
NONLINEAR ACCELERATION OF MOMENTUM AND PRIMAL-DUAL ALGORITHMS

RAGHU BOLLAPRAGADA, DAMIEN SCIEUR, AND ALEXANDRE D’ASPREMONT

ABSTRACT. We describe a convergence acceleration scheme for multistep optimization algorithms. The ex-
trapolated solution is written as a nonlinear average of the iterates produced by the original optimization al-
gorithm. Our scheme does not need the underlying fixed-point operator to be symmetric, hence handles e.g.
algorithms with momentum terms such as Nesterov’s accelerated method, or primal-dual methods. The weights
are computed via a simple linear system and we analyze performance in both online and offline modes. We
use Crouzeix’s conjecture to show that acceleration performance is controlled by the solution of a Cheby-
shev problem on the numerical range of a non-symmetric operator modelling the behavior of iterates near the
optimum. Numerical experiments are detailed on image processing problems, logistic regression and neural
network training for CIFAR10 and ImageNet.

1. INTRODUCTION

Extrapolation techniques, such as Aitken’s ∆2 or Wynn’s ε-algorithm, provide an improved estimate of
the limit of a sequence using its last few iterates, and we refer the reader to [Brezinski and Zaglia, 2013]
for a complete survey. These methods have been extended to vector sequences, where they are known as
e.g. Anderson acceleration [Walker and Ni, 2011], minimal polynomial extrapolation [Cabay and Jackson,
1976] or reduced rank extrapolation [Eddy, 1979].

Classical optimization algorithms typically retain only the last iterate or the average [Polyak and Judit-
sky, 1992] of iterates as their best estimate of the optimum, throwing away all the information contained in
the converging sequence. This is highly wasteful from a statistical perspective and extrapolation schemes
estimate instead the optimum using a weighted average of the last iterates produced by the underlying algo-
rithm, where the weights depend on the iterates (i.e. a nonlinear average). Overall, computing those weights
means solving a small linear system so nonlinear acceleration has marginal computational complexity.

Recent results by [Scieur et al., 2016] adapted classical extrapolation techniques related to Aitken’s ∆2

and minimal polynomial extrapolation to design extrapolation schemes for accelerating the convergence
of basic optimization methods such as gradient descent. They showed that by using only iterates from
fixed-step gradient descent, these extrapolation algorithms achieve the optimal convergence rate of [Nes-
terov, 2013] without any modification to the original algorithm. However, these results are only applicable
to iterates produced by single-step algorithms such as gradient descent, where the underlying operator is
symmetric, thus excluding much faster momentum-based methods such as SGD with momentum or Nes-
terov’s algorithm. Our results here seek to extend those of [Scieur et al., 2016] to multistep methods, i.e. to
accelerate accelerated methods.

Our contribution here is twofold. First, we show that the accelerated convergence bounds in [Scieur et al.,
2016] can be directly extended to multistep methods when the operator describing convergence near the
optimum has a particular block structure, by adjusting the extrapolating sequence. This result applies in
particular to Nesterov’s method and the stochastic gradient algorithms with a momentum term. Second,
we use Crouzeix’s recent results [Crouzeix, 2007, Crouzeix and Palencia, 2017, Greenbaum et al., 2017] to
show that, in the general non-symmetric case, acceleration performance is controlled by the solution of a
Chebyshev problem on the numerical range of the linear, non-symmetric operator modelling the behavior of
iterates near the optimum. We characterize the shape of this numerical range for various classical multistep
algorithms such as Nesterov’s method [Nesterov, 1983], and Chambolle-Pock’s algorithm [Chambolle and
Pock, 2011].

Date: October 11, 2018.
1

ar
X

iv
:1

81
0.

04
53

9v
1

 [
m

at
h.

O
C

]
 1

0
O

ct
 2

01
8

We then study the performance of our techniques on several classical applications: image processing
problems using extrapolation on Chambolle-Pock’s algorithm and `2-regularized logistic regression using
acceleration on Nesterov’s accelerated method. We also study acceleration on stochastic gradient algorithms
with momentum terms used for training neural networks.

On convex problems, the online version (which modifies iterations) is competitive with L-BFGS in our
experiments and significantly faster than classical accelerated algorithms. Furthermore, it is robust to mis-
specified strong convexity parameters.

Stochastic gradient descent is a popular and effective method to train neural networks [Moulines and
Bach, 2011, Deng et al., 2013]. A lot of effort has been invested in accelerating stochastic algorithms, in
particular, by exploiting the problem structure. Algorithms such as RMSProp [Tieleman and Hinton, 2012]
or Adam [Kingma and Ba, 2014] are examples of direct modifications of gradient descent, and estimate some
statistical momentum during optimization to speed up the convergence. Unfortunately, these methods can
fail to converge on some simple problems [Reddi et al., 2018], and may fail to achieve state-of-the-art test
accuracy on image classification problems. Other techniques have been developed to improve convergence
speed or accuracy, such as adaptive batch-size for distributed SGD [Goyal et al., 2017], or quasi-second-
order methods which improve the rate of convergence of stochastic algorithms [Bollapragada et al., 2018].
However, only a limited number of settings are covered by such techniques, which are not compatible with
state-of-the-art architectures.

On these neural network training problems, the offline version of our acceleration scheme improves both
test accuracy of early iterations, as well as the final accuracy (see Figures 8 and 10), with only very minor
modifications to existing learning pipelines. Our scheme never hurts performance as it runs on top of the
algorithm and does not affect iterations. Finally, our scheme produces smoother learning curves. When
training neural networks, we observe in our experiments that the convergence speedup produced by ac-
celeration is much more significant in early iterations, which means our method could be used for rapid
prototyping of network architectures, with significant computational savings.

2. NONLINEAR ACCELERATION OF MOMENTUM METHODS

Consider the following optimization problem

min
x∈Rn

f(x) (1)

in the variable x ∈ Rn, where f(x) is strongly convex with parameter µ with respect to the Euclidean norm,
and has a Lipschitz continuous gradient with parameter L with respect to the same norm. Assume we solve
this problem using an iterative algorithm of the form{

xi = g(yi−1)

yi =
∑i

j=1

(
α
(i)
j xj + β

(i)
j yj−1

) for i = 1, ..., k, (2)

where xi ∈ Rn, k is the number of iterations, and α(i)
j , β

(i)
j are arbitrary real scalar coefficients. This iterate

update form is more general and includes many classical algorithms such as accelerated gradient method in
[Nesterov, 2013], {

xi = g(yi−1) = yi−1 − 1
L∇f(yi−1)

yi =
(

1 + i−1
i+2

)
xi − i−1

i+2 xi−1
.

As in [Scieur et al., 2016] we will focus on improving our estimates of the solution to problem (1) by
tracking only the sequence of iterates (xi, yi) produced by an optimization algorithm, without any further
oracle calls to g(x). The main difference with the work of [Scieur et al., 2016] is the presence of a linear
combination of previous iterates in the definition of y in (2), so the mapping from xi to xi+1 is usually

2

non-symmetric. For instance, for Nesterov’s algorithm, the Jacobian of xi+1 with respect to xi, yi reads

Jxi+1 =

[
0 Jg(

1 + i−2
i+1

)
I − i−2

i+1I

]
6= JTxi+1

where Jg is the Jacobian of the function g. In what follows, we show that looking at the residue

ri , xi − yi−1 (3)

allows us to recover the convergence results from [Scieur et al., 2016] when the Jacobian of the function g,
written Jg, is symmetric. This allows us to accelerate accelerated methods. We now briefly recall the key
ideas driving nonlinear acceleration schemes.

2.1. Regularized Nonlinear Acceleration Scheme. Nonlinear acceleration aims to find an approximation
of the fixed point x∗ (assumed to be unique) of g, i.e.

x∗ = g(x∗).

using a linear combination of previous (xi, yi) with coefficients ci. The optimal coefficients c∗ to approxi-
mate the fixed point using y are found by minimizing the residual of the linear combination,

c∗ = arg min
c

∥∥∥∥∥g
(

k∑
i=1

ciyi

)
−

k∑
i=1

ciyi

∥∥∥∥∥ .
in the variable c ∈ Rk. Of course, this subproblem can be hard to solve for nonlinear functions g, so we will
use the residues defined in (3) and solve instead

c∗ = arg min
c:cT 1=1

∥∥∥∥∥
k∑
i=1

cig (yi)−
k∑
i=1

ciyi

∥∥∥∥∥ = arg min
c:cT 1=1

∥∥∥∥∥
k∑
i=1

ciri

∥∥∥∥∥ (4)

because xi = g(yi−1) and ri = xi − yi−1. Both formulations are of course equivalent when g is a linear
mapping

g(x) = A(x− x∗) + x∗. (5)

Minimizing on the residues may be unstable, so we add a Tychonov regularization term, which leads to the
Regularized Nonlinear Acceleration (RNA) Algorithm [Scieur et al., 2016].

Algorithm 1 Regularized Nonlinear Acceleration (Complexity: O(k2d) if k � d)

Input: Sequences of k pairs (xi, yi−1) generated by (2), regularization parameter λ.
Compute matrix of residues R = [x1 − y0, . . . , xk − yk−1].
Solve the linear system (RTR+ λI)z = 1.
Normalize c = z/(1T z).

Output: The extrapolated point
∑k

i=1 ciyi−1, or
∑k

i=1 cixi.

2.2. Generic Convergence Results for Nonlinear Acceleration. We now link the accuracy of the extrap-
olation

∑k
i=1 ciyi−1 with the norm of a matrix polynomial p(A), where A is the linear fixed point operator

in (5), under mild assumptions on the coefficients α(i)
j and β(i)j in (2). For simplicity, we analyze the com-

bination of yi−1, but, in practice, it is better to use the combination of xi since, for linear g, we have

k∑
i=1

cixi =
k∑
i=1

cig(yi−1) = g

(
k∑
i=1

ciyi−1

)
.

3

so the points xi are one iteration ahead of yi. We will prove

min
c:cT 1=1

∥∥∥∥∥
k∑
i=1

ciri

∥∥∥∥∥ = min
p∈Pk−1:p(1)=1

‖p(A)r1‖ (6)

≤ ‖r1‖ min
p∈Pk−1:p(1)=1

‖p(A)‖, (7)

where Pk is the linear space of polynomials of degree at most k. This then directly yields a convergence
bound on ‖

∑k
i=0 ciyi − x∗‖, since∥∥∥∥∥
k∑
i=1

ciyi−1 − x∗
∥∥∥∥∥ =

∥∥∥∥∥(A− I)−1
k∑
i=1

ci(xi − yi−1)

∥∥∥∥∥ ≤ ∥∥(A− I)−1
∥∥∥∥∥∥∥

k∑
i=1

ciri

∥∥∥∥∥ .
Thus, if the coefficients c∗ in (4) are used, and if we assume A− I invertible,∥∥∥∥∥

k∑
i=1

c∗i yi−1 − x∗
∥∥∥∥∥ ≤ ∥∥(A− I)−1

∥∥ ‖r1‖ min
p∈Pk−1:p(1)=1

‖p(A)‖. (8)

Studying nonlinear acceleration accuracy thus reduces to studying Chebyshev polynomials under constraint,
and we now prove (7).

Theorem 2.1. Let {x1, . . . , xk} and {y0, . . . , yk−1} be the two sequences produced by running k itera-
tions of the optimization algorithm (2), where g(x) is the linear mapping (5) and α(k)

i , β(k)i are arbitrary
coefficients such that

α
(k)
N 6= 0 and

∑k
i=1α

(k)
i +

∑k
i=1β

(k)
i = 1.

Then,

min
c:cT 1=1

∥∥∥∥∥
k∑
i=1

ciri

∥∥∥∥∥ = min
p∈Pk:p(1)=1

‖p(A)r1‖. (9)

By (8), extrapolation accuracy is then bounded by∥∥∥∥∥
k∑
i=1

c∗i yi−1 − x∗
∥∥∥∥∥ ≤ ∥∥(A− I)−1

∥∥ ‖r1‖ min
p∈Pk−1:p(1)=1

‖p(A)‖.

Proof. For clarity, we remove the superscript (k) on the parameters α and β, in the scope of this proof.
The key part of the proof is showing the following relation,

ri = qi(A)r1, (10)

where qi is a polynomial of degree exactly i − 1, with qi(1) = 1. The rest of the proof is easy, since
{ri}i=1...k are formed using independent polynomials (they all have different degrees). Since we have an
independent family with k elements, and the maximum degree of those polynomials is k − 1 (which is qk,
associated to rk), then we have a basis for Pk−1. This means

∀ p ∈ Pk−1, ∃ c ∈ Rk :

k∑
i=1

ciri = p(A)r1.

In addition, if we force
∑k

i=1 ci = 1, then the coefficients of the resulting polynomial also sum to one since

p(1) =

k∑
i=1

ciqi(1) =

k∑
i=1

ci = 1.

This finally proves (9). It thus remains to show (10). We will prove the claim by recursion. We start with
the simple case i = 1, i.e.,

r1 = Ir1
4

and the identity matrix I indeed corresponds to the “polynomial” p(A) = 1 · A0 of degree 0, whose “co-
efficients sum to one”. Now, assume the claim is true for ri−1, and we will show it is also true for ri.
Indeed,

ri = xi − yi−1,
= A(yi−1 − x∗) + x∗ − yi−1, (11)

= (A− I)

 i−1∑
j=1

αjxj +

i−1∑
j=1

βjyj−1 − x∗
 .

Since
∑i−1

j=1(αj + βj) = 1,

(A− I)

 i−1∑
j=1

αjxj +

i−1∑
j=1

βjyj−1 − x∗
 = (A− I)

 i−1∑
j=1

αj(xj − x∗) +

i−1∑
j=1

βj(yj−1 − x∗)

 . (12)

We can link xj − x∗ with yj−1 − x∗ as follow,

xj − x∗ = A(yj−1 − x∗) + x∗ − x∗ = A(yj−1 − x∗).

With this relation, equation (12) simplifies into

(A− I)

 i−1∑
j=1

αj(xj − x∗) +
i−1∑
j=1

βj(yj−1 − x∗)

 = (A− I)
i−1∑
j=1

(
(Aαj + βj) (yj−1 − x∗)

)
.

In fact, this is a combination of residuals since

(A− I)(yj − x∗) = A(yj − x∗)− yj = xj+1 − yj = rj+1.

We finally have

ri =

i−1∑
j=1

(Aαj + βj) rj−1.

We assumed by recursion that rj = qj(A)r1, where pj is a polynomial of degree exactly j−1, and qj(1) = 1.
The previous equation is thus equivalent to

ri =

i−1∑
j=1

(
αjAqj(A) + βjqj(A)

)
︸ ︷︷ ︸

=qi(A)

r1.

Let us check if qi(1) = 1. Indeed,

qi(1) =
i−1∑
j=1

(
αjqj(1) + βjqj(1)

)
=

i−1∑
j=1

(
αj + βj

)
= 1.

Now, we check if the degree of the polynomial is indeed equal to i− 1. We have

deg(qi(x)) = deg

 i−1∑
j=0

(αjx+ βj)qj(x)

 .

Since by assumption deg(qj(x)) < deg(qi−1(x)) for j < i− 1,

deg(qi(x)) = deg ((αix+ βi−1)qi−1(x)) .

Because αi 6= 0 by assumption,

deg(qi(x)) = deg (αixqi−1(x)) = 1 + deg(qi−1(x)).
5

Finally, because the degree of qi−1 is exactly equal to i− 2,

deg(qi) = i− 1.

We proved by recursion that deg(qi) = i− 1 and qi(1) = 1, which concludes the proof.

In the next section, we will see how to control the convergence bound in Theorem 2.1.

3. CROUZEIX’S CONJECTURE & CHEBYSHEV POLYNOMIALS ON THE NUMERICAL RANGE

In the previous section, we have seen that the convergence rate of nonlinear acceleration is bounded by
the norm of a matrix polynomial,

min
p∈Pk
p(1)=1

‖p(A)‖.

Here and in the rest of this paper, ‖·‖ is the `2 norm. We first recall the setting studied in [Scieur et al., 2016]
where A is symmetric. We then analyze the case where A is non-symmetric using Crouzeix’s conjecture.

3.1. Symmetric Case. Here, we assumeA is a symmetric matrix, with ‖A‖ < 1−κ, for κ ∈]0, 1[. In many
applications, such as optimization, κ often refers to the inverse condition number. [Scieur et al., 2016] show
that extrapolating fixed-step graident descent using nonlinear acceleration algorithm achieves an optimal
rate of convergence in the sense of Nesterov [Nesterov, 2013].

Proposition 3.1. Assume we have a sequence of pairs (xi, yi−1) generated by (2) where

0 � A � 1− κ ;

i∑
j=1

(α
(i)
j + β

(i)
j) = 1 and α

(i)
i 6= 0 ∀ i = 1 . . . k.

Then the extrapolation
∑k

i=1 c
∗
i yi−1, where c∗ is computed using (4), follows∥∥∥∥∥

k∑
i=1

c∗i yi−1 − x∗
∥∥∥∥∥
2

≤ 1

κ

2ξk−1

1 + ξ2k−1
‖r1‖, ξ =

1−
√
κ

1 +
√
κ
.

Proof. We quickly recall the main arguments of the proof present in [Scieur et al., 2016]. It mainly
consists in upper-bounding the term

min
p∈Pk, p(1)=1

‖p(A)‖. (13)

Because A is symmetric, it suffices to look at the eigenvalue of A which maximizes the norm,

min
p∈Pk, p(1)=1

max
λi(A)

|p(λi)|. (14)

This problem is complex due to the discrete constraints on λ. However, the maximum can be relaxed on the
continuous segment [0, 1− κ],

min
p∈Pk, p(1)=1

max
λ∈[0,1−κ]

|p(λ)|.

This has been already studied for example by Golub and Varga [1961], and the solution is given by a
“Chebyshev-like” polynomial, written

Tκ,k−1(x) =
Ck−1(tκ(x))

Ck−1(tκ(1))
, tκ(x) =

2x

1− κ
− 1,

where Ck−1(x) is the Chebyshev polynomial of degree k − 1. The exact rate of convergence is obtained by
evaluating Tκ,k−1(x) at its maximum value, x = 1− κ. Finally, the term ‖(I −A)−1‖2 is bounded by κ−1

given the assumption on A.

The crucial part of the proof is moving from (13) to (14), i.e. moving from matrix polynomials to
scalar polynomials on a line segment. This step only works here because A has an orthonormal eigenvalue

6

decomposition with real eigenvalues, i.e. when A is symmetric. We will now recall Crouzeix’s conjecture,
which will allow us to study the norm of matrix polynomials for non-symmetric matrices.

3.1.1. Global Asymptotic Bounds for Nonlinear & Stochastic Problems. We now derive a more general
bound for acceleration on generic nonlinear problems. As in [Scieur et al., 2016], convergence of RNA in
the general case is essentially obtained via a perturbation analysis of the quadratic case. Indeed, at a step k
consider the perturbed linear iteration

g(yk) = A(yk − x∗) + x∗ + εk. (15)

where εk corresponds to any kind of perturbation (non-linear or stochastic residual noise, for instance), and
A corresponds to the Hessian at the optimum x∗. This corresponds to a perturbation of (5), and includes for
example, SGD steps on a non-linear function f(x), where εk is the sum of the second order term in Taylor
series expansion of the function with the stochastic noise induced by the SGD step at iteration k.

Given our analysis of the linear case above, all perturbation results of [Scieur et al., 2016] and [Scieur
et al., 2017] still apply. Assuming bounded perturbations in expectation, i.e.,

‖E[εi]‖ ≤ ν, E[‖εi‖] ≤ ε ∀i

Then it is possible to derive the global bound of Proposition 5.2 in [Scieur et al., 2017]. This bound is
difficult to analyze since it depends on the value of a so-called regularized Chebyshev polynomial whose
explicit value is still unknown. However, it is possible to give the relation between λ and (ν + σ) to ensure
the recovery of an optimal rate of convergence when ε→ 0. In particular, if

λ ∈

](
ε

‖x0 − x∗‖

)2/3

,

(
ε

‖x0 − x∗‖

)0
[
,

then we can recover the asymptotic rate in Theorem 3.1. The estimation of ε may be hard, but in practice, to
ensure good numerical convergence, it suffices to set λ = O

(
‖RTR‖

)
, where the constant used is usually

small (e.g. 10−6).

3.2. Non-Symmetric case & Crouzeix’s Conjecture. The results in [Scieur et al., 2016] recalled above
handle the case where the operator A is symmetric. Bounding ‖p(A)‖2 when A is non-symmetric is not
as direct. Fortunately, Crouzeix’s conjecture [Crouzeix, 2004] allows us to bound ‖p(A)‖2 by solving a
Chebyshev problem on the numerical range of A, in the complex plane.

Theorem 3.2 ([Crouzeix, 2004]). Let A ∈ Cn×n, and p(x) ∈ C[x], we have

‖p(A)‖2 ≤ c max
z∈W (A)

|p(z)|

for some absolute constant c ≥ 2.

Here W (A) ⊂ C is the numerical range of the matrix A ∈ Rn×n, i.e. the range of the Rayleigh quotient

W (A) , {x∗Ax : ‖x‖2 = 1, x ∈ Cn} . (16)

[Crouzeix, 2007] shows c ≤ 11.08 and Crouzeix’s conjecture states that this can be further improved to
c = 2, which is tight. A more recent bound in [Crouzeix and Palencia, 2017] yields c = 1 +

√
2 and there is

significant numerical evidence in support of the c = 2 conjecture [Greenbaum et al., 2017]. This conjecture
has played a vital role in providing convergence results for e.g. the GMRES method [Saad and Schultz,
1986] (see [Choi and Greenbaum, 2015]).

Crouzeix’s result allows us to turn the problem of finding uniform bounds for the norm of the matrix
polynomial ‖p(A)‖2 to that of bounding p(z) over the numerical range of A in the complex plane, an
arguably much simpler two-dimensional Chebyshev problem.

7

3.3. Numerical Range Approximations. There are no tractable methods for computing the exact numer-
ical range of a general operator A. However, efficient numerical methods approximate the numerical range
based on its key properties. The Toeplitz-Hausdorff theorem [Hausdorff, 1919, Toeplitz, 1918] in particular
states that the numerical range W (A) is a closed convex bounded set. Therefore, it suffices to characterize
points on the boundary, the convex hull then yields the numerical range.

Johnson [1978] made the following observations using the properties of the numerical range,

max
z∈W (A)

Re(z) = max
r∈W (H(A))

r = λmax(H(A)) (17)

W (eiθA) = eiθW (A), ∀θ ∈ [0, 2π), (18)

where Re(z) is the real part of complex number z, H(A) is the Hermitian part of A, i.e. H(A) =
(A+A∗)/2 and λmax(H(A)) is the maximum eigenvalue of H(A). The first property implies that the
line parallel to the imaginary axis is tangent to W (A) at λmax(H(A)). The second property can be used to
determine other tangents via rotations. Using these observations Johnson [1978] showed that the points on
the boundary of the numerical range can be characterized as

pθ = {v∗θAvθ : θ ∈ [0, 2π)} (19)

where vθ is the normalized eigenvector corresponding to the largest eigenvalue of the Hermitian matrix

Hθ =
1

2
(eiθA+ e−iθA∗) (20)

The numerical range can thus be characterized as follows.

Theorem 3.3. [Johnson, 1978] For any A ∈ Cn×n, we have

W (A) = Co{pθ : 0 ≤ θ < 2π}

where Co{Z} is the convex hull of the set Z.

Note that pθ cannot be uniquely determined as the eigenvectors vθ may not be unique but the convex hull
above is uniquely determined.

3.4. Chebyshev Bounds & Convergence Rate. Crouzeix’s result means that getting a priori bounds on the
convergence rate of accelerated algorithms by bounding (9) as in Theorem 2.1 can be achieved by bounding
the optimum of the Chebyshev problem

min
p∈C[z]
p(1)=1

max
z∈W (A)

|p(z)| (21)

where A ∈ Cn×n. This problem has a trivial answer when the numerical range W (A) is spherical, but the
convergence rate can be significantly improved when W (A) is less isotropic.

3.4.1. Exact Bounds on Ellipsoids. We can use an outer ellipsoidal approximation of W (A), bounding the
optimum value of the Chebyshev problem (21) by

min
p(z)∈C[x]
p(1)=1

max
z∈Er
|p(z)| (22)

where
Er , {z ∈ C : |z − 1|+ |z + 1| ≤ r + 1/r}. (23)

This Chebyshev problem has an explicit solution in certain regimes. As in the real case, we will use Cn(z),
the Chebyshev polynomial of degree k. Fischer and Freund [1991] show the following result on the optimal
solution to problem (22).

8

Theorem 3.4. [Fischer and Freund, 1991, Th. 2] Let k ≥ 5, r > 1 and c ∈ R. The polynomial

Tk,κ(z) = Tk(z)/Tk(1− κ)

is the unique solution of problem (22) if either

|1− κ| ≥ 1

2

(
r
√
2 + r−

√
2
)

or |1− κ| ≥ 1

2ar

(
2a2r − 1 +

√
2a4r − a2r + 1

)
where ar = (r + 1/r)/2.

The optimal polynomial for a general ellipse E can be obtained by a simple change of variables. That is,
the polynomial

Ck(
c−z
d)

Ck(
c−1
d)

(24)

is optimal for the problem (22) over any ellipse E with center c, focal distance d and semi-major axis a. It
can be easily seen that the maximum value is achieved at the point a on the real axis. That is the solution to
the min max problem is given by T̄k(a). Figure 1 shows the surface of the optimal polynomial with degree 5
for a = 0.8, d = 0.76 and c = 0.

0

-0.2

0.05

imag(z)

0

C
h
e
b
y
s
h
e
v

V
a
l
u
e

-0.5

real(z)

0
0.2 0.5

0.1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

FIGURE 1. Surface of the optimal polynomial T̄n(z) with degree 5 for a = 0.8, d = 0.76
and c = 0.

Figure 2 shows the solutions to the problem (22) with degree 5 for various ellipses with center at origin,
various eccentricity values e = d/a and semi-major axis a. Here, zero eccentricity corresponds to a sphere,
while an eccentricity of one corresponds to a line.

3.4.2. Sum of Squares Bounds on Semi Algebraic Sets. The Chebyshev problem (21) minimizing p(z) on
the numerical range can also be approximated by a Sum of Squares (SOS) program. This allows us to study,
numerically, problems where the numerical range is approximated by compact semialgebraic sets. Suppose
that W (A) ⊂ K where

K , {gi(x) ≥ 0, i = 1, . . . , r}
for multivariate polynomials gi ∈ R[x] : R2 → R. Then [Lasserre, 2001, Th. 4.2] shows that the optimum
value of

min
p(z)∈C[x]
p(1)=1

max
z∈K
|p(z)|

is upper bounded by the solution to the following SOS program.

min. v
subject to v − p(x) = q−(x) +

∑r
i=1 t

−
i (x)gi(x)

v + p(x) = q+(x) +
∑r

i=1 t
+
i (x)gi(x)

(25)

9

0 0.2 0.4 0.6 0.8 1

Eccentricity

0

0.2

0.4

0.6

0.8

1

M
a
x
i
m
u
m

v
a
l
u
e

o
f

t
h
e

p
o
l
y
n
o
m
i
a
l

a = .6

a = .7

a = .8

a = .9

a = .95

a = .99

FIGURE 2. Optimal value of the Chebyshev problem (22) for ellipses with centers at origin.
Lower values of the maximum mean faster convergence. The higher the eccentricity, the
faster the convergence.

in the mutlivariate polynomial variables p(x), q±(x), t±i (x) ∈ R[x] where q±(x), t±i (x) are SOS polyno-
mials. This last problem is equivalent to an SDP and can be solved efficiently when the degree of the
polynomials is reasonably small.

4. ACCELERATING NON-SYMMETRIC ALGORITHMS

Using the results from Section 3, we will now apply Theorem 2.1 to some standard non-symmetric al-
gorithms and detail the performance of regularized nonlinear acceleration in these particular cases. In this
section, we study generic algorithms of the form

xi+1 = g(xi).

In particular, this a particular case of our fixed point iterations (2) with α(i)
i = 1 and all other coefficients

are equal to zero (hence xi = yi). We have seen in the previous section that controlling the convergence rate
of the nonlinear acceleration scheme in Algorithm 1 means bounding the optimal value of the Chebyshev
optimization problem in (21) over the numerical range of the operator driving iterations. In what follows, we
explicitly detail this operator and approximate its numerical range for two classical algorithms, Nesterov’s
accelerated method [Nesterov, 1983] and Chambolle-Pock’s Primal-Dual Algorithm [Chambolle and Pock,
2011].

4.1. Nesterov’s Accelerated Gradient Method. The iterates formed by Nesterov’s accelerated gradient
descent method for minimizing smooth strongly convex functions with constant stepsize follow{

xk = yk−1 − α∇f(yk−1)

yk = xk + β(xk − xk−1)
(26)

with

β =

√
L−√µ
√
L+
√
µ
,

where L is the gradient’s Lipschitz continuity constant and µ is the strong convexity parameter. This algo-
rithm is better handled using the results of Section 2, and we only use it here to better illustrate our results
on non-symmetric operators.

10

4.1.1. Nesterov’s Operator in the quadratic case. When minimizing quadratic functions f(x) = 1
2‖Bx −

b‖2, using constant stepsize 1/L, these iterations become,{
xk − x∗ = yk−1 − x∗ − 1

LB
T (Byk−1 − b)

yk − x∗ = xk − x∗ + β(xk − x∗ − xk−1 + x∗).

or again, [
xk − x∗
yk − x∗

]
=

[
0 A
−βI (1 + β)A

] [
xk−1 − x∗
yk−1 − x∗

]
where A = I − 1

LB
TB. We write O the non-symmetric linear operator in these iterations, i.e.

O =

[
0 A
−βI (1 + β)A

]
(27)

The results in Section 2 show that we can accelerate the sequence zk = (xk, yk) if the solution to the minmax
problem (21) defined over the numerical range of the operator O is bounded.

4.1.2. Numerical Range. We can compute the numerical range of the operator O using the techniques de-
scribed in Section (2). In the particular case of Nesterov’s accelerated gradient method, the numerical range
is a convex hull of ellipsoids. We show this by considering the 2 × 2 operators obtained by replacing the
symmetric positive matrix A with its eigenvalues, to form

Oj =

[
0 λj
−βI (1 + β)λj

]
for all j ∈ {1, 2, · · · , n} (28)

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn < 1 are the eigenvalues of the matrix A. We have the following result.

Theorem 4.1. The numerical range of operator O is given as the convex hull of the numerical ranges of the
operators Oj , i.e.

W (O) = Co{W (O1),W (O2), · · · ,W (On)} (29)

Proof. Let v1, v2, · · · , vn be eigen vectors associated with eigen values λ1, λ2, · · · , λn of the matrix A.
We can write

A =
n∑
j=0

λjvjv
T
j I =

n∑
j=0

vjv
T
j

Let t ∈W (O) ⊂ C. By definition of the numerical range, there exists z ∈ C2n with z∗z = 1 and

t = z∗
[

0 A
−βI (1 + β)A

]
z

= z∗
[

0
∑n

j=1 λjvjv
T
j

−β
∑n

j=1 vjv
T
j (1 + β)

∑n
j=1 λjvjv

T
j

]
z

=

n∑
j=0

z∗
([

0 λj
−β (1 + β)λj

]
⊗ vjvTj

)
vec([z1, z2])

=

n∑
j=0

z∗ vec

(
vjv

T
j [z1, z2]

[
0 λj
−β (1 + β)λj

]T)

11

and since vjvTj vjv
T
j = vjv

T
j , this last term can be written

t =

n∑
j=0

Tr

(
vjv

T
j [z1, z2]

[
0 λj
−β (1 + β)λj

]T
[z1, z2]

∗vjv
T
j

)

=

n∑
j=0

Tr(vjv
T
j)

(
[vTj z1, v

T
j z2]

[
0 λj
−β (1 + β)λj

]T
[z∗1vj , z

∗
2vj]

T

)

Now, let wj = [z∗1vj , z
∗
2vj]

T , and

yj =
wTj Ojwj

‖wj‖22
and by the definition of the numerical range, we have yj ∈W (Oj). Therefore,

t =

n∑
j=0

(
wTj Ojwj

‖wj‖22

)
‖wj‖22

hence
t ∈ Co(W (O1),W (O2), · · · ,W (On)).

We have shown that if t ∈ W (O) then t ∈ Co(W (O1),W (O2), · · · ,W (On)). We can show the converse
by following the above steps backwards. That is, if t ∈ Co(W (O1),W (O2), · · · ,W (On)) then we have,

t =
n∑
j=0

θj

(
wTj Ojwj

‖wj‖22

)

where θj > 0,
∑n

j=0 θj = 1 and wj ∈ C2. Now, let

z =

n∑
j=0

vec(vjw
T
j)θ

1/2
j

‖wj‖

and we have,

t =
n∑
j=0

[z∗1vjz
∗
2vj]Oj

[
vTj z1
vTj z2

]
wherein we used the fact that vTj vk = 0 for any j 6= k and vTj vj = 1 in computing wTj = [z∗1vjz

∗
2vj]. We

also note that z∗z = 1 by the definition of z and rewriting the sum in the matrix form we can show that
t ∈W (O) which completes the proof.

To minimize the solution of the Chebyshev problem in (21) and control convergence given the normaliza-
tion constraint p(1) = 1, the point (1, 0) should be outside the numerical range. Because the numerical range
is convex and symmetric w.r.t. the real axis (the operator O is real), this means checking if the maximum
real value of the numerical range is less than 1.

For 2× 2 matrices, the boundary of the numerical range is given by an ellipse [Donoghue, 1957], so the
numerical range of Nesterov’s accelerated gradient method is the convex hull of ellipsoids. The ellipse in
[Donoghue, 1957] can be determined directly from the entries of the matrix as in Johnson [1974], as follows.

Theorem 4.2. [Johnson, 1974] For any real 2 by 2 matrix[
a b
c d

]
12

the boundary of the numerical range is an ellipse whose axes are the line segments joining the points x to y
and w to z respectively where,

x =
1

2
(a+ d− ((a− d)2 + (b+ c)2)1/2) w =

a+ d

2
− i
∣∣∣∣b− c2

∣∣∣∣
y =

1

2
(a+ d+ ((a− d)2 + (b+ c)2)1/2) z =

a+ d

2
+ i

∣∣∣∣b− c2

∣∣∣∣
are the points in the complex plane.

This allows us to compute the maximum real value of W (O), as the point of intersection of W (O) with
the real line which can be computed explicitly as,

re(O) = maxRe(W (O)) = max
j
Re(W (Oj)) =

1

2

(
(1 + β)λn + (λ2n(1 + β)2 + (λn − β)2)1/2

)
(30)

where λn = 1− µ
L .

We observe that re(O) is a function of the condition number of the problem and takes the values in the
interval [0, 2]. Therefore, RNA will only work on Nesterov’s accelerated gradient method when re(O) < 1
holds, which implies that the condition number of the problem κ = L

µ should be less than around 2.5 which
is highly restrictive.

An alternative approach is to use RNA on a sequence of iterates sampled every few iterations, which is
equivalent to using powers of the operator O. We expect the numerical radius of some power of operator O
to be less than 1 for any conditioning of the problem. This is because the iterates are converging at an
R−linear rate and so the norm of the power of the operator is decreasing at an R−linear rate with the
powers. Therefore, using the property that the numerical radius is bounded by the norm of the operator we
have,

re(Op) = maxRe(W (Op)) ≤ rOp ≤ ‖Op‖ ≤ Cpρp

where rOp is the numerical radius ofOp. Figure 3 shows the numerical range of the powers of the operatorO
for a random matrix BTB with dimension d = 50. We observe that after some threshold value for the
power p, (1, 0) lies outside the field values corresponding to Op thus guaranteeing that the acceleration
scheme will work. We also observe that the boundaries of the field values are almost circular for higher
powers p, which is consistent with results on optimal matrices in [Lewis and Overton, 2018]. When the
numerical range is circular, the solution of the Chebyshev problem is trivially equal to zp so RNA simply
picks the last iterate and does not accelerate convergence.

The difficulty in performing RNA on Nesterov’s accelerated gradient method arises due to the fact that the
iterates can be non-monotonic. The restriction that 1 should be outside the numerical range is necessary for
both non-symmetric and symmetric operators. In symmetric operators, the numerical range is a line segment
on the real axis and the numerical radius and spectral radius are equal, so this restriction is equivalent to
having spectral radius less than 1, i.e. having monotonically converging iterates.

4.2. Chambolle-Pock’s Primal-Dual Algorithm. Chambolle-Pock is a first-order primal-dual algorithm
used for minimizing composite functions of the form

min
x
hp(x) := f(Ax) + g(x) (31)

where f and g are convex functions and A is a continuous linear map. Optimization problems of this form
arise in e.g. imaging applications like total variation minimization (see Chambolle and Pock [2016]). The
Fenchel dual of this problem is given by

max
y
hd(y) := −f∗(−y)− g∗(A∗y) (32)

where f∗, g∗ are the convex conjugate functions of f, g respectively. These problems are primal-dual for-
mulations of the general saddle point problem,

min
x

max
y

< Ax, y > +g(x)− f∗(y), (33)

13

-0.5 0 0.5 1 1.5 2

Real(z)

-1

-0.5

0

0.5

1

I
m

a
g

(
z

)

W (O)

-3 -2 -1 0 1 2 3

Real(z)

-3

-2

-1

0

1

2

3

I
m

a
g

(
z

)

W (O)
W (O2)
W (O4)
W (O8)
W (O16)
W (O32)
W (O64)

FIGURE 3. Numerical range for the linear operator in Nesterov’s method, on a random qua-
dratic problem with dimension 50. Left: Operator O. Right: Various operator powers Op.
The RNA scheme will improve convergence whenever the point (1, 0) lies outside of the
numerical range of the operator.

where f∗, g are closed proper functions. Chambolle and Pock [2011] designed a first-order primal-dual
algorithm for solving these problems, where primal-dual iterates are given by

yk+1 = Proxσf∗(yk + σAx̄k)

xk+1 = Proxτg(xk − τA∗yk+1)

x̄k+1 = xk+1 + θ(xk+1 − xk)
(34)

where σ, τ are the step length parameters, θ ∈ [0, 1] is the momentum parameter and the proximal mapping
of a function f is defined as

Proxτf (y) = arg min
x

{
1

2τ
‖y − x‖2 + f(x)

}
Note that if the proximal mapping of a function is available then the proximal mapping of the conjugate of
the function can be easily computed using Moreau’s identity, with

Proxτf (y) + Prox
1/τ
f∗ (y/τ) = y

The optimal strategy for choosing the step length parameters σ, τ and the momentum parameter θ depend on
the smoothness and strong convexity parameters of the problem. When f∗ and g are strongly convex with
strong convexity parameters δ and γ respectively then these parameters are chosen to be constant values
given as

σ =
1

‖A‖

√
γ

δ
τ =

1

‖A‖

√
δ

γ
θ =

1

1 + 2
√
γδ

‖A‖

(35)

to yield the optimal linear rate of convergence. When only one of f∗ or g is strongly convex with strong
convexity parameter γ, then these parameters are chosen adaptively at each iteration as

θk =
1√

1 + 2γτk
σk+1 =

σk
θk

τk+1 = τkθk (36)

to yield the optimal sublinear rate of convergence.
A special case of the primal-dual algorithm with no momentum term, i.e., θ = 0 in (34) is also known

as the Arrow-Hurwicz method (Mizoguchi [1960]). Although theoretical complexity bounds for this algo-
rithm are worse compared to methods including a momentum term, it is observed experimentally that the
performance is either on par or sometimes better, when step length parameters are chosen as above.

14

We first consider algorithms with no momentum term and apply RNA to the primal-dual sequence zk =
(yk, xk). We note that, as observed in the Nesterov’s case, RNA can only be be applied on non-symmetric
operators for which the normalization constant 1 is outside their numerical range. Therefore, the step length
parameters τ, σ should be suitably chosen such that this condition is satisfied.

4.2.1. Chambolle-Pock’s Operator in the Quadratic Case. When minimizing smooth strongly convex qua-
dratic functions where f(Ax) = 1

2‖Ax− b‖
2 and g(x) = µ

2‖x‖
2, the proximal operators have closed form

solutions. That is
Proxσf∗(y) =

y − σb
1 + σ

and Proxτg(x) =
1

1 + τµ
.

Iterates of the primal-dual algorithm with no momentum term can be written as,

yk+1 =
yk + σAxk − σb

1 + σ
and xk+1 =

xk − τAT yk+1

1 + τµ

Note that the optimal primal and dual solutions satisfy y∗ = Ax∗ − b and x∗ = −1
µ A

T y. This yields the
following operator form for iterations[

yk − y∗
xk − x∗

]
=

[
I

1+σ
σA
1+σ

τAT

(1+σ)(1+τµ)
I

1+τµ −
τσATA

(1+σ)(1+τµ)

] [
yk−1 − y∗
xk−1 − x∗

]
(37)

with operator,

O =

[
I

1+σ
σA
1+σ

τAT

(1+σ)(1+τµ)
I

1+τµ −
τσATA

(1+σ)(1+τµ) .

]
(38)

Note also that O is a non-symmetric operator except when σ = τ
1+τµ , in which case the numerical range is

a line segment on the real axis and the spectral radius is equal to the numerical radius.

4.2.2. Numerical Range. The numerical range of the operator can be computed using the techniques de-
scribed in Section 2. As mentioned earlier, the point 1 should be outside the numerical range for the Cheby-
shev polynomial to be bounded. Therefore, using (17), we have,

re(O) = maxRe(W (O)) = λmax(H(O)) = λmax

(
O +O∗

2

)
The step length parameters σ, τ should be chosen such that the above condition is satisfied. We observe
empirically that there exists a range of values for the step length parameters such that re(O) < 1. Figure 4
shows the numerical range of operator O for σ = 4, τ = 1/‖ATA‖ with two different regularization
constants and Figure 5 shows the contours of re(O) for different values of σ and τ .

We also consider non-smooth problems in addition to the smooth strongly convex problems in the numer-
ical experiments section. While our scheme does not explicitly handle nonsmoothness but we report some
preliminary empirical results which show the benefits of RNA.

15

-0.5 0 0.5 1

Real(z)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

I
m

a
g

(
z

)

-0.5 0 0.5 1

Real(z)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

I
m

a
g

(
z

)

FIGURE 4. Field values for the Sonar dataset [Gorman and Sejnowski, 1988] with σ =
4, τ = 1/‖ATA‖. The dataset has been scaled such that ‖ATA‖ = 1. Left: µ = 10−3.
Right: µ = 10−1. The smaller numerical range on the right means faster convergence.

10 -1 10 0 10 1 10 2

τ

10 -1

10 0

10 1

10 2

σ

10 -1 10 0 10 1 10 2

τ

10 -1

10 0

10 1

10 2

σ

FIGURE 5. Plot of re(Op) with degree p = 5 for the Sonar dataset [Gorman and Sejnowski,
1988] for different values of τ and σ. White color represents values for which re(Op) ≤ 1
(converging) and grey color represents values re(Op) > 1 (not converging). Left: µ =
10−3. Right: µ = 10−1.

5. ONLINE NONLINEAR ACCELERATION

In this section, we develop the online-RNA algorithm, which injects the extrapolated point built by RNA
directly inside the algorithm. This means accelerating and restarting the algorithm at each step, thus im-
proving its rate of convergence.

5.1. Online-RNA Algorithm. The design of the online-RNA algorithm is straightforward. Since the ex-
trapolation is a linear combination of previous iterates, it fits exactly in the template for yi in method (2) of
Section 2, so any algorithm g(x) can be accelerated online as follows,{

xi = g(yi−1)

yi = RNA({(xj , yj−1)}j=1...i, λ)
(39)

where the second step corresponds to the application of Algorithm (1) using the sequence of xj and yj−1
generated so far. The only restriction, regarding Theorem 2.1, is that the coefficient associated to xi which

16

should not be zero. This is very unlikely and can be easily fixed by using another value for λ. Assuming
this condition holds, the algorithm has an optimal rate of convergence on quadratic problems.

However, the complexity grows quadratically with k, the iteration counter, because this is also the length
of sequences {xi} and {yi−1}. In practice, it is better to use a fixed window where k is bounded. This
strategy is similar to the limited version of BFGS, where a fixed number of gradients is stored in memory
[Boyd and Vandenberghe, 2004].

5.2. Accelerating Algorithms with Momentum Terms. The main limitation with the online version of
RNA is the acceleration of already-accelerated algorithm. Usually, such methods already present an inner
linear combination of previous iterates, for example Nesterov’s algorithm [Nesterov, 2013]. Combining the
online-RNA and already existing linear combination is not that straightforward. A naive, but innefficient
way to combine both approaches consists in computing sequentially the extrapolation with RNA then apply
the linear combination (or vice-versa), i.e.

zi = g(yi−1)

xi = RNA({(zi, yi)}, λ)

yi =
∑i

j=1

(
α
(i)
j xj + β

(i)
j yj−1

) . (40)

In fact, the combination of the second and third step is meaningless. At the end, we still end with a linear
combination of previous iterates. On one hand, it deteriorates the RNA solution, so it does not correspond to
the optimal solution (4). On the other hand, it does not correspond to the original linear combination, thus
potentially voiding theoretical convergence guarantees.

However, some of these methods are designed in a way that the point xi has to satisfy a “sufficient descent
condition”, satisfied when xi = g(yi−1). For example, Nesterov’s accelerated gradient can be written{

xi such that f(xi) ≤ f(xi−1)− 1
2L‖∇f(xi−1)‖22

yi = (1 + β)xi − βxi−1

In this case, the sufficient descent condition is satisfied when g(x) is a gradient step with step length 1
L . The

linear combination in this algorithm ensures a better convergence rate than gradient method, which is not
true anymore when using the (bad) strategy described in (40).

In this section, we accelerate methods with momentum that can be written as{
xi such that h(xi, {(xj , yj−1)}j=1,...,(i−1)) ≤ 0

yi =
∑i

j=1

(
α
(i)
j xj + β

(i)
j yj−1

) (41)

where h can be assimilated, for example, to a sufficient descent condition. Usually, the step in yi has
been designed to ensure a theoretical convergence rate, usually better than applying the simple fixed-point
iteration xi = g(xi−1). However, the application of online RNA will break this theoretical guarantee. The
following algorithm is a slight modification to online RNA, which checks if we can use the extrapolation
step while ensuring the theoretical rate of convergence.

This method preserves the rate of convergence of the original algorithm, as shown in the following propo-
sition.

Proposition 5.1. Assume we have a proven rate of convergence for yi when it follows (41). In addition,
assume the condition h(xi, {(xj , yj−1)}j=1,...,(i−1)) ≤ 0 is satisfied when xi = g(yi−1). Then the sequence
generated by Algorithm 2 also has the same rate of convergence.

Proof. Indeed, when zi does not satisfy h(zi, {(xj , yj−1)}j=1,...,(i−1)) ≤ 0, then one step of Algorithm 2
corresponds exactly to one step of (41). When zi satisfy the condition, then yi in (41) becomes

yi = α
(i)
i zi +

i−1∑
j=1

α
(i)
j xj +

i∑
j=1

β
(i)
j yj−1.

17

Algorithm 2 Regularized Nonlinear Acceleration for Momentum-based Algorithms

Input: Sequences of k pairs (xj , yj−1) generated by (41), regularization parameter λ.
Compute extrapolation xextr = RNA({(xj , yj−1}, λ).
Compute the conditional point zk, written

zk =
1

α
(k)
k

xextr −
k−1∑
j=1

α
(k)
j xj −

k∑
j=1

β
(k)
j yj

 .

if the condition h(zk, {(xj , yj−1)}j=1,...,(k−1)) ≤ 0 is satisfied then
Use RNA algorithm, yk = xextr.

else
Use the original combination, yk =

∑k
j=1

(
α
(k)
j xj + β

(k)
j yj−1

)
.

end if

Replacing zi by its expression gives

yi =

i∑
j=1

c∗jxj ,

which preserves the rate of convergence since zi satisfy the condition.

In fact, we can see Algorithm 2 to be a ‘smart’ line-search technique, since it has the same complexity
than a backtracking line search (the function is evaluated two times per iteration). The algorithm is partic-
ularly simple when using Nesterov’s method because it has only two parameters in the linear combination.
The acceleration scheme makes accelerated gradient adaptive to both smoothness and strong convexity con-
stant, while keeping the optimal rate of convergence. We illustrate the explicit acceleration of Nesterov’s
method in Algorithm 3. It achieves the optimal 1−

√
µ
L rate of convergence on smooth and strongly convex

functions, and usually performs much better than Nesterov’s method. However, we will see in the numerical
experiment below that its numerical performance is often worse than simply accelerating gradient descent
with the online-RNA scheme, so preserving the optimal theoretical convergence bound has a nontrivial
numerical cost here.

Algorithm 3 Adaptive Optimal First Order Method for Smooth and Strongly Convex Functions
Input: Smoothness parameter L, strong convexity constant µ, starting point x0 = y0.

Compute β =
√
L−√µ√
L+
√
µ

.

for i = 1 to k do
Perform a gradient step xi = yi−1 − 1

L∇f(yi−1).
Compute the extrapolation xextr = RNA({xj , yj−1}, λ)
Compute the conditional point

zi =
1

1 + β
(xextr + βxi−1)

if the descent condition f(zi) ≤ f(yi)− 1
2L‖∇f(yi)‖22 is satisfied then

Use the extrapolation yi = xextr
else

Use the original combination yi = (1 + β)xi − βxi−1
end if

end for
18

6. NUMERICAL RESULTS

We now study the performance of our techniques on several classical applications: image processing
problems using extrapolation on Chambolle-Pock’s algorithm and `2-regularized logistic regression using
acceleration on Nesterov’s accelerated method1. We also study acceleration on stochastic gradient algo-
rithms with momentum terms used for training neural networks.

6.1. Accelerating Algorithms with Momentum Terms. The following numerical experiments seek to
highlight the benefits of RNA in its offline and online versions when applied to the gradient method (with
or without momentum term). Since the complexity grows quadratically with the number N of points in the
sequences {xi} and {yi}, we will use RNA with a fixed window size (N = 5 for stochastic and N = 10 for
convex problems) and regularization parameter λ = 10−8‖RTR‖2 in all these experiments. These values
are sufficiently large to show a significant improvement in the rate of convergence, but can of course be
fine-tuned.

6.1.1. Logistic Regression. We solve a classical regression problem on the Madelon-UCI dataset [Guyon,
2003] using the logistic loss with `2 regularization. The regularization has been set such that the condition
number of the function is equal to 106. We compare to standard algorithms such as the simple gradient
scheme, Nesterov’s method for smooth and strongly convex objectives [Nesterov, 2013] and L-BFGS. For
the step length parameter, we used a backtracking line-search strategy. We compare these methods with
their offline RNA accelerated counterparts, as well as with the online version of RNA described in (39).

0 100 200 300 400 500
10 -2

10 -1

0 100 200 300 400 500
10 -10

10 -5

10 0

FIGURE 6. Logistic loss on the Madelon [Guyon, 2003]. Comparison between offline (left)
and online (right) strategies for RNA on gradient and Nesterov’s method. We use `-BFGS
(with ` = 100 gradients stored in memory) as baseline. Clearly, one step of acceleration
improves the accuracy. The performance of online RNA, which applies the extrapolation at
each step, is similar to that of L-BFGS methods, though RNA does not use line-search and
requires 10 times less memory.

We observe in Figure 6 that offline RNA improves the convergence speed of gradient descent and Nes-
terov’s method. However, the improvement is only a constant factor: the curves are shifted but have the
same slope. Meanwhile, the online version greatly improves the rate of convergence, transforming the basic
gradient method into an optimal algorithm competitive with line-search L-BFGS.

In contrast to most quasi-Newton methods (such as L-BFGS), RNA does not require a Wolfe line-search
to be convergent. This is because the algorithm is stabilized with a Tikhonov regularization. In addition, the
regularization in a way controls the impact of the noise in the iterates, making the RNA algorithm suitable
for stochastic iterations [Scieur et al., 2017].

1The source code for the numerical experiments can be found on GitHub at https://github.com/windows7lover/
RegularizedNonlinearAcceleration

19

https://github.com/windows7lover/RegularizedNonlinearAcceleration
https://github.com/windows7lover/RegularizedNonlinearAcceleration

6.1.2. Training CNNs for image classification. Because one stochastic iteration is not informative due to
the noise, we refer to xk as the model parameters (including batch normalization statistics) corresponding to
the final iteration of the epoch k. In this case, we do not have an explicit access to “(xk− yk−1)”, so we will
estimate it during the stochastic steps. Let y(t)k be the parameters of the network at epoch k after t stochastic
iterations, and x(t+1)

k be the parameters after one stochastic gradient step. Then, for a data set of size D,

xk − yk−1 ≈
1

D

D∑
t=1

(x
(t+1)
k − y(t)k) = −h 1

D

D∑
t=1

∇f(y
(t)
k).

This means the matrix R in Algorithm 1 will be the matrix of (estimated) gradients. Because the learning
curve is highly dependent on the learning rate schedule, we decided to use a linearly decaying learning rate
to better illustrate the benefits of acceleration, even if acceleration also works with a constant learning rate
schedule (see [Scieur et al., 2018] and Figure 7). In all our experiments, until epoch T , the learning rate
decreases linearly from an initial value h0 to a final value hT , with

hk = h0 + (k/T)(hT − h0). (42)

We then continue the optimization during 10 additional epochs using hT to stabilize the curve. We summa-
rize the parameters used for the optimization in Table 1.

h0 hT momentum
SGD and Online RNA (39) 1.0 0.01 0
SGD + momentum 0.1 0.001 0.9

TABLE 1. Parameters used in (42) to generate the learning rate for optimizers. We used the
same setting for their accelerated version with RNA.

6.1.3. CIFAR10. CIFAR-10 is a standard 10-class image dataset comprising 5 · 104 training samples and
104 samples for testing. Except for the linear learning rate schedule above, we follow the standard practice
for CIFAR-10. We applied the standard augmentation via padding of 4 pixels. We trained the networks
VGG19, ResNet-18 and DenseNet121 during 100 epochs (T = 90) with a weight decay of 5 · 10−4.

We observe in Figure 9 that the online version does not perform as well as in the convex case. More
surprisingly, it is outperformed by its offline version (Figure 8) which computes the iterates on the side. In
fact, the offline experiments detailed in Figure 8 exhibit much more significant gains. It produces a similar
test accuracy, and the offline version converges faster than SGD, especially for early iterations. We reported
speedup factors to reach a certain tolerance in Table 2. This suggests that the offline version of RNA is a
good candidate for training neural networks, as it converges faster while guaranteeing performance at least
as good as the reference algorithm.

6.1.4. ImageNet. Here, we apply the RNA algorithm to the standard ImageNet dataset. We trained the
networks during 90 epochs (T = 80) with a weight decay of 10−4. We reported the test accuracy on Figure
10 for the networks ResNet-50 and ResNet-152. We only tested the offline version of RNA here, because in
previous experiments it gives better result than its online counterpart.

We again observe that the offline version of Algorithm 1 improves the convergence speed of SGD with
and without momentum. In addition, we show a substantial improvement of the accuracy over the non-
accelerated baseline. The improvement in the accuracy is reported in Table 3. Interestingly, the resulting
training loss is smoother than its non accelerated counterpart, which indicates a noise reduction.

6.2. Algorithms with Non-symmetric Operators. We conducted numerical experiments to illustrate the
performance of RNA on non-symmetric algorithms. We consider two different classes of problems: smooth
strongly convex problems and non-smooth convex problems.

20

100 200 300
Epoch

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

va
lid

at
io

n
er

ro
r VGG-19

Resnet-18
Densenet121

50 100 150
Epoch

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

va
lid

at
io

n
er

ro
r VGG-19

Resnet-18
Densenet121

FIGURE 7. Prototyping networks: acceleration (bottom curves) gives a smoother conver-
gence, producing a clearer ranking of architectures, much earlier (we use a flat learning
rate). The right plot zooms on left one.

Tolerance SGD SGD+momentum SGD+RNA SGD+momentum+RNA
5.0% 68 (0.87×) 59 21 (2.81×) 16 (3.69×)
2.0% 78 (0.99×) 77 47 (1.64×) 40 (1.93×)
1.0% 82 (1.00×) 82 67 (1.22×) 59 (1.39×)
0.5% 84 (1.02×) 86 75 (1.15×) 63 (1.37×)
0.2% 86 (1.13×) 97 84 (1.15×) 85 (1.14×)

Tolerance SGD SGD+momentum SGD+RNA SGD+momentum+RNA
5.0% 69 (0.87×) 60 26 (2.31×) 24 (2.50×)
2.0% 83 (0.99×) 82 52 (1.58×) 45 (1.82×)
1.0% 84 (1.02×) 86 71 (1.21×) 60 (1.43×)
0.5% 89 (0.98×) 87 73 (1.19×) 62 (1.40×)
0.2% N/A 90 99 (0.90×) 63 (1.43×)

Tolerance SGD SGD+momentum SGD+RNA SGD+momentum+RNA
5.0% 65 (0.86×) 56 22 (2.55×) 13 (4.31×)
2.0% 80 (0.98×) 78 45 (1.73×) 38 (2.05×)
1.0% 83 (1.00×) 83 60 (1.38×) 56 (1.48×)
0.5% 87 (0.99×) 86 80 (1.08×) 66 (1.30×)
0.2% 92 (1.01×) 93 86 (1.08×) 75 (1.24×)

TABLE 2. Number of epochs required to reach the best test accuracy + Tolerance% on
CIFAR10 with a (top to bottom) VGG, Resnet18 and Densenet, using several algorithms.
The best accuracies are 6.54% (VGG), 5.0% (Resnet-18) and 4.62%(Densenet). The speed-
up compared to the SGD+momentum baseline is in parenthesis.

6.2.1. Smooth Problems. We consider ridge regression and l2 regularized logistic regression problems
which are of the form,

h(x) := f(Ax) + g(x)

where f(Ax) = 1
2‖Ax − b‖2 for ridge regression and f(Ax) =

∑
log(1 + exp(−aTi xbi)) for logistic

regression, and g(x) = µ
2‖x‖

2. The following methods are tested in this experiment.
21

0 20 40 60 80 100
Epoch

10 -5

10 -4

10 -3

10 -2

10 -1

T
ra

in
in

g
lo

ss

SGD
SGD+momentum
SGD+rna
SGD+momentum+rna

20 40 60 80 100
Epoch

0

5

10

15

20

25

P
er

ce
nt

ag
e

va
lid

at
io

n
er

ro
r

SGD
SGD+momentum
SGD+rna
SGD+momentum+rna

0 20 40 60 80 100
Epoch

10 -5

10 -4

10 -3

10 -2

10 -1

T
ra

in
in

g
lo

ss

SGD
SGD+momentum
SGD+rna
SGD+momentum+rna

20 40 60 80 100
Epoch

0

5

10

15

20

25

P
er

ce
nt

ag
e

va
lid

at
io

n
er

ro
r

SGD
SGD+momentum
SGD+rna
SGD+momentum+rna

0 20 40 60 80 100
Epoch

10 -6

10 -4

10 -2

T
ra

in
in

g
lo

ss

SGD
SGD+momentum
SGD+rna
SGD+momentum+rna

20 40 60 80 100
Epoch

0

5

10

15

20

25

P
er

ce
nt

ag
e

va
lid

at
io

n
er

ro
r

SGD
SGD+momentum
SGD+rna
SGD+momentum+rna

FIGURE 8. (Top to bottom) VGG, Resnet-18 and Densenet networks on Cifar10, 100
epochs. SGD with and without momentum, and their off-line accelerated versions with
a window size 5. Left: training loss. Right: top-1 validation error.

• GD. The gradient descent method xk+1 = xk − 1
L∇h(xk), where L is the Lipschitz constant of the

gradient.
• Nesterov. The Nesterov’s accelerated gradient method [Nesterov, 2013]

xk+1 = yk −
1

L
∇h(yk) yk+1 = yk + β(yk − yk−1)

where β =
√
L−√µ√
L+
√
µ

, L is the Lipschitz constant of the gradient.
22

0 20 40 60 80 100
Epoch

10 -5

10 -4

10 -3

10 -2

10 -1

T
ra

in
in

g
lo

ss

SGD
SGD+momentum
SGD+orna
SGD+momentum+orna

20 40 60 80 100
Epoch

0

5

10

15

20

25

P
er

ce
nt

ag
e

va
lid

at
io

n
er

ro
r

SGD
SGD+momentum
SGD+orna
SGD+momentum+orna

FIGURE 9. Online RNA for training a Resnet-18 on CIFAR-10.

1 30 60 90
Epoch

20

25

30

35

40

45

50

P
er

ce
nt

ag
e

va
lid

at
io

n
er

ro
r

SGD
SGD + momentum
SGD + RNA
SGD + momentum + RNA

1 30 60 90
Epoch

20

25

30

35

40

45

50

P
er

ce
nt

ag
e

va
lid

at
io

n
er

ro
r

SGD + momentum
SGD + momentum + RNA

FIGURE 10. Training a Resnet-52 (left) and ResNet-152 (right) on validation ImageNet for
90 epochs using SGD with and without momentum, and their off-line accelerated versions.

Pytorch SGD SGD+mom. SGD+RNA SGD+mom.+RNA
Resnet-50 23.85 23.808 23.346 23.412 (-0.396%) 22.914 (-0.432%)
Resnet-152 21.69 N/A 21.294 N/A 20.884 (-0.410%)

TABLE 3. Best validation top-1 error percentage on ImageNet. In parenthesis the improve-
ment due to RNA. The first column corresponds to the performance of Pytorch pre-trained
models.

• L-BFGS. The L-BFGS method [Liu and Nocedal, 1989] xk+1 = xk − αkHk∇h(xk) where the
steplength parameter αk is chosen via Armijo backtracking line search and the memory parameter
is chosen to be 10.
• PDGM. The primal-dual gradient method [Chambolle and Pock, 2011, Mizoguchi, 1960]

yk+1 = Proxσf∗(yk + σAxk) xk+1 = Proxτg(xk − τA∗yk+1)

where σ = 1
‖A‖

√
µ
δ , τ = 1

‖A‖

√
δ
µ , δ is the strong convexity parameters of f∗.

23

• PDGM + Momentum. The primal-dual gradient method with momentum [Chambolle and Pock,
2011]

yk+1 = Proxσf∗(yk + σAx̄k) xk+1 = Proxτg(xk − τA∗yk+1)

x̄k+1 = xk+1 + θ(xk+1 − xk)

where σ = 1
‖A‖

√
µ
δ , τ = 1

‖A‖

√
δ
µ , θ = 1

1+ 2
√
µδ

‖A‖
, δ is the strong convexity parameters of f∗.

The Lipschitz constant L is ‖A‖2 + µ for ridge regression and is ‖A‖
2

4 + µ for logistic regression. The
strong convexity parameter δ of the dual function f∗ is 1 for ridge regression and is 4 for logistic regression.
The proximal operators used in the primal - dual algorithms have closed form solutions for ridge regression.
That is, Proxτg(x) = 1

1+τµ and Proxσf∗(y) = y−σb
1+σ . In logistic regression, the approximate proximal

operator of f∗ is obtained by running Newton’s method till some tolerance on the accuracy is achieved or a
maximum of 100 iterations is reached. Note that the dominant cost in computing the gradients or proximal
operators is the cost of computing the matrix vector productsAx andA∗y which are of the orderO(Nd) and
the cost of performing Newton’s method to obtain the proximal operator is of order N times the maximum
number of iterations t. Therefore, when t < d one can ignore the additional cost of performing Newton’s
method.

We use online RNA on GD, Nesterov and PDGM with a fixed window size m = 10 and set λ =
10−8‖RTR‖2. As discussed in Section 4, RNA can be applied only with specific choices of the step-length
parameters in the case of primal-dual methods. In the case of smooth problems, we observe that the choice
τ = 1

‖A‖ and σ = 1
‖A‖ yields stability for applying RNA on PDGM. We note this choice is not an optimal

choice and one can improve the results by suitably tuning these parameters.
Figure 11 shows the performance of different variants of the primal-dual algorithms on ridge regression

problems for two different regularization constants. We observe that there is no significant difference in
the performance of the method with the momentum term (θ) as compared to the one with no momentum
term. We also observe that although the choice of the steplength parameters mentioned above have consis-
tent performance across different problems, the improvements obtained with RNA are not very significant.
However, choosing σ = τ = 1/‖A‖ and applying RNA to the PDGM has consistently outperformed all
other variants. This is in consistent with theoretical observations made in Section 4 that one can find optimal
steplength parameters for which RNA is stable and obtains the optimal performance.

Figure 12 compares the performance of primal-dual algorithms with other well know algorithms on ridge
regression problems. We observe that Nesterov’s accelerated gradient method and primal-dual gradient
method consistently outperformed gradient descent as suggested by the theory as these methods achieve
the optimal rates. The RNA variants of gradient descent and primal-dual methods are competitive and
outperform their base algorithms.

Figure 13 shows the performance of the methods on logistic regression problems. We observe that the
RNA variants have substantially improved the performance of the base algorithms. The L-BFGS method
with Armijo backtracking line-search has the optimal performance across different problems and the RNA
variants are competitive to this method.

We now illustrate the effects of RNA on Nesterov’s accelerated gradient method. As discussed in Sec-
tion 4, RNA is applied to sequence of iterates that are obtained after regular intervals, and the length of the
interval needs to be chosen based on the problem characteristics. Figures 14 and 15 compare the perfor-
mance of RNA on Nesterov’s sequence of iterates for various interval lengths p. We observe that the length
of the interval has significant effect on the performance of the algorithm and this choice depends on the trade
off between stability and speed of convergence. That is, the larger the interval length, higher the chance of
getting an accelerated sequence but lower the speed of convergence. Higher powers are generally needed
for highly ill-conditioned problems. Due to these difficulties, it is clear that for simple momentum terms,
one should consider the symmetric part of these iterations and apply RNA on these sequences as discussed
in Section 5. We report the results with this approach in the next section.

24

0 200 400 600 800 1000

Iterations

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

P
r
i
m
a
l

L
o
s
s

PDGM
PDGM + Momentum
PDGM + RNA
PDGM (σ = τ = 1/‖A‖)
PDGM (σ = τ = 1/‖A‖) + RNA

0 200 400 600 800 1000
Iterations

10-15

10-10

10-5

100

105

P
r
i
m
a
l

L
o
s
s

PDGM
PDGM + Momentum
PDGM + RNA
PDGM (σ = τ = 1/‖A‖)
PDGM (σ = τ = 1/‖A‖) + RNA

FIGURE 11. Quadratic loss on the Madelon [Guyon, 2003]. Left : µ = 10−2. Right :
µ = 102. Comparison of online RNA with other variants of primal-dual gradient methods.

0 200 400 600 800 1000
Iterations

10-6

10-4

10-2

100

102

104

P
r
i
m
a
l

L
o
s
s

GD
GD + RNA
PDGM + Momentum
PDGM (σ = τ = 1/‖A‖) + RNA
Nesterov

0 200 400 600 800 1000

Iterations

10 -15

10 -10

10 -5

10 0

10 5

P
r
i
m
a
l

L
o
s
s

GD
GD + RNA
PDGM + Momentum
PDGM (σ = τ = 1/‖A‖) + RNA
Nesterov

FIGURE 12. Quadratic loss on the Madelon [Guyon, 2003]. Left : µ = 10−2. Right :
µ = 102. Comparison of online RNA on primal-dual gradient methods with other first-order
algorithms.

0 200 400 600 800 1000
Iterations

10-6

10-4

10-2

100

102

104

P
r
i
m
a
l

L
o
s
s

GD
GD + RNA
PDGM + Momentum
PDGM (σ = τ = 1/‖A‖) + RNA
Nesterov
L-BFGS

0 200 400 600 800 1000

Iterations

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

P
r
i
m
a
l

L
o
s
s

GD
GD + RNA
PDGM + Momentum
PDGM (σ = τ = 1/‖A‖) + RNA
Nesterov
L-BFGS

FIGURE 13. Logistic loss on the Madelon [Guyon, 2003]. Left : µ = 10−2. Right :
µ = 102. Comparison of online RNA on primal-dual gradient methods with other first-order
algorithms.

25

Lastly, we compare the performance of offline, restart and online versions of RNA on primal-dual gradient
methods in Figure 16. We observe that the improvement in the performance is more pronounced in the online
version of RNA as compared to the offline version.

6.2.2. Non-Smooth Problems. We consider denoising an image that is degraded by Gaussian noise using
total variation. We refer the reader to Chambolle and Pock [2016] for details about the total variation models.
The optimization problem is given as,

min
x
‖∇x‖1 +

µ

2
‖x− b‖2

where,
‖∇x‖1 =

∑
i,j

|(∇x)i,j | |(∇x)i,j | =
√

((∇x)1i,j)
2 + ((∇x)2i,j)

2

and b is a 256 by 256 noisy input image. This optimization problem is in the form (31) with f(∇x) = ‖∇x‖1
and g(x) = µ

2‖x − b‖
2. The gradient operator ∇x is discretized by forward differencing (see Chambolle

and Pock [2011]). The convex conjugate of f is an indicator function of the convex set P where,

P = {p : ‖p‖∞ ≤ 1}, |p‖∞ = max
i,j
|pi,j |, |pi,j | =

√
(p1i,j)

2 + (p2i,j)
2

and so the proximal operator is a point wise projection on to this set. That is Proxσf∗(p)i,j =
pi,j

max(1,|pi,j |) .
We compare the performance of the two variants of primal-dual methods with RNA for two different noise

levels ζ with two different regularization constants µ. The step-length parameters are chosen adaptively at
each iteration as follows:

• PDGM
θ̂k =

1√
1 + 2γτk

σk+1 =
σk

θ̂k
τk+1 = τkθ̂k

with γ = 0.2µ, θ = 0, τ0 = 0.02, σ0 = 4
τ0‖∇‖2

• PDGM + Momentum

θk =
1√

1 + 2γτk
σk+1 =

σk
θk

τk+1 = τkθk

with γ = 0.7µ and σ0 = τ0 = 1
‖∇‖

with ‖∇‖2 = 8. These adaptive choices are the standard choices used in the literature and yield the optimal
theoretical convergence rates for the momentum variants. We note that these parameters are not carefully
fine-tuned to give the best performance for each variant but are chosen based on some simple observations.
We used the offline RNA instead of online RNA as we consistently observed that the offline RNA is more
robust in the high accuracy regime and the online variants needed some stability inducing techniques like
linesearches. Moreover, for the online RNA, the improvement in the performance on these non-smooth
problems is small and so the additional cost of solving the linear system is not well justified.

Table 4 reports the number of iterations required for the distance between the primal function value and
the optimal primal function value to be below certain accuracy. We observe that the PDGM + RNA has
consistently outperformed the PDGM and its’ momentum variant for all the accuracies.

ζ = 0.1, µ = 8 ζ = 0.05, µ = 16

ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−2 ε = 10−4 ε = 10−6

PDGM 488 1842 7146 257 943 3706
PDGM + Momentum 377 1744 6813 226 921 3879
PDGM + offlineRNA 221 1151 5801 141 671 3241
TABLE 4. Number of iterations required for the primal accuracy to be below ε on the im-
ages shown in Figure 17 using primal-dual gradient methods.

26

0 200 400 600 800 1000
Iterations

100

101

102

103

P
r
i
m
a
l

L
o
s
s

Nesterov
Nesterov + RNA (p=1)
Nesterov + RNA (p=2)
Nesterov + RNA (p=3)
Nesterov + RNA (p=5)
Nesterov + RNA (p=10)

0 200 400 600 800 1000
Iterations

10-15

10-10

10-5

100

105

P
r
i
m
a
l

L
o
s
s

Nesterov
Nesterov + RNA (p=1)
Nesterov + RNA (p=2)
Nesterov + RNA (p=3)
Nesterov + RNA (p=5)
Nesterov + RNA (p=10)

FIGURE 14. Quadratic loss on the Madelon [Guyon, 2003]. Left : µ = 10−2. Right :
µ = 102. Comparison of online RNA on different iterate sampling rates, i.e. different
powers of the operator for Nesterov’s strongly convex acceleration algorithm.

0 200 400 600 800 1000
Iterations

101

102

103

104

P
r
i
m
a
l

L
o
s
s

Nesterov
Nesterov + RNA (p=1)
Nesterov + RNA (p=2)
Nesterov + RNA (p=3)
Nesterov + RNA (p=5)
Nesterov + RNA (p=10)

0 200 400 600 800 1000

Iterations

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

P
r
i
m
a
l

L
o
s
s

Nesterov
Nesterov + RNA (p=1)
Nesterov + RNA (p=2)
Nesterov + RNA (p=3)
Nesterov + RNA (p=5)
Nesterov + RNA (p=10)

FIGURE 15. Logistic loss on Madelon [Guyon, 2003]. Left : µ = 10−2. Right : µ = 102.
Comparison of online RNA on different iterate sampling rates, i.e. different powers of the
operator for Nesterov’s strongly convex acceleration algorithm.

0 200 400 600 800 1000
Iterations

10-2

10-1

100

101

102

103

P
r
i
m
a
l

L
o
s
s

PDGM
PDGM + offlineRNA
PDGM + restartRNA
PDGM + onlineRNA

0 200 400 600 800 1000
Iterations

10-15

10-10

10-5

100

105

P
r
i
m
a
l

L
o
s
s

PDGM
PDGM + offlineRNA
PDGM + restartRNA
PDGM + onlineRNA

FIGURE 16. Logistic loss on the Madelon [Guyon, 2003]. Left : µ = 10−2. Right :
µ = 102. Comparison of offline, restart and online variants of RNA on primal-dual gradient
methods.

27

FIGURE 17. Images used in the experiments. Left: True data. Middle: Noisy data with
Gaussian noise ζ = 0.1. Right: Noisy data with Gaussian noise ζ = 0.05

ACKNOWLEDGEMENTS

AA is at CNRS & département d’informatique, École normale supérieure, UMR CNRS 8548, 45 rue
d’Ulm 75005 Paris, France, INRIA and PSL Research University. The authors would like to acknowledge
support from the data science joint research initiative with the fonds AXA pour la recherche and Kamet
Ventures, as well as a Google focused award. DS was supported by a European Union Seventh Framework
Programme (FP7- PEOPLE-2013-ITN) under grant agreement n.607290 SpaRTaN. RB was supported by
Department of Energy grant DE-FG02-87ER25047 and DARPA grant 650-4736000-60049398.

REFERENCES

Raghu Bollapragada, Dheevatsa Mudigere, Jorge Nocedal, Hao-Jun Michael Shi, and Ping Tak Peter Tang. A progres-
sive batching L-BFGS method for machine learning. arXiv preprint arXiv:1802.05374, 2018.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Claude Brezinski and M Redivo Zaglia. Extrapolation methods: theory and practice, volume 2. Elsevier, 2013.

Stan Cabay and LW Jackson. A polynomial extrapolation method for finding limits and antilimits of vector sequences.
SIAM Journal on Numerical Analysis, 13(5):734–752, 1976.

Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with applications to
imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.

Antonin Chambolle and Thomas Pock. An introduction to continuous optimization for imaging. Acta Numerica, 25:
161–319, 2016.

Daeshik Choi and Anne Greenbaum. Roots of matrices in the study of gmres convergence and crouzeix’s conjecture.
SIAM Journal on Matrix Analysis and Applications, 36(1):289–301, 2015.

Michel Crouzeix. Bounds for analytical functions of matrices. Integral Equations and Operator Theory, 48(4):461–
477, 2004.

Michel Crouzeix. Numerical range and functional calculus in hilbert space. Journal of Functional Analysis, 244(2):
668–690, 2007.

Michel Crouzeix and César Palencia. The numerical range as a spectral set. arXiv preprint arXiv:1702.00668, 2017.

Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Michael Seltzer, Geoff Zweig, Xiaodong
He, Jason Williams, et al. Recent advances in deep learning for speech research at microsoft. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 8604–8608. IEEE, 2013.

William F. Donoghue. On the numerical range of a bounded operator. Michigan Math. J., 4(3):261–263, 1957. doi:
10.1307/mmj/1028997958. URL https://doi.org/10.1307/mmj/1028997958.

RP Eddy. Extrapolating to the limit of a vector sequence. In Information linkage between applied mathematics and
industry, pages 387–396. Elsevier, 1979.

Bernd Fischer and Roland Freund. Chebyshev polynomials are not always optimal. Journal of Approximation Theory,
65(3):261–272, 1991.

28

https://doi.org/10.1307/mmj/1028997958

Gene H Golub and Richard S Varga. Chebyshev semi-iterative methods, successive overrelaxation iterative methods,
and second order richardson iterative methods. Numerische Mathematik, 3(1):157–168, 1961.

R Paul Gorman and Terrence J Sejnowski. Analysis of hidden units in a layered network trained to classify sonar
targets. Neural Networks, 1:75, 1988.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

Anne Greenbaum, Adrian S Lewis, and Michael L Overton. Variational analysis of the crouzeix ratio. Mathematical
Programming, 164(1-2):229–243, 2017.

Isabelle Guyon. Design of experiments of the nips 2003 variable selection benchmark, 2003.

Felix Hausdorff. Der wertvorrat einer bilinearform. Mathematische Zeitschrift, 3(1):314–316, 1919.

Charles R Johnson. Computation of the field of values of a 2× 2 matrix. J. Res. Nat. Bur. Standards Sect. B, 78:105,
1974.

Charles R Johnson. Numerical determination of the field of values of a general complex matrix. SIAM Journal on
Numerical Analysis, 15(3):595–602, 1978.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization,
11(3):796–817, 2001.

A. Lewis and M. Overton. Partial smoothness of the numerical radius at matrices whose fields of values are disks.
Working paper (mimeo), 2018.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical
programming, 45(1-3):503–528, 1989.

Toshiyuki Mizoguchi. K.j. arrow, l. hurwicz and h. uzawa, studies in linear and non-linear programming. Economic
Review, 11(3):349–351, 1960. URL https://EconPapers.repec.org/RePEc:hit:ecorev:v:11:
y:1960:i:3:p:349-351.

Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algorithms for machine learn-
ing. In Advances in Neural Information Processing Systems, 2011.

Y. Nesterov. A method of solving a convex programming problem with convergence rateO(1/k2). Soviet Mathematics
Doklady, 27(2):372–376, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science & Business
Media, 2013.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal on
Control and Optimization, 30(4):838–855, 1992.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International Confer-
ence on Learning Representations, 2018.

Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear
systems. SIAM Journal on scientific and statistical computing, 7(3):856–869, 1986.

Damien Scieur, Alexandre d’Aspremont, and Francis Bach. Regularized nonlinear acceleration. In Advances In Neural
Information Processing Systems, pages 712–720, 2016.

Damien Scieur, Francis Bach, and Alexandre d’Aspremont. Nonlinear acceleration of stochastic algorithms. In
Advances in Neural Information Processing Systems, pages 3985–3994, 2017.

Damien Scieur, Edouard Oyallon, Alexandre dAspremont, and Francis Bach. Nonlinear acceleration of cnns. In
Workshop track of International Conference on Learning Representations (ICLR), 2018.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

29

https://EconPapers.repec.org/RePEc:hit:ecorev:v:11:y:1960:i:3:p:349-351
https://EconPapers.repec.org/RePEc:hit:ecorev:v:11:y:1960:i:3:p:349-351

Otto Toeplitz. Das algebraische analogon zu einem satze von fejér. Mathematische Zeitschrift, 2(1-2):187–197, 1918.

Homer F Walker and Peng Ni. Anderson acceleration for fixed-point iterations. SIAM Journal on Numerical Analysis,
49(4):1715–1735, 2011.

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT SCIENCES

NORTHWESTERN UNIVERSITY.
E-mail address: raghu.bollapragada@u.northwestern.edu

INRIA & D.I., UMR 8548,
ÉCOLE NORMALE SUPÉRIEURE, PARIS, FRANCE.
E-mail address: damien.scieur@inria.fr

CNRS & D.I., UMR 8548,
ÉCOLE NORMALE SUPÉRIEURE, PARIS, FRANCE.
E-mail address: aspremon@ens.fr

30

	1. Introduction
	2. Nonlinear Acceleration of Momentum Methods
	2.1. Regularized Nonlinear Acceleration Scheme
	2.2. Generic Convergence Results for Nonlinear Acceleration

	3. Crouzeix's Conjecture & Chebyshev Polynomials on the Numerical Range
	3.1. Symmetric Case
	3.2. Non-Symmetric case & Crouzeix's Conjecture
	3.3. Numerical Range Approximations
	3.4. Chebyshev Bounds & Convergence Rate

	4. Accelerating Non-symmetric Algorithms
	4.1. Nesterov's Accelerated Gradient Method
	4.2. Chambolle-Pock's Primal-Dual Algorithm

	5. Online Nonlinear Acceleration
	5.1. Online-RNA Algorithm
	5.2. Accelerating Algorithms with Momentum Terms

	6. Numerical Results
	6.1. Accelerating Algorithms with Momentum Terms
	6.2. Algorithms with Non-symmetric Operators

	Acknowledgements
	References

