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Abstract
Here, we briefly detail how to install and run the sparse PCA code used in [dEGJL05].

Its aim is is to approximate, in the Frobenius-norm sense, a positive, semidefinite symmetric
matrix by a rank-one matrix, with an upper bound on the cardinality of its eigenvector. The
code is partly written in MATLAB, partly in C with a MEX interface.

1 Introduction

The code provided in the DSPCA package solves a relaxation ofthe sparse PCA decomposition.
Let A ∈ Sn be a givenn × n positive semidefinite, symmetric matrix andk be an integer with
1 ≤ k ≤ n. The main function looks for a sparse eigenvector associated with the largest eigenvalue
in A:

max xT Ax

subject to ‖x‖ = 1
Card(x) ≤ k,

(1)

in the variablex ∈ Rn. This problem is nonconvex andintractable, hence (for small scale prob-
lems) we solve a semidefinite relaxation given by:

max Tr(AX)
subject to Tr(X) = 1

1
T |X|1 ≤ k

X � 0,

(2)

which is a semidefinite program (SDP) in the variableX ∈ Sn. For large scale problems, we solve
a penalized version of this problem:

max Tr(AX) − ρ1T |X|1
subject to Tr(X) = 1

X � 0,
(3)
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We refer the reader to [dEGJL05] for further details. Three small scale examples are provided
as
CardversusKPlots.m, BasicHastieTest.m andPitPropsTest.m corresponding to
§6.1, §6.2 and§6.3 in [dEGJL05] respectively. We also provide a large scale example implementing
the smooth minimization code by [Nes05] in C with calls to BLAS and LAPACK.

2 Installation & Sources

The source code, binaries and examples can be downloaded from:

http://www.princeton.edu/∼aspremon/DSPCA.htm

The code has been tested with MATLAB 6.1 to 7.1 on WINDOWS and Mac OS X. The small
scale example use SEDUMI v1.1R2 from [Stu99]. Precompiled binaries for the large scale code
are provided for Mac OS X and WINDOWS. Simply copy the.dll, .mexw32 or .mexmac file
into your working directory or add them to the path.

2.1 Mac OS X

The Mac OS X version was built using gcc 3.3 and Xcode. The Xcode project is provided together
with the source files. Simply update the ”search paths” in theproject to reflect differences in
the MATLAB installation on your machine. The code uses the (vector-optimized) BLAS and
LAPACK implementations in the Apple provided vecLIB framework. Note that vecLIB uses a
mix of CBLAS and f2c’d LAPACK.

2.2 Windows

The Windows version was built MS VC++, again a project file is provided together with the source
files. Here, the code uses the BLAS and LAPACK libraries provided in the MATLAB installation.
Again, simply update the paths in the project settings to reflect differences in your MATLAB
installation.

2.3 Other Platforms

A MATLAB script CompileCode.m will compile the code directly from MATLAB. This has
not been tested yet on platforms other than WIN32 or Mac and you should adapt the header file
sparsesvd.h to the particular version of BLAS/LAPACK available on your system.

3 Content

3.1 Contents

The package contains two main MATLAB functions:PrimalDec andDSPCA solving small
problems of type (2) and large ones of type (3) respectively.Examples and executables for
PrimalDec andDSPCA are contained in the respective folders.
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A call to PrimalDec is made as:

>> [resvec,resval,oval]=PrimalDec(A,k)

where, referring to (2)

• A ∈ Sn is the input matrix

• (k + 1) is the target cardinality

• resvec is the first eigenvectorx∗ of the solutionX∗

• resval is the explained variance(x∗)T Ax∗

• oval is the objective valueTr(AX∗)

Both parameters toPrimalDec are required. Similarly, a call toDSPCA is made as:

>> [X,U,u]=DSPCA(A,rho,gapchange,maxiter,info,algo)

where, referring to (3)

• A ∈ Sn is the input matrix

• ρ > 0 is a parameter controlling sparsity

• gapchange is the reduction in original gap (derived with target precision set very small)

• maxiter is the maximum number of iterations

• info controls verbosity: 0 is silent,info > 1 is the frequency of reporting

• algo controls the method for computing the matrix exponential: 1is full eigenvalue decom-
position (default), 2 is Padé approximation, 3 is partial eigenvalue decomposition

• X is the matrixX solution to the dual above

• U is the solution to the primal

• u is the first eigenvector ofU

All parameters are required except for the matrix exponential algorithm option. Note that
DSPCA is a MATLAB wrapper to the mex functionsparse rank one mex and bothDSPCA.m
and the appropriatesparse rank one mex executable must be copied to the necessary direc-
tory.
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4 Example

We construct a simple sparse rank one matrix A with uniform noise

>> n=10;
>> ratio=100;
>> testvec=[1 0 1 0 1 0 1 0 1 0];
>> testvec=testvec/(norm(testvec));
>> A=rand(n,n);
>> A=A’*A/n+ratio*testvec’*testvec;

Such a small example can be solved with the described MATLAB functionPrimalDec that uses
SEDUMI to solve directly.

>> [resvec,resval,oval]=PrimalDec(A,4)

resvec =

0.6123
0.0000
0.2863
0.0000
0.2773
0.0000
0.1604
0.0000
0.6637
0.0000

resval =

81.2335

oval =

81.2335

We can then run the large-scale functionDSPCA on this small example as a comparison.

>> [X,U,u]=DSPCA(A,7,1e-2,1000,5000,1);
DSPCA starting ...
Iter: 0.000e+000 Obj: 1.0137e+002 Gap:
3.5847e+001 CPU Time: 0h 0m 0s
Iter: 2.500e+002 Obj:
6.6354e+001 Gap: 4.4877e-002 CPU Time: 0h 0m 0s
>> u
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u =

-0.4449
0.0003
-0.4448
0.0003
-0.4482
0.0002
-0.4501
0.0003
-0.4480
0.0003

We can finally compare this with the first eigenvector of A, given here:

0.4483
0.0057
0.4465
0.0066
0.4465
0.0063
0.4459
0.0045
0.4486
0.0037

Notice that DSPCA imposed sparsity in the components with the smallest magnitude. But what is
more important for real applications of sparse PCA is the performance on large problems. Figure
1 shows the performance of DSPCA applied to a gene expressiondata set of dimension 500. We
see that the partial eigenvalue decomposition (algo=3) has the best performance by far among the
three implementations.

Examples are available as m-files in the package.
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Figure 1: Running Time Comparison
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