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Abstract

We derive tractable necessary and sufficient conditions for the absence of buy-and-hold

arbitrage opportunities in a perfectly liquid, one period market. We formulate the positivity

of Arrow-Debreu prices as a generalized moment problem to show that this no arbitrage con-

dition is equivalent to the positive semidefiniteness of matrices formed by the market price of

tradeable securities and their products. We apply this result to a market with multiple assets

and basket call options.

1 Introduction

The fundamental theorem of asset pricing establishes the equivalence between absence of arbitrage

and existence of a martingale pricing measure, and is the foundation of the Black and Scholes

(1973) and Merton (1973) option pricing methodology. Option prices are computed by an arbi-

trage argument, as the value today of a dynamic, self-financing hedging portfolio that replicates

the option payoff at maturity. This pricing technique relies on at least two fundamental assump-

tions: it posits a model for the asset dynamics and assumes that markets are frictionless, i.e. that

continuous trading in securities is possible at no cost. Here we take the complementary approach:

we do not make any assumption on the asset dynamics and we only allow trading today and at a

maturity date T . In that sense, we revisit the classic result of Arrow and Debreu (1954) on the

equivalence between positivity of state prices and absence of arbitrage in a one period market.

In this simple market, we seek computationally tractable conditions for the absence of arbitrage,

directly formulated in terms of tradeable securities.

Of course, these results are not intended to be used as a pricing framework in liquid markets.

Our objective here instead is twofold. First, market data on derivative prices, aggregated from a
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Finance in Paris, the Stochastic Analysis Seminar at Princeton University and the INFORMS 2005 Applied Probability

Conference in Ottawa.

1



very diverse set of sources, is always plagued by liquidity and synchronicity issues. Because these

price data sets are used by derivatives dealers to calibrate their models, we seek a set of arbitrarily

refined tests to detect unviable prices in the one period market or, in other words, detect prices

which would be incompatible with any arbitrage free dynamic model for asset dynamics. Second,

in some very illiquid markets, these conditions form simple upper or lower hedging portfolios and

diversification strategies that are, by construction, immune to model misspecification and illiquid-

ity issues.

Work on this topic starts with the Arrow and Debreu (1954) no arbitrage conditions on state

prices. This was followed by a stream of works on multiperiod and continuous time extensions sta-

ting the equivalence between existence of a martingale measure and absence of dynamic arbitrage,

starting with Harrison and Kreps (1979) and Harrison and Pliska (1981), with the final word prob-

ably belonging to Dalang, Morton, and Willinger (1990) and Delbaen and Schachermayer (2005).

Efforts to express these conditions directly in terms of asset prices can be traced back to Breeden

and Litzenberger (1978) and Friesen (1979) who derive equivalent conditions on a continuum of

(possibly nontradeable) call options. Breeden and Litzenberger (1978), Jackwerth and Rubinstein

(1996) and Laurent and Leisen (2000) use these results to infer information on the asset distribu-

tion from the market price of calls using a minimum entropy approach. Finally, a recent paper by

Davis and Hobson (2005) provides explicit no arbitrage conditions and option price bounds in the

case where only a few single asset call prices are quoted in a multiperiod market.

Given the market price of tradeable securities in a one period market, we interpret the question

of testing for the existence of a state price density as a generalized moment problem. In that sense,

the conditions we obtain can be seen as a direct generalization of Bochner-Bernstein type theorems

on the Fourier transform of positive measures (see Bochner and Chandrasekharan (1949)). Market

completeness is then naturally formulated in terms of moment determinacy. This allows us to

derive equivalent conditions for the absence of arbitrage between general payoffs (not limited to

single asset call options). We also focus on the particular case of basket calls or European call

options on a basket of assets. Basket calls appear in equity markets as index options and in interest

rate derivatives market as spread options or swaptions, and are key recipients of market information

on correlation.

The paper is organized as follows. We begin by describing the one period market and illustrate

our approach on a simple example, introducing the payoff semigroup formed by the market secu-

rities and their products. Section 2 starts with a brief primer on harmonic analysis on semigroups

after which we describe the general no arbitrage conditions on the payoff semigroup. We also show

how the products in this semigroup complete the market. We finish in Section 3 by a case study on

spread options.

1.1 One Period Model

We work in a one period model where the market is composed of n assets with payoffs at maturity

T equal to xi and price today given by pi for i = 1, . . . , n. There are also m derivative securities

with payoffs sj(x) = sj(x1, . . . , xn) and price today equal to pn+j for j = 1, . . . ,m. Finally,

there is a riskless asset with payoff 1 at maturity and price 1 today and we assume, without loss of

generality here, that interest rates are equal to zero (we work in the forward market). We look for
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conditions on p precluding arbitrage in this market, i.e. buy and hold portfolios formed at no cost

today which guarantee a strictly positive payoff at maturity T .

We want to answer the following simple question: Given the market price vector p, is there a

buy-and-hold arbitrage opportunity between the assets xi and the securities sj(x)? Naturally, we

know from the Arrow and Debreu (1954) conditions that this is equivalent to the existence of a

state price density µ with support in Rn
+ such that:

Eµ[xi] = pi, i = 1, . . . , n,

Eµ[sj(x)] = pn+j, j = 1, . . . ,m.
(1)

Bertsimas and Popescu (2002) show that this simple, fundamental problem is computationally hard

(in fact NP-Hard). Even discretized on a uniform grid with L steps along each axis, this problem

is still equivalent to an exponentially large linear program of size O(Ln). Here, we look for a

discretization that does not involve the state price density but instead formulates the no arbitrage

conditions directly on the market price vector p. Of course, NP-Hardness means that we can-

not reasonably hope to provide an efficient, exact solution to all instances of problem (1). Here

instead, we seek an arbitrarily refined, computationally efficient relaxation for this problem and

NP-Hardness means that we will have to tradeoff precision for complexity.

1.2 The Payoff Semigroup

To illustrate our approach, let us begin here with a simplified case were n = 1, i.e. there is only one

forward contract with price p1, and the derivative payoffs sj(x) are monomials with sj(x) = xj for

j = 2, . . . ,m. In this case, conditions (1) on the measure µ are written:

Eµ[xj] = pj, j = 2, . . . ,m,

Eµ[x] = p1,
(2)

with the implicit constraint that the support of µ be included in R+. We recognize (2) as a Stieltjes

moment problem (see Stieltjes (1894)). For x ∈ R+, let us form the column vector vm(x) ∈ Rm+1

as follows:

vm(x) , (1, x, x2, . . . , xm)T .

For each value of x, the matrix Pm(x) formed by the outer product of the vector vm(x) with itself

is given by:

Pm(x) , vm(x)vm(x)T =











1 x . . . xm

x x2 xm+1

...
. . .

...

xm xm+1 . . . x2m











Pm(x) is a positive semidefinite matrix (it has only one nonzero eigenvalue equal to ‖vm(x)‖2). If

there is no arbitrage and there exists a state price density µ satisfying the price constraints (2), then
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there must be a symmetric moment matrix Mm ∈ R(m+1)×(m+1) such that:

Mm , Eµ[Pm(x)] =











1 p1 . . . pm

p1 p2 Eµ[xm+1]
...

. . .
...

pm Eµ[xm+1] . . . Eµ[x2m]











and, as an average of positive semidefinite matrices, Mm must be positive semidefinite. In other

words, the existence of a positive semidefinite matrix Mm whose first row and columns are given

by the vector p is a necessary condition for the absence of arbitrage in the one period market.

In fact, positivity conditions of this type are also sufficient (see Vasilescu (2002) among others).

Testing for the absence of arbitrage is then equivalent to solving a linear matrix inequality, i.e.

finding matrix coefficients corresponding to Eµ[xj] for j = m + 1, . . . , 2m that make the matrix

Mm(x) positive semidefinite.

This paper’s central result is to show that this type of reasoning is not limited to the unidimen-

sional case where the payoffs sj(x) are monomials but extends to arbitrary payoffs. Instead of

looking only at monomials, we will consider the payoff semigroup S generated by the payoffs 1, xi

and sj(x) for i = 1, . . . , n and j = 1, . . . ,m and their products (in graded lexicographic order):

S ,
{

1, x1, . . . , xn, s1(x), . . . , sm(x), x2
1, . . . , xisj(x), . . . , sm(x)2, . . .

}

(3)

In the next section, we will show that the no arbitrage conditions (1) are equivalent to positivity

conditions on matrices formed by the prices of the assets in S. We also detail under which technical

conditions the securities in S make the one period market complete.

1.3 Semidefinite Programming

The key incentive for writing the no arbitrage conditions in terms of linear matrix inequalities

is that the later are tractable. The problem of finding coefficients that make a particular matrix

positive semidefinite can be written as:

find y

such that C +
∑m

k=1 ykAk � 0
(4)

in the variable y ∈ Rm, with parameters C, Ak ∈ Rn×n, for k = 1, . . . ,m, where X � 0 means

X positive semidefinite. This problem is convex and is also known as a semidefinite feasibility

problem. Reasonably large instances can be solved efficiently using the algorithms detailed in

Nesterov and Nemirovskii (1994) or Boyd and Vandenberghe (2004) for example.

2 No Arbitrage Conditions

In this section, we begin with an introduction on harmonic analysis on semigroups, which gener-

alizes the moment conditions of the previous section to arbitrary payoffs. We then state our main

result on the equivalence between no arbitrage in the one period market and positivity of the price

matrices for the products in the payoff semigroup S defined in (3).
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2.1 Harmonic analysis on semigroups

We start by a brief primer on harmonic analysis on semigroups (based on Berg, Christensen, and

Ressel (1984) and the references therein). Unless otherwise specified, all measures are supposed

to be positive.

A function ρ(s) : S → R on a semigroup (S, ·) is called a semicharacter if and only if it

satisfies ρ(st) = ρ(s)ρ(t) for all s, t ∈ S and ρ(1) = 1. The dual of a semigroup S, i.e. the set of

semicharacters on S, is written S
∗.

Definition 1 A function f(s) : S → R is a moment function on S if and only if f(1) = 1 and f(s)
can be represented as:

f(s) =

∫

S∗

ρ(s)dµ(ρ), for all s ∈ S, (5)

where µ is a Radon measure on S
∗.

When S is the semigroup defined in (3) as an enlargement of the semigroup of monomials on Rn,

its dual S
∗ is the set of applications ρx(s) : S → R such that ρx(s) = s(x) for all s ∈ S and all

x ∈ Rn. Hence when S is the payoff semigroup, to each point x ∈ Rn corresponds a semicharacter

that evaluates a payoff at that point. In this case, the measure µ is a probability measure on Rn and

the representation (5) becomes:

f(s) =

∫

Rn

s(x)dµ(x) = Eµ [s(x)] , for all payoffs s ∈ S. (6)

This means that when S is the semigroup defined in (3) and there is no arbitrage, a moment function

is a function that for each payoff s ∈ S returns its price f(s) = Eµ [s(x)]. Testing for no arbitrage

is then equivalent to testing for the existence of a moment function f on S that matches the market

prices in (1).

Definition 2 A function f(s) : S → R is called positive semidefinite if and only if for all finite

families {si} of elements of S, the matrix with coefficients f(sisj) is positive semidefinite.

We remark that moment functions are necessarily positive semidefinite. Here, based on results by

Berg, Christensen, and Ressel (1984), we exploit this property to derive necessary and sufficient

conditions for representation (6) to hold.

The central result in Berg, Christensen, and Ressel (1984, Th. 2.6) states that the set of ex-

ponentially bounded positive semidefinite functions f(s) : S → R such that f(1) = 1 is a Bauer

simplex whose extreme points are given by the semicharacters in S
∗. Hence a function f is positive

semidefinite and exponentially bounded if and only if it can be represented as f(s) =
∫

S∗
ρdµ(ρ)

with the support of µ included in some compact subset of S
∗. Bochner’ theorem on the Fourier

transform of positive measures and Berstein’s corresponding theorem for the Laplace transform

are particular cases of this representation result. In what follows, we use it to derive tractable

necessary and sufficient conditions for the function f(s) to be represented as in (6).
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2.2 Main Result: No Arbitrage Conditions

We assume that asset prices are bounded and that S is the payoff semigroup defined in (3), this

means that without loss of generality, we can assume that the payoffs sj(x) are positive.

Theorem 3 There is no arbitrage in the one period market and there exists a state price measure

µ such that:

Eµ[xi] = pi, i = 1, . . . , n,

Eµ[sj(x)] = pn+j, j = 1, . . . ,m,

if and only if the function f(s) : S → R defined as f(s) = Eµ[s(x)] satisfies:

(i) f(s) is a positive semidefinite function of s ∈ S,

(ii) f(eis) is a positive semidefinite function of s ∈ S for i = 1, . . . , n + m,

(iii)
(

βf(s) −
∑n+m

i=1 f(eis)
)

is a positive semidefinite function of s ∈ S,

(iv) f(1) = 1 and f(ei) = pi for i = 1, . . . , n + m,

for some (large) constant β > 0.

Proof. To simplify notations, we define the functions ei(x) for i = 1, . . . ,m + n and x ∈ Rn
+ such

that ei(x) = xi for i = 1, . . . , n and en+j(x) = sj(x) for j = 1, . . . ,m. By scaling ei(x) we can as-

sume without loss of generality that β = 1. For s, u in S, we note Es the shift operator such that for

f(s) : S → R, we have Eu(f(s)) , f(su) and we let E be the commutative algebra generated by

the shift operators on S. The family of shift operators τ = {{Eei
}i=1,...,n+m,

(

I −
∑n+m

i=1 Eei

)

} ⊂
E is such that I − T ∈ span+τ for each T ∈ τ and span τ = E , hence τ is linearly admissible

in the sense of Berg and Maserick (1984) or Maserick (1977), which states that (ii) and (iii) are

equivalent to f being τ -positive. Then, Maserick (1977, Th. 2.1) means that f is τ -positive if and

only if there is a measure µ such that f(s) =
∫

S∗
ρ(s)dµ(ρ), whose support is a compact subset of

the τ -positive semicharacters. This means in particular that for a semicharacter ρx ∈ supp(µ) we

must have ρx(ei) ≥ 0, for i = 1, . . . , n hence x ≥ 0. If ρx is a τ -positive semicharacter then we

must have {x ≥ 0 : ‖x‖1 ≤ 1}, hence f being τ -positive is equivalent to f admitting a representa-

tion of the form f(s) = Eµ [s(x)], for all s ∈ S with µ having a compact support in a subset of the

unit simplex.

We have assumed that the asset distribution has a compact support, but as this can be made

arbitrarily large, we do not loose much generality from a numerical point of view. Similar but

more technical results hold in the non compact case and are detailed in the companion preprint

d’Aspremont (2003).
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2.3 Market Completeness

As we will see below, under technical conditions on the asset prices, the moment problem is

determinate and there is a one-to-one correspondence between the price f(s) of the assets in s ∈ S

and the state price measures µ, in other words, the payoffs in S make the market complete.

Here, we suppose that there is no arbitrage in the one period market. Theorem 3 shows that

there is at least one measure µ such that f(s) = Eµ [s(x)], for all payoffs s ∈ S. In fact, we show

below that when asset prices are bounded, this pricing measure is unique.

Theorem 4 Suppose that the asset prices xi for i = 1, . . . , n are bounded, then for each set of

prices f(s) there is a unique state price measure µ with compact support satisfying:

f(s) = Eµ [s(x)] , for all payoffs s ∈ S.

Proof. If there is no arbitrage and asset prices xi for i = 1, . . . , n are bounded, then the prices

f(s) = Eµ [s(x)], for s ∈ S are exponentially bounded in the sense of Berg, Christensen, and

Ressel (1984, §4.1.11) and Berg, Christensen, and Ressel (1984, Th. 6.1.5) shows that the measure

µ associated to the market prices f(s) is unique.

This result shows that the securities in S make the market complete in the bounded case. Again,

without this boundedness assumption, testing for market completeness is a much more difficult

problem and we refer the reader to d’Aspremont (2003) for a discussion.

2.4 Implementation

The conditions in theorem 3 involve testing the positivity of infinitely large matrices and are of

course not directly implementable. In practice, we can get a reduce set of conditions by only

considering elements of S up to a certain (even) degree 2d:

Sd ,
{

1, x1, . . . , xn, s1(x), . . . , sm(x), x2
1, . . . , xisj(x), . . . , sm(x)2, x3

1, . . . , sm(x)2d
}

(7)

We look for a moment function f satisfying conditions (i) through (iv) in Theorem 3 for all ele-

ments s in the reduced semigroup Sd. Conditions (i)-(iii) now amount to testing the positivity of

matrices of size Nd =
(

n+m+2d

n+m

)

or less. Condition (i) for example is written:































1 p1 · · · pm+n f (x2
1) · · · f

(

sm(x)
Nd

2

)

p1 f (x2
1) · · · f (x1sm(x)) f (x3

1) · · · f
(

x1sm(x)
Nd

2

)

...
...

. . .

pm+n f (x1sm(x))
...

f (x2
1) f (x3

1) · · · f (x4
1)

...
...

...

f
(

sm(x)
Nd

2

)

f
(

x1sm(x)
Nd

2

)

· · · f
(

sm(x)Nd

)































� 0,
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because the market price conditions in (1) impose f(xi) = pi for i = 1, . . . , n and f(sj(x)) = pn+j

for j = 1, . . . ,m. Condition (ii) stating that f(x1s) be a positive semidefinite function of s is then

written as:



















p1 f (x2
1) f (x1x2) · · · f

(

x1sm(x)
Nd

2
−1

)

f (x2
1) f (x4

1) f (x3
1x2)

f (x1x2) f (x3
1x2) f (x2

1x
2
2)

...
. . .

...

f
(

x1sm(x)
Nd

2
−1

)

· · · f
(

x2
1sm(x)Nd−2

)



















� 0,

and the remaining linear matrix inequalities in conditions (ii) and (iii) are handled in a similar way.

These conditions are a finite subset of the full conditions in theorem 3 and form a set of linear

matrix inequalities in the values of f(s) (see §1.3). The exponential growth of Nd with n and m

means that only small problem instances can be solved using current numerical software. This is

partly because most interior point based semidefinite programming solvers are designed for small

or medium scale problems with high precision requirements. Here instead, we need to solve large

problems which don’t require many digits of precision.

2.5 Multi-Period Models

Suppose now that the products have multiple maturities T1, . . . , Tq. We know from Harrison and

Kreps (1979) and Harrison and Pliska (1981) that the absence of arbitrage in this dynamic market

is equivalent to the existence of a martingale measure on the assets x1, . . . , xn. Theorem 3 gives

conditions for the existence of marginal state price measures µi at each maturity Ti and we need

conditions guaranteeing the existence of a martingale measure whose marginals match these dis-

tributions µi at each maturity date Ti. A partial answer is given by the theorem below, which can

be traced to Blackwell, Stein, Sherman, Cartier, Meyer and Strassen.

Theorem 5 If µ and ν are any two probability measures on a fininte set A = {a1, . . . , aN} in RN

such that Eµ[φ] ≥ Eν [φ] for every continuous concave function φ defined on the convex hull of A,

then there is a martingale transition matrix Q such that µQ = ν.

Finding tractable conditions for the existence of a martingale measure with given marginals, out-

side of the particular case of European call options considered in Davis and Hobson (2005) for

example, remains an open problem.

3 Case Study: Spread Options

To illustrate the results of section 2, we explicitly treat the case of a one period market with two

assets x1, x2 with positive, bounded payoff at maturity T and price p1, p2 today. European call

options with payoff (x−Ki)
+ for i = 1, 2, are also traded on each asset with prices p3 and p4. We
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are interested in computing bounds on the price of a spread option with payoff (x1 − x2 − K)+

given the prices of the forwards and calls.

We first notice that the complexity of the problem can be reduced by considering straddle op-

tions with payoffs |xi −Ki| instead of calls. Because a straddle can be expressed as a combination

of calls, forwards and cash:

|xi − Ki| = (Ki − xi) + 2(xi − Ki)
+.

The advantage of using straddles is that the square of a straddle is a polynomial in the payoffs xi,

i = 1, 2. Using straddles instead of calls very significantly reduces the number of elements in the

semigroup Sd: when k option prices are given on 2 assets, this number is (k + 1)
(

2+2d

2

)

, instead of
(

2+k+2d

n+k

)

. The payoff semigroup Sd is now:

Sd =
{

1, x1, x2, |x1 − K1|, |x2 − K2|, |x1 − x2 − K|, x2
1, x1x2, x1|x1 − K1|, . . . , x

2d
2

}

By sampling the conditions in theorem 3 on Sd as in section 2.4, we can compute a lower bound

on the minimum (resp. an upper bound on the maximum) price for the spread option compatible

with the absence of arbitrage. This means that we get an upper bound on the solution of:

maximize Eµ[|x1 − x2 − K|]
subject to Eµ[|xi − Ki|] = pi+2

Eµ[xi] = pi, i = 1, 2

by solving the following program:

maximize f(|x1 − x2 − K|)

subject to











1 p1 · · · f
(

xd
2

)

p1 f (x2
1)

...
. . .

...

f
(

xd
2

)

· · · f
(

x2d
2

)











� 0

...












f(b(x)) f(b(x)x1) · · · f
(

b(x)xd−1
2

)

f(b(x)x1) f (b(x)2x2
1)

...
. . .

...

f
(

b(x)xd−1
2

)

· · · f
(

b(x)2x
2(d−1)
2

)













� 0

where

b(x) = β − x1 − x2 − |x1 − K1| − |x2 − K2| − |x1 − x2 − K|,

which is a semidefinite program (see §1.3) in the values of f(s) for s ∈ Sd.

9



4 Conclusion

By interpreting the Arrow and Debreu (1954) no arbitrage conditions as a moment problem, we

have derived equivalent conditions directly written on the price of tradeable assets instead of state

prices. This also shows how allowing trading in the products of market payoffs completes the

market.
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