted sum of the following inequalities:

- smoothness and convexity between x_* and y_{k+1} with weight $\lambda_1 = A_{k+1} - A_k$

 $$f(x_*) \geq f(y_{k+1}) + \langle \nabla f(y_{k+1}); x_* - y_{k+1} \rangle + \frac{1}{2L} \| \nabla f(y_{k+1}) \|^2,$$

- smoothness and convexity between y_k and y_{k+1} with weight $\lambda_2 = A_k$

 $$f(y_k) \geq f(y_{k+1}) + \langle \nabla f(y_{k+1}); y_k - y_{k+1} \rangle + \frac{1}{2L} \| \nabla f(y_{k+1}) - \nabla f(y_k) \|^2.$$
The weighted sum can be written as

\[
0 \geq \lambda_1 [f(y_{k+1}) - f(x_*) + \langle \nabla f(y_{k+1}); x_* - y_{k+1} \rangle + \frac{1}{2L} \| \nabla f(y_{k+1}) \|^2] \\
+ \lambda_2 [f(y_{k+1}) - f(y_k) + \langle \nabla f(y_{k+1}); y_k - y_{k+1} \rangle + \frac{1}{2L} \| \nabla f(y_{k+1}) - \nabla f(y_k) \|^2],
\]

which is equivalently formulated as

\[
A_{k+1}(f(y_{k+1}) - f(x_*)) + \frac{L}{2} \| z_{k+1} - x_* \|^2 \\
\leq A_k (f(y_k) - f(x_*)) + \frac{L}{2} \| z_k - x_* \|^2 - \frac{A_k}{2L} \| \nabla f(y_k) \|^2 \\
- \frac{A_{k+1} - (A_{k+1} - A_k)^2}{2L} \| \nabla f(y_{k+1}) \|^2.
\]

Therefore, we reach the desired statement as soon as we can remove the last two terms. This means \(A_k \geq 0 \) and \(A_{k+1} - (A_{k+1} - A_k)^2 \geq 0 \) (both verified by assumptions). The choice \(A_{k+1} = A_k + \frac{1 + \sqrt{4A_k + 1}}{2} \) allows satisfying \(A_{k+1} - (A_{k+1} - A_k)^2 = 0 \) with the largest possible value of \(A_{k+1} \).
Accelerated Gradient Methods

We get the following result, with a convergence rate of $O(1/k^2)$.

Theorem

Complexity. After k iterations, we obtain points y_k and z_k satisfying

$$f(y_k) - f(x^\star) \leq \frac{L\|z_0 - x^\star\|^2}{k^2}.$$

Proof. We can pick $A_k = k^2/2$ which satisfies $A_{k+1} - (A_k - A_{k+1})^2 \geq 0$ and, together with the previous theorem, yields the bound above. ■
Accelerated Gradient Methods

The choice of norm has a significant impact on complexity. Consider

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C
\end{align*}
\]

- **Euclidean.** Pick \(d(x) = \|x\|_2^2 / 2 \), strongly convex with \(\sigma = 1 \) w.r.t. the Euclidean norm

 \[
 f(x_k) - f^* \leq \frac{2L_2\|x^*\|_2^2}{(k + 1)^2}
 \]

 where \(L_2 \) is such that \(\|\nabla f(x) - \nabla f(y)\|_2 \leq L_2\|x - y\|_2 \), for all \(x, y \in C \).

- **Entropy.** Pick \(d(x) = \sum_{i=1}^n x_i \log x_i \), strongly convex with \(\sigma = 1 \) w.r.t. the \(\|\cdot\|_1 \) norm

 \[
 f(x_k) - f^* \leq \frac{2L_\infty d(x^*)}{(k + 1)^2}
 \]

 where \(L_\infty \) is such that \(\|\nabla f(x) - \nabla f(y)\|_\infty \leq L_\infty \|x - y\|_1 \), for all \(x, y \in C \).

Because \(\|\cdot\|_\infty \leq \|\cdot\|_2 \leq \|\cdot\|_1 \), we always have \(L_\infty \leq L_2 \).
Accelerated Gradient Methods: optimality

Accelerated gradient methods. Can we do better than $O(1/\sqrt{\epsilon})$?

Problem class. $f(x)$ has a Lipschitz continuous gradient with constant L. At each iteration, we get a **black-box gradient oracle**, and we look for a solution satisfying $f(x) - f^* \leq \epsilon$

If we know nothing about $f(x)$ except its gradient at certain points and its gradient Lipschitz constant L.

- We need at least $O(\|x_0 - x^*\|_2 \sqrt{L/\epsilon})$ iterations.
- We can construct an explicit quadratic function reaching this bounds, which is hard for all schemes.
Definition

Iterative method. We will assume that an iterative method generates a sequence of points y_k such that

$$y_k \in \mathcal{L}_k \triangleq y_0 + \text{span} \{ \nabla f(y_0), \nabla f(y_1), \ldots, \nabla f(y_{k-1}) \}$$

This can be relaxed, but simplifies analysis and covers most classical algorithms.
Proof structure.

- Design a set of (quadratic) functions $f_n(x)$ whose gradients at sparse points have only one more nonzero coefficient.
- Without loss of generality, we can always start at $y_0 = 0$.
- Starting at $y_0 = 0$, any iterate y_k will have at most cardinality k, whatever the algorithm.
- These iterates poorly approximate the optimum, which has cardinality n.
We write $S_{k,n} \triangleq \{x \in \mathbb{R}^n : x_i = 0, i = k + 1, \ldots, n\}$.

Lemma

Worst function in class. [Nesterov, 2003, §2.1.2] Define

$$f_k(x) \triangleq \frac{L}{8} \left(x_1^2 + \sum_{i=1}^{k-1} (x_i - x_{i+1})^2 + x_k^2 - 2x_1 \right)$$

then for any sequence $y_i \in \mathbb{R}^n$, $i = 0, \ldots, p$, such that

$$y_k \in \mathcal{L}_k \triangleq y_0 + \text{span}\{\nabla f_p(y_0), \nabla f_p(y_1), \ldots, \nabla f_p(y_{k-1})\}$$

we have $y_k \in S_{k,n}$.
Proof. We can write

\[
0 \leq \frac{L}{4} \left(s_1^2 + \sum_{i=1}^{k-1} (s_i - s_{i+1})^2 + s_k^2 \right)
\]

\[
\leq s^T \nabla^2 f(x) s
\]

\[
\leq \frac{L}{4} \left(s_1^2 + \sum_{i=1}^{k-1} 2(s_i^2 + s_{i+1}^2) + s_k^2 \right) \leq L \sum_{i=1}^{n} s_i^2
\]

which means \(0 \preceq \nabla^2 f_k(x) \preceq L I_n \), hence \(\nabla f_k(x) \) is Lipschitz continuous with constant \(L \), because \(\nabla^2 f_k(x) = \frac{L}{4} A_k \) with

\[
A_k = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} \quad \text{where} \quad B_k = \begin{pmatrix} 2 & -1 & \cdots & 0 \\ -1 & 2 & \cdots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ 0 & \cdots & -1 & 2 \end{pmatrix}
\]

where \(A_k \) is block tridiagonal with an upper left block of dimension \(B_k \in \mathbf{S}_k \). By induction now, \(\nabla f_p(x_0) = (L/4)e_1 \in S_{1,n} \) and assuming \(y \in S_{k,n} \), then \(\nabla f_p(y) = (L/2)(A_k y - e_1) \in S_{k+1,n} \) because \(A_k \) is tridiagonal. \blacksquare
Accelerated Gradient Methods: optimality

Theorem

Worst-case complexity. For any $1 \leq k \leq (n - 1)/2$, there exists a function $f(X)$ with $\nabla f(x)$ L-Lipschitz continuous, such that for any iterative method (cf. above) we have

$$f(y_k) - f^* \geq \frac{3L \|y_0 - y^*\|^2}{32(k + 1)^2}$$

and

$$\|y_k - y^*\|^2 \geq \frac{1}{8} \|y_0 - y^*\|^2.$$

Proof. Without loss of generality, we can assume that $y_0 = 0$, otherwise we simply shift the function without changing its nature. We will apply an iterative method to the function $f(x) \triangleq f_{2k+1}(x)$. Let us first note that the minimizer of $f(x)$, solving

$$\nabla f_k(x) = A_k x - e_1 = 0$$

is given by

$$y^* = \begin{cases}
1 - \frac{i}{2k+1}, & i = 1, \ldots, 2k + 1, \\
0 & i = k + 1, \ldots, n.
\end{cases}$$
and
\[f_{2k+1}^* = \frac{L}{8} \left(\frac{1}{2k+2} - 1 \right) \] \hspace{1cm} (3)
and
\[\|y^*\|^2 = \sum_{i=1}^{2k+1} \left(1 - \frac{i}{2k+1} \right)^2 \leq \frac{1}{3}(2k+2) \] \hspace{1cm} (4)

using
\[\sum_{i=1}^{k} i = \frac{k(k+1)}{2} \quad \text{and} \quad \sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6} \leq \frac{(k+1)^3}{3} \]

From the form of \(f_p(x) \) we have \(f_p(x) = f_k(x) \) whenever \(x \in S_{k,n} \text{ and } p \geq k \), hence in particular,
\[f(y_k) \triangleq f_{2k+1}(y_k) = f_k(y_k) \geq f^* = \frac{L}{8} \left(\frac{1}{k+1} - 1 \right) , \]
in view of (3) and (4), with \(y_0 = 0, f^* \triangleq f_{2k+1}^* \) we get
\[\frac{f(y_k) - f^*}{\|y_0 - y^*\|^2} \geq \frac{\frac{L}{8} \left(-1 + \frac{1}{k+1} + 1 - \frac{1}{2k+2} \right)}{(2k+2)/3} = \frac{3L}{32(k+1)^2} \]
which is the first inequality. Since $y_k \in S_{k,n}$ we have

$$
\|y_k - y^*\|^2 \geq \sum_{i=k+1}^{2k+1} (\bar{y}^*_{2k+1,i})^2 = \sum_{i=k+1}^{2k+1} \left(1 - \frac{i}{2k+2}\right)^2
$$

hence, with $y_0 = 0$ and using again (4)

$$
\|y_k - y^*\|^2 \geq \frac{2k^2 + 7k + 6}{24k + 1}
$$

$$
\geq \frac{2k^2 + 7k + 6}{16(k+1)^2} \|y_0 - \bar{y}^*_{2k+1}\|^2
$$

$$
\geq \frac{1}{8} \|y_0 - \bar{y}^*_{2k+1}\|^2
$$

because

$$
\frac{2k^2 + 7k + 6}{16(k+1)^2} \geq \frac{1}{8} \|y_0 - y^*\|^2
$$

for all $k \geq 0$ and $y^* \triangleq \bar{y}^*_{2k+1}$.
Gradient/projection methods for stochastic problems
Solve

\[
\begin{align*}
\text{minimize} & \quad \phi(x) \triangleq \mathbb{E}[f(x, \xi)] \\
\text{subject to} & \quad x \in C,
\end{align*}
\]

in \(x \in \mathbb{R}^n \), where \(C \) is a simple convex set. The key difference here is that the function we are minimizing is **stochastic**.

- **Batch method.** A simple option is to approximate the problem by

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{m} f(x, \xi_i) \\
\text{subject to} & \quad x \in C,
\end{align*}
\]

where \(\xi_i \) are sampled from the distribution of \(\xi \).

- Sampling is costly, the full batch is heavy, we can do better. . .
Stochastic Optimization

Assume we have an unbiased estimate $g(x, \xi)$ of the subgradient of $\phi(x)$, i.e.

- $E[g(x, \xi) | x] = g(x) \in \partial \phi(x)$
- In particular
 \[\phi(y) \geq \phi(x) + g(x)^T (y - x) \]
Let $p_C(\cdot)$ be the Euclidean projection operator on C.

Algorithm (Robust stochastic averaging)

- Choose $x_0 \in C$ and a step sequence $\gamma_j > 0$.
- **For** $k = 1, \ldots, k^{\text{max}}$ **iterate**
 1. Compute a subgradient

 $$g \in \partial f(x_k, \xi_k)$$
 2. Update the current point

 $$x_{k+1} = p_C(x_k - h_k g)$$
 3. Compute

 $$\bar{x} = \frac{\sum_{k=0}^{N-1} h_k x_k}{\sum_{k=0}^{N-1} h_k}$$
Stochastic Optimization

Convergence proof.

Theorem

Complexity. Suppose $\|x^* - x_0\| \leq R$ for some $x_0 \in C$, and $\mathbb{E}[\|g\|_2^2] \leq L^2$, then

\[
\mathbb{E}[f(\bar{x})] - \min_{x \in C} \mathbb{E}[f(x, \xi)] \leq \frac{R^2 + L^2 \sum_{k=0}^{N-1} h_k^2}{2 \sum_{k=0}^{N-1} h_k}
\]

Proof. Let x^* be an optimal solution and define $r_k = \|x^* - x_k\|$. Since x_{k+1} is the projection of $x_k - h_k g_k$ over C, it satisfies

\[
r_{k+1}^2 \leq \|x_k - h_k g_k - x^*\|^2 \\
= r_k^2 - 2h_k \langle g_k, x_k - x^* \rangle + h_k^2 \|g_k\|^2
\]

because x_{k+1} must be closer to $x^* \in C$ than $x_k - h_k g_k$.

A. d’Aspremont. M1 ENS.
Taking expectations, we get, by convexity and because ξ_k and x_k are independent.

\[
\mathbb{E}[r_{k+1}^2] \leq \mathbb{E}[r_k^2] - 2h_k \mathbb{E}[\langle g_k, x_k - x^* \rangle] + h_k^2 \mathbb{E}[\|g_k\|^2] \\
\leq \mathbb{E}[r_k^2] - 2h_k \mathbb{E}[\mathbb{E}[g_k|x_k], x_k - x^*] + h_k^2 L^2 \\
\leq \mathbb{E}[r_k^2] - 2h_k (\mathbb{E}[\phi(x_k)] - \phi(x^*)) + h_k^2 L^2
\]

Summing all these inequalities and using the convexity of $\phi(\cdot)$, we finally get

\[
r_0^2 + L^2 \sum_{k=0}^{N-1} h_k^2 \leq \sum_{k=0}^{N-1} h_k (\mathbb{E}[\phi(x_k)] - \phi(x^*)) \\
\leq 2 \left(\sum_{k=0}^{N-1} h_k \right) (\mathbb{E}[\phi(\bar{x})] - \phi(x^*))
\]

hence the desired result. ■
If we set $h_k = R/(L\sqrt{N})$, we have
\[
E[f(\bar{x}) - f^*] \leq \frac{LR}{\sqrt{N}}
\]

Furthermore, if we assume
\[
E\left[\exp\left(\frac{\|g\|^2}{L^2}\right)\right] \leq e, \quad \text{for all } g \in \partial f(x_k, \xi) \text{ and } x \in C
\]
we get
\[
\text{Prob}\left[\phi(\bar{x}_k) - \phi^* \geq \frac{LR}{\sqrt{N}}(12 + 2t)\right] \leq 2 \exp(-t).
\]
References
