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Introduction

Frank-Wolfe. Classical first order methods for solving

minimize f(x)
subject to x ∈ C,

in x ∈ Rn, with C ⊂ Rn convex.

Assumes that the linear minimization oracle

minimize dTx
subject to x ∈ C

can be solved efficiently for any d ∈ Rn.
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Franke-Wolfe

Algorithm 1 Franke-Wolfe (FW)
1:

2: Inputs: x0 ∈ C.
3: for k = 1, . . . , kmax do
4: Solve the linear minimization oracle

xd := argmin xT∇f(yk)
subject to x ∈ C

5: Update the current point

xk+1 = xk +
2

k + 2
(xd − xk)

6: end for
7: Output: approximate solution x̂

Note that all iterates are feasible.
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Franke-Wolfe

Complexity.

� Assume that f is differentiable. Define the curvature Cf of the function f(x)
as

Cf , sup
s,x∈M, α∈[0,1],
y=x+α(s−x)

1

α2
(f(y)− f(x)− 〈y − x,∇f(x)〉).

� The basic Frank-Wolfe algorithm will then produce an ε solution after at most

Nmax =
4Cf
ε

iterations.
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Franke-Wolfe

Stopping criterion. At each iteration, we get a lower bound on the optimum as
a byproduct of the affine minimization step.

� If xd minimizes ∇f(xk)Txd over C, we have by convexity

f(xk) +∇f(xk)T (xd − xk) ≤ f(x), for all x ∈ C

� Calling f∗ the optimal value of problem, we then get

f(xk)− f∗ ≤ ∇f(xk)T (xk − xd).

This allows us to bound the suboptimality of iterate at no additional cost.

Alex d’Aspremont ICCOPT, August 2019. 6/33



Franke-Wolfe

Machine Learning Applications. See [Jaggi, 2013].

� When C is an atomic norm ball, each vertex is an atom and FW naturally
produces “sparse” solutions.

� Linear minimization oracle is often easy to solve.

◦ Complexity O(n) for ‖ · ‖q-balls.

◦ Just an SVD for classical matrix norms (matrix completion, etc.)

◦ Also works for structured atomic norms.

◦ Idem for structured prediction [Lacoste-Julien et al., 2012].

� For some combinatorial polytopes with an exponential number of vertices, the
linear minimization oracle is tractable, while projection is hard.
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A Faster Franke-Wolfe

Faster convergence.

� Linear convergence with away steps when the optimum is inside the set
[Guélat and Marcotte, 1986].

� Linear convergence for away step variants when the function is strongly
convex [Garber and Hazan, 2013, Lacoste-Julien and Jaggi, 2015].

� Various extensions further improved upon these results for special cases, e.g.
[Lacoste-Julien et al., 2013, Freund and Grigas, 2016, Garber and Meshi, 2016,
Braun et al., 2017, Lan et al., 2017, Bashiri and Zhang, 2017, Garber et al.,
2018, Kerdreux et al., 2018b, Braun et al., 2018],

� See also Joulin et al. [2014], Shah et al. [2015], Osokin et al. [2016], Freund
et al. [2017], Miech et al. [2017] for applications of Frank-Wolfe to machine
learning problems.
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A Faster Franke-Wolfe

Today.

� Restarting accelerated gradient methods gives significantly improved
performance.

� Complexity gains controlled by the “sharpness” of the optimum.

� Can we do the same for Frank-Wolfe?
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Introduction

“Templates for convex cone problems with applications to sparse signal recovery.”
(TFOCS) by [Becker, Candès, and Grant, 2011].
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Figure 6: Comparing first order methods applied to a smoothed Dantzig selector model. Left: comparing
all variants using a fixed step size (dashed lines) and backtracking line search (solid lines). Right: comparing
various restart strategies using the AT method.

algorithms head-to-head applied to the same model.
For this comparison, we constructed a smoothed Dantzig selector model similar to the one

employed in §3.4 above. The model used a partial DCT measurement matrix of size 512⇥ 2048, a
signal with 128 nonzero values, and an additive noise level of 30 dB SNR. The smoothing parameter
was chosen to be µ = 0.25, and we then employed the techniques of Appendix B to perturb the
model and obtain a known exact solution. This reference solution had 341 nonzeros, a minimum
magnitude of 0.002 and a maximum amplitude 8.9. The smoothed model was then solved using
the 6 first-order variants discussed here, using both a fixed step size of t = 1/L = µ/kAk2 and our
proposed backtracking strategy, as well as a variety of restart intervals.

The results of our tests are summarized by two plots in Figure 6. The cost of the linear operator
dominates, so the horizontal axes give the number of calls to either A or A⇤ taken by the algorithm.
The vertical axes give the relative error kxk�x?

µk/kx?
µk. Because this is a sparse recovery problem,

we are also interested in determining when the algorithms find the correct support; that is, when
they correctly identify the locations of the 341 nonzero entries. Therefore, the lines in each plot
are thicker where the computed support is correct, and thinner when it is not.

The left-hand plot compares all variants using both fixed step sizes and backtracking line search,
but with no restart. Not surprisingly, the standard gradient method performs significantly worse
than all of the optimal first-order methods. In the fixed step case, AT performs the best by a
small margin; but the result is moot, as backtracking shows a significant performance advantage.
For example, using the AT variant with a fixed step size requires more than 3000 calls to A or
A⇤ to reach an error of 10�4; with backtracking, it takes fewer than 2000. With backtracking, the
algorithms exhibit very similar performance, with AT and TS exhibiting far less oscillation than
the others. All of the methods except for GRA correctly identify the support (a di�cult task due
to the high dynamic range) within 1000 linear operations.

The right-hand plot shows the performance of AT if we employ the restart method described in
§5.6 for several choices of the restart interval. We observe significant improvements in performance,
revealing evidence of local strong convexity. A restart interval of 200 iterations yields the best re-

32

Restarting fast gradient methods yields linear convergence. . .
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Sharpness

Consider
minimize f(x)
subject to x ∈ Q

where f(x) is a convex function, Q ⊂ Rn.

� Assume ∇f is Hölder continuous,

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖s−1, for every x, y ∈ Rn,

� Assume “sharpness”, i.e. the following local growth condition holds

µd(x,X∗)r ≤ f(x)− f∗, for every x ∈ K,

where f∗ is the minimum of f , K ⊂ Rn is a compact set, d(x,X∗) the distance
from x to the set X∗ ⊂ K of minimizers of f , and r ≥ 1, µ > 0 are constants.
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Sharpness, Restart

Strong convexity is a particular case of sharpness.

µd(x,X∗)2 ≤ f(x)− f∗

If f is also smooth, an optimal gradient method (ignoring strong convexity), will
produce a point x satisfying

f(x)− f∗ ≤ cL

t2
d(x0, X

∗)2,

after t iterations.

� Restarting the algorithm, we thus get

f(xk+1)− f∗ ≤
cL

µt2k
(f(xk)− f∗), k = 1, . . . , N

at each outer iteration, after tk inner iterations.

� Restart proves linear convergence.
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Sharpness

Smoothness is classical [Nesterov, 1983, 2005], sharpness less so. . .

µd(x,X∗)r ≤ f(x)− f∗, for every x ∈ K.

� Real analytic functions all satisfy this locally, a result known as  Lojasiewicz’s
inequality [Lojasiewicz, 1963].

� Generalizes to a much wider class of non-smooth functions [Lojasiewicz, 1993,
Bolte et al., 2007]

� Conditions of this form are also known as sharp minimum, Hölderian error
bound, etc. [Polyak, 1979, Burke and Ferris, 1993, Burke and Deng, 2002].
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Sharpness & Smoothness

� Gradient ∇f Hölder continuous ensures

f(x)− f∗ ≤ L

s
d(x,X∗)s,

an upper bound on suboptimality.

� If in addition f sharp on a set K with parameters (r, µ), we have

sµ

rL
≤ d(x,X∗)s−r

hence s ≤ r.

In the following, we write

κ , L
2
s/µ

2
r and τ , 1− s

r

If r = s = 2, κ matches the classical condition number of the function.
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Sharpness & Complexity

� Restart schemes were studied for strongly or uniformly convex functions
[Nemirovskii and Nesterov, 1985, Nesterov, 2007, Iouditski and Nesterov,
2014, Lin and Xiao, 2014]

� In particular, Nemirovskii and Nesterov [1985] link sharpness with (optimal)
faster convergence rates using restart schemes.

� Weaker versions of this strict minimum condition used more recently in restart
schemes by [Renegar, 2014, Freund and Lu, 2015].

� Several heuristics [O’Donoghue and Candes, 2015, Su et al., 2014, Giselsson
and Boyd, 2014] studied adaptive restart schemes to speed up convergence.

� The robustness of restart schemes was also studied by Fercoq and Qu [2016] in
the strongly convex case.

� Sharpness used to prove linear converge matrix games by Gilpin et al. [2012].
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Restart schemes

Algorithm 2 Scheduled restarts for smooth convex minimisation (RESTART)

Inputs : x0 ∈ Rn and a sequence tk for k = 1, . . . , R.
for k = 1, . . . , R do

xk := A(xk−1, tk)

end for
Output : x̂ := xR

Here, the number of inner iterations tk satisfies

tk = Ceαk, k = 1, . . . , R.

for some C > 0 and α ≥ 0 and will ensure

f(xk)− f∗ ≤ νe−γk.
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Restart schemes

Proposition [Roulet and A., 2017]

Restart. Let f be a smooth convex function with parameters (2, L), sharp with
parameters (r, µ) on a set K. Restart with iteration schedule tk = C∗κ,τe

τk, for

k = 1, . . . , R, where C∗κ,τ , e
1−τ(cκ)

1
2(f(x0)− f∗)−

τ
2 , with c = 4e2/e here.

The precision reached at the last point x̂ is given by,

f(x̂)− f∗ ≤ e−2e−1(cκ)−
1
2N(f(x0)− f∗) = O

(
exp(−κ−1

2N)
)
, when τ = 0,

while,

f(x̂)−f∗ ≤ f(x0)− f∗(
τe−1(f(x0)− f∗)

τ
2(cκ)−

1
2N + 1

)2
τ

= O
(
N−

2
τ

)
, when τ ∈ (0, 1],

where N =
∑R
k=1 tk is the total number of iterations.
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Adaptation

The sharpness constant µ and exponent r in

µd(x,X∗)r ≤ f(x)− f∗, for every x ∈ K.

are of course never observed. Can we make restart schemes adaptive?
Otherwise, sharpness is useless. . .

� Yes: Grid of size (log2N)2 on restart parameters suffices. Fully adaptive if
primal gap is known. See [Roulet and A., 2017].

� Can we prove something similar for Frank-Wolfe?
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Restarting Frank-Wolfe

Strong Wolfe gap.

� Let f be a smooth convex function, C a polytope and let x ∈ C be arbitrary.
Then the strong Wolfe gap w(x) over C is defined as

w(x) ,

(
min
S∈Sx

max
y∈S,z∈C

∇f(x)T (y − z)
)

+

(1)

where x ∈ Co(S) and Sx = {S | S ⊂ Ext(C), x ∈ Co(S), |S| finite}.

� We also write

w(x, S) ,

(
max

y∈S,z∈C
∇f(x)T (y − z)

)
+

(2)

given S ∈ Sx.

Gap: w(x) and w(x, S) equal zero if and only if x is an optimal solution.
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Restarting Frank-Wolfe

Definition [Kerdreux, A., and Pokutta, 2018a]

Strong Wolfe Primal Bound. For any compact subset K of C such that x∗ ∈ K,
there are µ > 0 and r > 0 such that

f(x)− f? ≤ µw(x)r, for x ∈ K (3)

[Lacoste-Julien and Jaggi, 2015, Theorem 6] shows r = 2 when f is strongly
convex and C is a polytope.
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Restarting Frank-Wolfe

Definition

Scaling inequality. For all x ∈ C \X∗ and all differentiable convex function f ,

w(x) ≥ δ(C) max
x∗∈X∗

〈∇f(x); x− x∗
||x− x∗||〉. (Scaling)

� A convex polytope satisfies the δ-scaling inequality with δ(C) = PWidth(C)
[Lacoste-Julien and Jaggi, 2015].

�  Lojasiewicz’s factorization lemma then shows that the strong Wolfe primal
bound holds when the scaling inequality holds.
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Restarting Frank-Wolfe

Fractional Away-Step Frank-Wolfe Algorithm.

1: Given a smooth convex function f with curvature CAf . Starting point
x0 =

∑
v∈S′ α

v
0v ∈ C with support S0 ⊂ Ext(C) and schedule parameter

γ > 0.
2: Set t := 0
3: while w(xt,St) > e−γw(x0,S0) do
4: vt := LPC(∇f(xt)) and dFWt , vt − xt
5: st := LPSt(−∇f(xt)) with St current active set and dAwayt , xt − st
6: if −∇f(xt)TdFWt > e−γw(x0,S0)/2 then
7: dt := dFWt with ηmax = 1
8: else
9: dt := dAwayt with ηmax =

α
st
t

1−αstt
10: end if
11: xt+1 := xt + ηtdt with ηt ∈ [0, ηmax] via line-search
12: Update active set St+1 and coefficients {αvt+1}v∈St+1

13: t := t+ 1
14: end while

Output: xt ∈ C such that w(xt,St) ≤ e−γw(x0,S0)
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Restarting Frank-Wolfe

Proposition [Kerdreux, A., and Pokutta, 2018a]

FAFW convergence. Let f be a globally subanalytic, smooth convex function
with away curvature CAf , satisfying the strong Wolfe primal bound on a compact
set K for some r ≥ 1 and µ > 0. Let γ > 0 and assume x0 ∈ K is such that
e−γw(x0)/2 ≤ CAf . The algorithm above outputs xT ∈ K such that

w(xT ,ST ) ≤ w(x0,S0)e−γ

after at most
T ≤ |S0| − |ST |+ 16e2γCAf µw(x0,S0)r−2

iterations, where S0 and ST are the supports of respectively x0 and xT .
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Restarting Frank-Wolfe

Proposition [Kerdreux, A., and Pokutta, 2018a]

FAFW with restarts. Let f be a globally subanalytic, smooth convex function
with away curvature CAf , satisfying the strong Wolfe primal bound on a compact
set K with r ≥ 1 and µ > 0. Let γ > 0 and assume x0 ∈ K is such that
e−γw(x0,S0)/2 ≤ CAf . With γk = γ, the output of FAFW with restarts satisfies



f(xT )− f(x?) ≤ w0
1(

1 + T̃Crγ

) 1
2−r

when 1 ≤ r < 2

f(xT )− f(x?) ≤ w0 exp

(
− γ

e2γ
T̃

8CAf µ

)
when r = 2 ,

(4)

with w0 = w(x0,S0) and T̃ , T − (|S0| − |ST |), where Crγ ,
eγ(2−r)−1

8e2γCA
f
µw(x0,S0)r−2

.
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Restarting Frank-Wolfe

Proposition [Kerdreux, A., and Pokutta, 2018a]

Robustness in γ. Suppose f satisfies strong Wolfe primal bound for r > 0 and
write γ∗(r) the optimal choice of γ > 0 in the complexity bound. Running FAFW
with γ = 1/2 yields x̂ satisfying

f(x̂)− f∗ ≤
√

e

e− 1

w(x0,S0)(
1 + T̃Crγ∗(r)

) 1
2−r

when 0 ≤ r < 2 . (5)

When r = 2, we have γ∗(r) = 1/2.
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Numerical Results

Comparing classical FW and FAFW with γ = 0.5 on a regression problem with
loss power α = 1.5, so that the classical geometric strong convexity condition
does not hold. Green squares indicate restart times.
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Numerical Results

Representative examples on Lasso with various values of γ in restart schemes of
algorithm FAFW.
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Numerical Results

Comparing classical FW and FAFW with γ = 0.5 on logistic regression with `1
constraint, where the constrained minimum lies in the interior of the ball. Here
AFW and FW share the very same curve.
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Conclusion

� Restarting Frank-Wolfe yields generically faster rates.

� Performance gains controlled by sharpness.

� Restart scheme is robust to growth condition/sharpness parameters.

Open problems.

� Fully adaptive bounds? Restart means we’re missing something in the FAFW
convergence proof. . .
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