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ABSTRACT. The seriation problem seeks to reorder a set of elements given pairwise similarity information,
so that elements with higher similarity are closer in the resulting sequence. When a global ordering consistent
with the similarity information exists, an exact spectral solution recovers it in the noiseless case and seriation
is equivalent to the combinatorial 2-SUM problem over permutations, for which several relaxations have been
derived. However, in applications such as DNA assembly, similarity values are often heavily corrupted, and
the solution of 2-SUM may no longer yield an approximate serial structure on the elements. We introduce the
robust seriation problem and show that it is equivalent to a modified 2-SUM problem for a class of similarity
matrices modeling those observed in DNA assembly. We explore several relaxations of this modified 2-SUM
problem and compare them empirically on both synthetic matrices and real DNA data. We then introduce
the problem of seriation with duplications, which is a generalization of Seriation motivated by applications
to cancer genome reconstruction. We propose an algorithm involving robust seriation to solve it, and present
preliminary results on synthetic data sets.

1. INTRODUCTION

In the seriation problem, we are given a similarity matrix between a set of n elements, which we assume
to have a serial structure, i.e., which can be ordered along a chain where the similarity between elements
decreases with their distance within this chain. The problem has its roots in archeology where it was used
to find the chronological order of a set of graves based on the artifacts they share [Robinson, 1951]. It also
has applications in, e.g., envelope reduction [Barnard et al., 1995], bioinformatics [Atkins and Middendorf,
1996, Cheema et al., 2010, Jones et al., 2012] and in DNA sequencing [Meidanis et al., 1998, Garriga et al.,
2011, Recanati et al., 2017]. The main structural hypothesis on similarity matrices related to robust seriation
is the concept of strong R-matrix, which we introduce below.

Definition 1.1. We say that A ∈ Sn is a strong-R-matrix (or strong Robinson matrix) iff it is symmetric and
satisfies Aij ≤ Akl for all (i, j, k, l) such that |i− j| ≥ |k − l|.

Here, Sn denotes the set of real symmetric matrices of dimension n. Definition 1.1 is more restrictive
than the usual R-matrix property used in Atkins et al. [1998], Fogel et al. [2013], which only requires the
entries of the matrix to decrease when moving away from the diagonal on a given row or column. For
strong-R matrices, we impose that the entries on a given diagonal are no greater than any entry located on
the previous diagonals (see Figure 1).

In what follows, we write SnR the set of strong-R-matrices of size n, and Pn the set of permutations
of n elements. A permutation can be represented by a vector π (lower case) or a matrix Π ∈ {0, 1}n×n
(upper case) defined by Πij = 1 iff π(i) = j, and π = ΠπId where πId = (1, . . . , n)T . We refer to both
representations by Pn and may omit the subscript n whenever the dimension is clear from the context. We
say that A ∈ Sn is pre-SR if there exists a permutation Π ∈ P such that the matrix ΠAΠT (whose entry
(i, j) is Aπ(i),π(j)) is a strong-R-matrix, and the seriation problem seeks to recover this permutation Π, i.e.,
solve

find Π ∈ P
such that ΠAΠT ∈ SR

(Seriation)
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(A) R-matrix (B) strong R-matrix (C) permuted strong-R

FIGURE 1. A R-matrix (A) and its projection on the set of strong-R matrices (B). A pre-
strong-R matrix (C) is a strong-R matrix up to a permutation of the rows and columns.
Seriation seeks to recover the R-matrix (B) from a randomly permuted observation (C).

in the variable Π ∈ P . This is illustrated in Figure 1. Given A ∈ Sn, 2-SUM is an optimization problem
over permutations, written

minimize
∑n

i,j=1Aij |πi − πj |2
such that π ∈ Pn

(2-SUM)

Remark that the search space Pn is discrete and of cardinality n!, thus preventing the use of exhaustive
search or greedy branch and bound methods for Seriation or 2-SUM when n gets large [Hahsler et al.,
2008]. Yet, for pre-SR matrices, Seriation is equivalent to 2-SUM [Fogel et al., 2013], which can be solved
exactly using a spectral relaxation (Supplementary Algorithm 1) in polynomial time [Atkins et al., 1998].

Problem 2-SUM is also a particular case of the Quadratic Assignment Problem [Koopmans and Beck-
mann, 1957], written

min
π∈Pn

n∑
i,j=1

Ai,jBπ(i),π(j) (QAP(A,B))

with Bij = |i− j|2. Laurent and Seminaroti [2015] showed that for pre-SR matrices, Seriation is equivalent
to QAP(A,B) when−B ∈ SnR, i.e. whenB has increasing values when moving away from the diagonal, and
has constant values across a given diagonal (i.e. B is a Toeplitz matrix). This includes p-SUM problems, for
p > 0, corresponding to Bij = |i− j|p. The case p = 1 is also known as the minimum linear arrangement
problem (MLA) [George and Pothen, 1997]. For pre-SR matrices, these problems are all equivalent and
can be solved by the spectral algorithm of Atkins et al. [1998], detailed in the Supplementary Material
(Algorithm 1). However, when A is not pre-SR, the Seriation problem has multiple local solutions, and the
spectral algorithm does not necessarily find a global optimum for 2-SUM, p-SUM or QAP(A,B) with B a
Toeplitz, negated R matrix. In fact, these problems are NP-hard in general [Sahni and Gonzalez, 1976].

More recently, several relaxations have been proposed to tackle 2-SUM and QAP(A,B), although there
are no approximation bounds in the general case [Lyzinski et al., 2016]. Vogelstein et al. [2011] used the
Frank-Wolfe algorithm to minimize the objective of QAP(A,B) over the convex hull of the permutation ma-
trices, namely the Birkhoff polytope B. Fogel et al. [2013] presented a convex relaxation of 2-SUM in B,
and used a quadratic programming approach where the variable’s membership to B is enforced through lin-
ear constraints (instead of the implicit projection of the Frank-Wolfe algorithm). Lim and Wright [2014]
proposed a similar relaxation in the convex hull of the set of permutation vectors, the Permutahedron PHn,
represented with Θ(n log n) variables and constraints, instead of Θ(n2) for permutation matrices, thanks
to an extended formulation by Goemans [2015]. All these relaxations for 2-SUM suffer from a symme-
try problem, because flipping permutations leaves the objective unchanged, and the minimum of 2-SUM is
achieved for a vector proportional to 1 = (1, . . . , 1)T , which lies in the center of the convex hull of permu-
tation vectors. To overcome this issue, constraints can be added to the problem, corresponding to either a
priori kwowledge, or to pure “tie-breaking”, e.g., π1 + 1 ≤ πn, ensuring that the center is excluded from
the constraint set, thus breaking symmetry without loss of generality. Lim and Wright [2014] stated that
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a Frank-Wolfe algorithm could also be used for 2-SUM in PH if no other constraint but the tie-breaking
was enforced, thanks to a specific linear minimization oracle, thus implicitly enforcing membership to PH
without imposing the constraints from Goemans [2015]. Lim and Wright [2016] generalized the use of the
representation of Goemans [2015] for PH to tackle QAP(A,B), with a coordinate descent algorithm and a
continuation scheme to move away from the center of the convex hull of permutations. Evangelopoulos et al.
[2017a] proposed a Frank-Wolfe algorithm inPHwith a continuation scheme (instead of a tie-breaking con-
straint) to tackle 2-SUM and avoid the center. They also discussed problems of the form (QAP(A,B)) where
Bij = Pseudo-Huber(|i− j|) [Evangelopoulos et al., 2017b], which helps in solving robust seriation as we
will see below.

Our contribution here is twofold. In Section 2, we introduce the robust seriation problem, motivated by
applications to DNA sequencing. We show that for DNA data obeying a simple model which takes repeats
into account, robust seriation is equivalent to Robust 2-SUM, which is a QAP problem similar to 2-SUM,
where the squared distance to the diagonal that appears in the loss function is truncated. This truncated
quadratic can be relaxed as a Huber loss. We present experiments to compare existing and new algorithmic
approaches to solve this problem on two datasets: synthetic data following our simple model, and real data
from an E. coli genome sequenced with third generation sequencing tools.

In Section 4, we introduce the problem of seriation with duplications, which is a generalization of se-
riation with additional affine constraints on the solution, and apply it to the analysis of Hi-C data from
cancer genome. The Hi-C protocol combines proximity ligation and sequencing techniques to investigate
the spatial organization of genomes [Lieberman-Aiden et al., 2009b]. While several methods have been
proposed to perform genome assembly from normal (haploid or diploid) Hi-C data [Selvaraj et al., 2013,
Marie-Nelly et al., 2014, Dudchenko et al., 2017], to our knowledge, none of these methods were applied to
cancer genomes reconstruction with duplicated subsequences. We therefore propose an alternating projec-
tion approach where one of the steps reduces to solving robust seriation. We detail preliminary experimental
results on synthetic data.

2. ROBUST SERIATION

Classical Seriation is written as a feasibility problem: find the permutation that reorders the input matrix
into an Robinson matrix. When A is pre-SR, solving 2-SUM yields this permutation. However, when A is
not pre-SR, the matrix A reordered using the permutation that minimizes 2-SUM may be far from being R.
Robust seriation seeks to find the closest pre-SR matrix to A and reorder it, solving instead

minimize ‖S −ΠAΠT ‖
such that Π ∈ P, S ∈ SR.

(Robust Seriation)

where the variable Π ∈ P is a permutation matrix, the variable S ∈ SR is a strong-R-matrix, and the norm
is typically either the l1 norm on components or the Froebenius norm.

2.1. Application of Seriation to Genome Sequencing. In de novo genome sequencing, a whole DNA
strand is reconstructed from randomly sampled sub-fragments (called reads) whose positions within the
genome are unknown. The genome is oversampled so that all parts are covered by multiple reads with high
probability. Overlap-Layout-Consensus (OLC) is a major assembly paradigm based on three main steps.
First, compute the overlaps between all pairs of read. This provides a similarity matrix A, whose entry
(i, j) measures how much reads i and j overlap (and is zero if they do not). Then, determine the layout
from the overlap information, that is to say find an ordering and positioning of the reads that is consistent
with the overlap constraints. This step, akin to solving a one dimensional jigsaw puzzle, is a key step in the
assembly process. Finally, given the tiling of the reads obtained in the layout stage, the consensus step aims
at determining the most likely DNA sequence that can be explained by this tiling. It essentially consists in
performing multi-sequence alignments.

In the true ordering (corresponding to the sorted reads’ positions along the genome), a given read overlaps
much with the next one, slightly less with the one after it, and so on, until a point where it has no overlap
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with the reads that are further away. This makes the read similarity matrix Robinson and roughly band-
diagonal (with non-zero values confined to a diagonal band). Finding the layout of the reads therefore fits
the Seriation framework. In practice however, there are some repeated sequences (called repeats) along the
genome that induce false positives in the overlap detection tool [Pop, 2004], resulting in non-zero similarity
values outside (and possibly far away) from the diagonal band. The similarity matrix ordered with the
ground truth is then the sum of a Robinson band matrix and a sparse “noise” matrix, as in Figure 2a.

Repeats longer than the overlap length are perhaps the most fundamental issue in genome assembly as
they lead to ambiguous reconstructions. For example, consider the sequence ARBRCRD, where A,B,C,D,R
are subsequences and R is repeated three times. The overlap constraints arising from this sequence are
identical to those of ARCRBRD, therefore the overlap constraints are not sufficient to uniquely determine
the layout. Recently, long-reads sequencers such as PacBios SMRT and Oxford Nanopore Technology
(ONT) spurred a renaissance in assembly by enabling sequencing reads over 10kbp (kilo basepairs) long,
resolving many small repeats [Koren and Phillippy, 2015]. However, their error rate is high (∼ 15%). Thus,
many assemblers include a correction module in a preprocessing step, which can help in separating repeats
when the repeated copies slightly differ [Pop, 2004]. They also use statistical models on the data generation
in order to filter out the overlaps that are likely to be repeat-induced, and retrospectively inspect the overlap
graph for potential errors in a greedy fashion, until the graph is “cleaned” and contains as few ambiguities
for reconstruction as the model allows for [Koren et al., 2017, Li, 2016]. When there are ambiguities, the
ambiguous reads are simply removed and the obtained assembly is fragmented.

While most of these state of the art methods deal with repeats through complex pipelines involving
heuristics and additional information on the data, Recanati et al. [2017] developed an assembler based on
seriation which only uses the overlap-based similarity matrix A to find the layout, computing it with the
spectral algorithm (1). Yet, the presence of repeats often corrupts that ordering, as we illustrate in Figure 2.
To overcome this issue, the method also ends up removing overlaps from the graph, yielding fragmented
assemblies.

Here, we seek to apply Robust Seriation to genome sequencing, dealing with the repeats in a principled
manner. We writeMn(δ, s) the set of matrices in {0, 1}n×n that are the sum of a band matrix of bandwidth δ
and a sparse out-of-band matrix with s non-zero elements,

Definition 2.1. A ∈ {0, 1}n×n belongs toMn(δ, s) iff it is symmetric and satisfies Aij = 1 for all (i, j)
such that |i− j| ≤ δ, and nnz(A) =

(
n+ (2n− 1)δ − δ2

)
+ s.

Here nnz(A) is the number of non-zero elements of A, and the first term in the sum is the total number
of elements in the bands. This means in particular s ≤ n2 −

(
n+ (2n− 1)δ − δ2

)
(the total number of

non-zeros cannot exceed n2). In this setting, we wish to find an ordering in which most pairs of similar
elements are nearby. The 2-SUM objective can perform poorly here, since it strongly penalizes orderings
with non-zero values far away from the diagonal, even when there is a small number of them, as we can see
in Figure 2. Reducing this penalty on outliers is the goal of the robust seriation methods detailed below.

2.2. Robust 2-SUM. Given A ∈ Sn, Robust Seriation seeks to find a pre-SR matrix that is as close to A as
possible. Instead of searching directly for a perturbation of A that is pre-SR, we search for a perturbation
of A that yields a low 2-SUM score, solving

minimize
∑n

i,j=1 Sij |πi − πj |2 + λ‖A− S‖1
such that π ∈ P, S ∈ S+.

(R2S(λ))

where S+ is the set of symmetric matrices with non-negative entries, and we use the l1 norm on the difference
between A and S to enforce sparsity in errors. Here, λ is a parameter that controls the deviation of S
from A. The sum is separable and the minimization in S is closed form. Indeed, for a given (i, j), the
function Sij → Sij∆

2
ij + λ|Sij − Aij | is piecewise linear, with slope ∆2

ij − λ for Sij ≤ Aij , and ∆2
ij + λ

for Sij ≥ Aij , and is therefore minimal at Sij = Aij if ∆2
ij ≤ λ and Sij = 0 otherwise (recall that Sij is
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(A) Ground truth (B) 2SUM

FIGURE 2. Similarity matrix from a subset of Oxford Nanopore reads of E. coli in the
ordering given by the ground truth position of the reads along the genome (2a, left), and
the same matrix reordered by minimizing the 2SUM objective (2b, right), which pushes the
out-of-diagonals terms close to the main diagonal and yields a corrupted ordering.

constrained to be non-negative). Hence, R2S(λ) is equivalent to

minimize
∑n

i,j=1Aij min(λ, |πi − πj |2)

such that π ∈ P. (R2SUM(λ))

in the variable π ∈ P . We now show that for stylized genome assembly similarity matrices, if the number
of reads spanning repeated regions is controlled, then solving R2SUM(λ) also solves Robust Seriation.

Proposition 2.2. For s ≤ slim , (n − δ − 1) and A ∈ Sn, if A can be permuted to belong toMn(δ, s),
i.e., if there is Π ∈ Pn : ΠAΠT ∈ Mn(δ, s), then Π solves both Robust Seriation and R2SUM(λ) with
parameter λ = δ2, and the `1 norm in Robust Seriation.

Proof. Let δ, s be two positive integers such that δ ≤ n, s ≤ (n − δ − 1). Without loss of generality,
assume thatA ∈M(δ, s), i.e., Π = I, the identity permutation (otherwise, we simply factor out the true per-
mutation). First, let us observe that for λ = δ2, I is optimal for R2SUM(λ). Indeed, since A ∈ {0, 1}n×n,
the objective in R2SUM(λ) is the sum of min(δ2, |πi − πj |2) over all indexes (i, j) such that Aij = 1. This
sum can be split into two terms,

fin =
∑

(i,j):Aij=1 , |πi−πj |≤δ

|πi − πj |2,

and

fout =
∑

(i,j):Aij=1 , |πi−πj |>δ

δ2.

For Π = I, the number of terms in fin is maximized since Aij = 1 for all (i, j) such that |i − j| ≤ δ
(A ∈ M(δ, s)). The sum of the number of terms in fin and fout is equal to nnz(A) and is invariant by
permutation (therefore, the number of terms in fout is also minimized for Π = I) Since any term in fin is
smaller than any term in fout, Π = I is optimal for R2SUM(λ) with λ = δ2.

Now, let us see that Π = I is also optimal for Robust Seriation. Given Π, optimizing over S in Robust
Seriation yields SΠ = ProjSR(ΠAΠT ), the projection of ΠAΠT onto the set of strong-R-matrices. Let us
assume that we use the `1 norm in (Robust Seriation). Then, SΠ, the projection in `1 norm of the binary
matrix ΠAΠT , is also binary (see Lemma 7.2 in Supp. Mat.). A sparse, {0, 1} strong-R-matrix is necessarily
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of the form  Sij = 1 if |i− j| ≤ k,
Sij = 0 if |i− j| > k + 1,
Sij ∈ {0, 1} for |i− j| = k + 1,

with the integer k + 1 denoting the bandwidth of S. Given SΠ and the corresponding k, the distance
between ΠAΠT and SΠ appearing in Robust Seriation is separable (whether we use the l1 or Frobenius
norm, since A ∈ {0, 1}n×n) and can be grouped into three terms, according to whether (i, j) is such that
|i − j| > k + 1, |i − j| ≤ k or |i − j| = k + 1. The first term, nout(k) ≥ 0, equals the number of
non-zero elements of ΠAΠT such that |i− j| > k + 1. The second, nin(k) ≥ 0, equals the number of zero
elements of ΠAΠT such that |i− j| ≤ k. The third equals zero, because setting the (k+1)-th diagonal of S
identical to the (k+1)-th diagonal of ΠAΠT does not violate the R property of SΠ, and SΠ is by definition
the strong-R-matrix that minimizes the distance to ΠAΠT . For any Π, if k > δ, the number of non-zeros
elements inside the band of width k being bounded by the number of non-zero elements of A, we have
nin(k) ≥ 2 (n− δ − 1) − s ≥ (n − δ − 1) ≥ s. Similarly, for k ≤ δ, nout(k) ≥ s. For Π = I, as long as
k ≤ δ, nout(k) ≤ s decreases with k and nin(k) = 0. For k = δ, nin(k) = 0 and nout(k) ≤ s (it is equal to
s minus the number of elements in the δ + 1-th diagonal). Thus, Π = I is optimal, and k = δ.

Note that in practice, one has to chose the parameter λ without observing δ before trying to solve
R2SUM(λ). Yet, for matrices A satisfying the hypothesis of 2.2, the number of non-zero values of A
(which is observed even when A is permuted) provides a way to estimate δ. We compute it as the smallest
integer δ such that the number of non-zero elements in a band matrix of size δ is larger than nnz(A). Also
remark that the proof of 2.2 is conservative: it only involves reasoning about the location of non-zero values
of a vectorized version of ΠAΠT . Permuting rows and columns of a matrix adds constraints on the locations
of these non-zero values that we did not take into account.

3. ROBUST SERIATION ALGORITHMS

We compare several methods to address the R2SUM(λ) problem. We describe them in what follows and
provide experimental results in Section 5.

3.1. QAP solvers (FAQ and PHCD). The first strategy is to directly minimize the objective of R2SUM(λ)
using QAP solvers. Indeed, the problem matches QAP(A,B) with Bij = min(λ, |i − j|2). We test the
aforementioned Vogelstein et al. [2011] and Lim and Wright [2016] methods for solving the QAP.

The first, which we refer to as FAQ [Vogelstein et al., 2011], uses the matrix representation of permu-
tations with a relaxation in the convex hull of permutation matrices, B, where the QAP(A,B) objective is
optimized with the conditional gradient (a.k.a. Frank-Wolfe) algorithm. Each step of Frank-Wolfe involves
an assignment problem solved with a Hungarian algorithm [Kuhn, 1955].

The latter, which we refer to as PHCD [Lim and Wright, 2016], uses the sorting-network based repre-
sentation of permutation vectors of Goemans [2015] and performs coordinate descent in the convex hull of
permutation vectors PH.

For completeness, we also used these QAP solvers in the experiments to solve 2-SUM (i.e. QAP(A,B)
with Bij = |i− j|2), and HuberSUM(δ) (Bij = hδ(|i− j|)), which is described below.

3.2. Huber Loss Relaxation of R2SUM(λ). The objective of R2SUM(λ) is not convex. In order to use
convex optimization algorithms, it can be relaxed to its convex envelope, resulting in the following problem,

minimize
∑n

i,j=1Aijhδ(|πi − πj |)
such that π ∈ P. (HuberSUM(δ))

where hδ(x) is the Huber function, which equals x2 when |x| ≤ δ, and δ(2|x| − δ) otherwise.
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3.3. Relaxations in PH. A typical convex relaxation work-flow involves relaxing both the objective func-
tion to its convex envelope, and relaxing the constrained set to its convex hull, in order to use of the arsenal
of convex optimization, including scalable first order methods. Here, we seek to optimize the objective
functions of 2-SUM and HuberSUM(δ), f2SUM and fHuber, on the convex hull of Pn, the polyhedron PHn.

3.3.1. Symmetry Issues. Unfortunately, the solution of a relaxation x̃ ∈ PHn does not necessarily (and
most of the time, not) lie in Pn. To retrieve a solution in Pn, one must project the relaxed solution x̃ onto
the set of permutations Pn, which may be challenging. Here, the flat vector cn , n+1

2 1n ∈ PHn minimizes
f2SUM and fHuber in PHn. Indeed, all its entries being equal, f2SUM(cn) = fHuber(cn) = 0, which is optimal
since these sums involve only non-negative terms. Yet, this optimum is non-informative. Any permutation
π ∈ Pn has the same distance to cn, d =

∑n
i=1(n+1

2 − i)2, thus projecting back cn to Pn is completely
degenerate.

This is illustrated in Figure 3, where PH3 is a salmon-colored hexagone centered around c3 (red circled
dot), and whose vertices are the permutations. PH3 is represented on a planar figure since PHn lies in a
hyperplane of dimension n − 1, Hn = {x ∈ Rn|xT1 = n(n+1)

2 }. Indeed, all permutation vectors have
the same set of elements, hence the same sum, and also the same norm, as one can see from the black
dashed circle of fixed norm in Figure 3 on which all permutations lie. The symmetry of center cn, formally
defined by T (x) − cn = −(x − cn), is visible from the level lines of f2SUM (blue ellipses). The objectives
from 2-SUMand HuberSUM(δ) are invariant under the “flipping” operator T . For instance, the permutation
π = (1, 3, 2)T and its symmetric Tπ = (n + 1)1 − π = (3, 1, 2) are on the same level line. This is the
fundamental reason why the minimum of 2-SUM and HuberSUM(δ) lies in the center, making the basic
convex relaxation in PHn useless.

(3,1,2)

(2,1,3) (1,2,3)

(1,3,2)

(2,3,1)(3,2,1)

FIGURE 3. View of the 3-Permutahedron PH3 (filled polygon) in the 2D plane H3 (or-
thogonal to the vector 13 represented by the red pointing arrow (circled dot)). The blue
ellipses are the level curves of f2SUM. The black dashed circle represents the set of points
having the same norm as the permutation vectors, and the black diamond is the minimizer
of 2-SUM among them. The green (resp. orange) line is where the “good” (resp. “bad”)
tie-breaking constraint π2 + 1 ≤ π3 (resp. π1 + 1 ≤ π3) is active, and the green (resp. or-
ange) diamond is the minimizer of f2SUM on the corresponding constrained set, the triangle
((2, 1, 3), (1, 2, 3), (1, 3, 2)) [resp. ((3, 1, 2), (2, 1, 3), (1, 2, 3))]. The closest permutation
to the green diamond is (2, 1, 3), which is the correct solution (minimizer of f2SUM on
P3), but the orange diamond is closer to (1, 2, 3) because of the anisotropy induced by the
tie-breaking constraint. Figure adapted from Lim and Wright [2014].

To overcome this issue, Fogel et al. [2013], Lim and Wright [2014] employ two strategies. One is to add
a penalty in the objective that increases towards to the center c, e.g., add the concave penalty −µ‖x − c‖2
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to the objective. The other one is to add constraints that keep the center c out of the feasible set, e.g.,
add the tie-breaking constraint π1 + 1 ≤ πn. This resolves the ambiguity about the direction of the or-
dering without removing any permutation from the search space (up to a flip), since, for any permutation
π ∈ P , either π satisfies the constraint, or its symmetric T (π) does. On Figure 3, that tie-breaking con-
straint is active on the orange line, and the constrained set satisfying it is the top-right triangle of PH3,
((2, 1, 3), (1, 2, 3), (1, 3, 2)). We consider methods employing both strategies in what follows.

3.3.2. Frank-Wolfe with tie-breaking constraint (FWTB). The conditional gradient (Frank-Wolfe) algorithm
in PH solves a linear problem at each step, st ∈ argminv∈P{gTt v}, where gt is the gradient at the current
point, and then updates the iterate x(t+1) ← γ x(t) + (1−γ)st, thus keeping a (sparse) convex combination
of points of P as a solution. Here, solving the linear problem boils down to sorting the entries of gt (see
§ 7.1.5). Adding the tie-breaking constraint π1 + 1 ≤ πn slightly modifies the linear minimization without
affecting theO(n log n) algorithmic complexity [Lim and Wright, 2014]. We implemented the Frank-Wolfe
algorithm with tie-break, using away-steps as in Lacoste-Julien and Jaggi [2015]. Interestingly, this method
performed poorly in the experiments. We observed that the tie-break induces a bias in the problem, and
that the choice of the tie-break πi + 1 ≤ πj , 1 ≤ i 6= j ≤ n plays a key role in the performances, as we
illustrate in Figure 3 with the “good” (green) and “bad” (orange) tie-breaks. In Supplementary §7.2, we
provide details about this bias issue, and propose a linear minimization oracle for any tie-break of the form
πi + 1 ≤ πj adapted from the idea of Lim and Wright [2014] in §7.1.5.

3.3.3. Graduated Non-Convexity : Frank-Wolfe Algorithm with Concave Penalty (GnCR and HGnCR). In
Fogel et al. [2013], Lim and Wright [2014], the parameter µ controlling the amplitude of the penalty−µ ‖x−
c‖2 is limited in order to keep the objective convex. Precisely, f2SUM = xTLAx becomes f̃(x) = xTLAx−
µ‖Px‖2 = xT (LA−µP )x, where LA = diag(A1)−A is the Laplacian of A and P = I− 1

n11
T projects

on the subspace orthogonal to 1. To keep the problem convex, µ needs to be smaller than λ2, the smallest
non-zero eigenvalue of LA. Still, for small values of λ2, this may lead to solutions lying close to the center
c up to numerical precision. Also, for fHuber , the convexity is broken for any positive value of µ.

Evangelopoulos et al. [2017a] proposed a graduated non-convexity scheme called GnCR to solve 2-
SUM, where µ is gradually increased in outer iterations of the problem, starting with a small value (µ ≤ λ2)
preserving convexity, and moving towards high values of (µ ≥ λmax) , making the objective concave. This
strategy aims at finding a sequence of solutions to the subproblems that follow a path from near cn (when
the objective is convex) towards a permutation (when it is concave). To solve each subproblem, GnCR uses
the Frank-Wolfe algorithm in PHn without tie-breaking constraint. In Evangelopoulos et al. [2017b], the
approach is extended to a pseudo-Huber loss, thus approximately solving HuberSUM(δ), with a method
called HGnCR. We include both methods in the experiments.

3.3.4. Unconstrained Optimization in Hn with Iterative Bias (UBI). We propose a method where we also
add a penalty to fHuber in order to avoid the center c : f̃Huber(x) = fHuber(x)− µh(x), where h is a penalty
function pushing away from c, but perform unconstrained optimization of f̃Huber, i.e., we no longer restrict
the search space to PHn. Still, if the penalty becomes negligible compared to fHuber(x) when ‖x− c‖ gets
large, the global solution will be bounded, and, up to a scaling of µ, it will lie in PHn.

We use a sigmoidal penalty, hλ,w(x) = 1/
(
1 + exp

(
−λ(x− c)T (w − c)

))
. It breaks the symmetry by

adding a bias in a given direction w. We thus propose an iterative method where each outer iteration t solves
a subproblem biased towards a direction wt = x∗(t−1) given by the previous iteration, using an unconstrained
optimization descent method (LBFGS, implementation from Schmidt [2005]).

The method is summarized in the Supp. Mat., Algorithm S1. We also provide technical details in § 7.1.3.
Importantly, we do not perform unconstrained optimization in Rn but in Hn. However, the hyperplane
Hn can be expressed as an affine transformation of Rn−1, thus we still use unconstrained optimization
techniques (in Rn−1) to optimize f̃Huber inHn (see §7.1.4).

3.4. Relaxations on the Sphere. The spectral algorithm minimizes f2SUM on a sphere of given norm by
computing a second extremal eigenvector, thus resolving the center issue. It is summarized in Algorithm 1
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and the derivation is detailed in Supp. § 7.1.1. Up to a translation and dilatation of this sphere, it is

Algorithm 1 Spectral ordering

Input: Connected similarity matrix A ∈ Rn×n
1: Compute Laplacian LA = diag(A1)−A
2: Compute second smallest eigenvector of LA, x∗

3: Sort the values of x∗

Output: Permutation π : x∗π(1) ≤ x∗π(2) ≤ ... ≤ x∗π(n)

represented by the black dashed circle in Figure 3. However, this was only possible because the 2-SUM
objective takes the form of a quadratic form xTLAx. Optimizing HuberSUM(δ) over a sphere is more
challenging. We propose two methods to address this task.

3.4.1. Spectral Relaxation. We propose to extend the spectral Algorithm 1 to HuberSUM(δ) through the
variational form of the Huber loss (so-called η-trick). The absolute value of a real number can be expressed
as |x| = argminη≥0

x2

η + η. The analog for Huber is, hδ(x) = argminη≥δ
x2

η + η.
We propose an alternating minimization scheme called η-Spectral, based on this variational form and

summarized in Algorithm 2. A detailed description is given in Supp. §7.1.2.

Algorithm 2 η-Spectral Alternate Minimization Scheme for HuberSUM(δ).

Input: A similarity matrix A ∈ S+
n , a maximum number of iterations T .

1: Set t = 0, η(0) = 1n1
T
n .

2: while t ≤ T do

3: Compute π(t) ∈ argminπ∈P

{∑n
i,j=1Aij

(
(πi−πj)2

η
(t)
ij

+ η
(t)
ij

)}
, i.e., π(t) is solution of (2-SUM) for

the matrix A./η where ./ denotes the Hadamard (entrywise) division.

4: Compute η∗ ∈ argmin0≤η≤δ

{∑n
i,j=1Aij

(
(π

(t)
i −π

(t)
j )2

ηij
+ ηij

)}
, i.e., η∗ij = hδ(|π

(t)
i − π

(t)
j |)

5: Update η(t) ← γη(t−1) + (1− γ)η∗.
6: t← t+ 1.
7: end while

Output: A permutation π(T ).

3.4.2. First Order Optimization on Manifold. Finally, we used a manifold optimization toolbox [Boumal
et al., 2014] as a black-box, to which we provide the expression of the objective and gradient of HuberSUM(δ)
and ask for the minimum over the sphere (computed with a trust-regions algorithm). Some additional details
about the formulation of the sphere are given in Supp. §7.1.4.

4. SERIATION WITH DUPLICATIONS

The reformulation of de novo sequencing as a (robust) seriation problem is based on the assumption that,
up to noise, the bins can be reordered to form a long chain. While this hypothesis is relevant when a normal
genome or chromosome is sequenced with long reads, it clearly fails to hold in an important case: cancer
genomes. Indeed cancer cells typically harbour so-called structural variations where large portions of the
genome, up to whole chromosomes, are duplicated or deleted, and where new chromosomes are formed by
fusing two pieces of chromosomes which are not connected in a normal genome. For example, Figure 4
shows the 1D structure of a breast cancer cell line. Different colors correspond to DNA fragments normally
in different chromosomes. Instead of 23 pairs of chromosomes with each pair in a single uniform color,
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FIGURE 4. Structure of a typical cancer genome (breast cancer cell line). Instead of the
standard 23 pairs of chromosomes, cancer cells often harbour large structural variants, such
as changes in copy number and translocations. Reconstructing this 1D map from high-
throughput Hi-C or sequencing data is an important problem that motivates the definition
of seriation with duplications. Figure from Karp et al. [2015].

expected in a normal cell, we observe various mosaics of colors indicating various duplication and fusion
events.

Reconstructing the 1D structure of a cancer genome from experimental data is an important problem.
Besides standard DNA sequencing techniques, an interesting recent development called Hi-C and based on
the chromosome conformation capture (3C) technology allows to measure experimentally the frequency of
physical interactions in 3D between all pairs of positions in the genome [Lieberman-Aiden et al., 2009a].
In short, if we split the full human genome into n bins (of typical length 104 − 106 basepairs each), an
Hi-C experiment produces an n × n interaction matrix A such that Aij is the frequency of interactions
between DNA fragments in bins i and j. Interestingly, most 3D interactions take place between DNA
fragments which are on the same chromosome, and the frequency of 3D interactions tends to decrease with
the distance between the fragments when they are on the same chromosome; hence Hi-C data can be used
to perform genome assembly, using e.g., a seriation algorithm to obtain the layout [Korbel and Lee, 2013].

A Hi-C experiment roughly proceeds as follows. Freeze the DNA in its current 3D conformation, and
collect pairs of DNA fragments that lie close to each other in this spatial conformation. For every such pair
(k, l), map each of the two fragments to a normal reference genome, providing their positions, pk and pl.
Add +1 to the interaction matrix entry Aij corresponding to the two bins i and j that respectively span pk
and pl. This process is repeated to statistically obtain an average proximity (frequency) between two bins.

Because of duplications, deletions and translocations in cancer genome, each bin (defined according to
a normal reference genome) may be included in several fragments of different chromosomes in a cancer
genome, and it may therefore not be possible nor relevant to order the bins. Instead, since it is possible to
estimate from Hi-C data the total number of DNA copies for each bin, it makes more sense to first associate
to each bin a corresponding number of fragments (e.g. two fragments per bin in a normal diploid genome),
and then reconstruct an ordering of fragments into a number of chains to estimate the 1D structure of a
cancer genome (Figure 4).
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The difficulty to apply a seriation algorithm is that Hi-C data provide cumulative information at the bin
level, not at the fragment level. More precisely, if we denote Skl the (unobserved) frequency of interactions
between fragments k and l, respectively extracted from bins bi and bj , what Hi-C measures as interactions
between bi and bj is the sum of Sk′l′ where k′ and l′ are fragments contained in bi and bj , respectively. This
motivates the definition of the seriation with duplication problem formalized below.

4.1. Problem setting. For clarity, let us begin by an example with n = 3, N = 4. Consider a simplified
reference genome split in 3 subsequences, g = (♥,♦,♣). In a cancer genome, the♥ sequence is duplicated
and also appears at the end of the genome. Using the symbol ♥ to denote the duplicated sequence of DNA,
the cancer genome can be written g̃ = (♥,♦,♣,♥). The true interaction matrix between the fragments
(♥,♦,♣,♥) is a SR matrix,

S∗ =

♥ ♦ ♣ ♥


♥ 3 2 1 0
♦ 2 3 2 1
♣ 1 2 3 2
♥ 0 1 2 3

Yet, interactions between (♣,♥) and (♣,♥) are both attributed to (♣,♥) by the Hi-C experiment, resulting
in the following observed interaction matrix and duplication count vector,

A =

♥ ♦ ♣( )♥ 6 3 3
♦ 3 3 2
♣ 3 2 3

, c = (2, 1, 1)T .

Observing A, the sequence we wish to reconstruct is in fact π∗ = (1, 2, 3, 1)T .
Given a matrix A ∈ Sn of similarity between n bins, and a vector c ∈ Nn (the “counts” of the bins), with

total N =
∑n

i=1 ci, Seriation with Duplications aims at finding a sequence π̃ ∈ [1, n]N of N integers such
that i appears ci times in π̃, at positions Li ⊂ [1, N ] with |Li| = ci, and a matrix S ∈ SNR such that

Aij =
∑

k∈Li,l∈Lj

Skl for all i, j ∈ [1, n].

Remark that if c = 1n (the vector of Rn with all entries equal to 1), the problem is equivalent to seriation
and π̃ is a permutation vector.

To represent the subsets {Li}i∈[1,n], we use assignment matrices Z ∈ {0, 1}n×N such that Zik = 1
iff k ∈ Li (as in clustering problems). Such an assignment matrix is linked to the vector-based notation
π̃ ∈ [1, n]N from above through π̃ = ZT (1, 2, . . . , n)T . We write Zc the set of assignment matrices for a
given duplication count vector c ∈ Nn,

Zc =
{
Z ∈ {0, 1}n×N

∣∣ Z1N = c , ZT1n = 1N
}

where N = cT1n, and the constraints indicate that each bin i ∈ [1, n] has ci duplicates, and that each
element k ∈ [1, N ] comes from one single bin. Observe that given an initial assignment matrix Z0 ∈ Zc,
any other Z ∈ Zc can be expressed as Z0 whose columns have been permuted, i.e. there exists Π ∈ PN such
that Z = Z0Π. As in the Seriation formulation, the problem of Seriation with Duplications can be written

find Π ∈ PN , S ∈ SNR
such that Z0ΠSΠTZT0 = A.

(SD)

where Z0 is an initial assignment matrix. Like Seriation, SD may not be feasible. The analog of Robust
Seriation is then written

minimize ‖Z0ΠSΠTZT0 −A‖
such that Π ∈ PN , S ∈ SnR.

(RSD)
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Note again that if c = 1n, thenN = n, Z0 = In, and SD (respectively RSD) is equivalent to Seriation (resp.
Robust Seriation).

4.2. Algorithms. Let us assume that we are able to project on the set of pre-strong-R matrices, that is to
say, given S, we can compute the couple (Π∗, S∗) ∈ P × SR that minimizes ‖ΠRΠT − S‖ (note that the
projection on the set of pre-strong-R matrices is nothing but the Robust Seriation problem). we can then
use alternationg projections to optimize RSD (although the set of pre-strong-R matrices is not convex, so
convergence to a global optimum is not garanteed). We detail this method Algorithm 3.

Algorithm 3 General Alternating Projection Scheme for Seriation with Duplications.

Input: A matrix A ∈ Sn, a duplication count vector c ∈ Nn, a maximum number of iterations T .
1: Set N =

∑n
i=1 ci, Z

(0) ∈ Zc and S(0) = Z(0)T diag(c−1)Adiag(c−1)TZ(0), i.e., S(0)
kl =

Aij

cicj
with

k ∈ Li and l ∈ Lj .
2: while t ≤ T do
3: Compute (Π∗, S∗), solution of (Robust Seriation) for S(t), and set

S(t+ 1
2

) ← S∗
Z(t+1) ← Z(t)Π∗

4: Compute SA, projection of S(t+ 1
2

) on the set of matrices that satisfy Z(t+1)SZ(t+1)T = A, and set
S(t+1) ← SA

5: t← t+ 1.
6: if Z(t+1) = Z(t) then
7: break
8: end if
9: end while

Output: A matrix S(T ), an assignment matrix Z(T )

In fact, we can use any method presented in Section 2 to solve the projection step 3 in Algorithm 3. In
our experiments here, we use η-spectral and Uncons, which are the most efficient, and spectral as a baseline.
From the permutation Π∗ obtained by, e.g., solving HuberSUM(δ) with η-Spectral, we compute S∗ by doing
a `1 projection of Π∗S

(t)ΠT
∗ onto SR through linear programming. Indeed, the membership to SR can be

described by a set of linear inequalities. We can also add upper bounds on the matrix entries belonging to
a given diagonal, if we have a priori knowledge on the law by which the entries decrease when moving
away from the diagonal, which is the case for Hi-C genome reconstruction. We detail these steps in the
Supplementary Material, § 7.3.1. Projecting onto the set of matrices satisfying linear equality constraints
in step 4 can also be done with a convex programming solver, but the problem is actually separable on the
values (i, j) ∈ [1, n]× [1, n] and has a closed form solution detailed in the Supplementary Material, § 7.3.2.

5. NUMERICAL EXPERIMENTS

In this section, we test the algorithms detailed above on both synthetic and real data sets.

5.1. Robust Seriation.

5.1.1. Synthetic data. We performed experiments with matrices fromMn(δ, s) with n = 100, 200, 500,
δ = n/10, n/20, and s/slim = 0.5, 1, 2.5, 5, 7.5, 10, with s is the number of out-of-band terms as in
Definition 2.1 and slim = (n − δ − 1) is the value appearing in Proposition 2.2, where R2SUM(λ) and
Robust Seriation coincide when s ≤ slim. In Table 1, we show the seriation results of the different methods
described in §3. When an algorithm can be used for 2-SUM, but also with R2SUM(λ) (or HuberSUM(δ),
respectively), we pre-pend -H (or -R, resp.) to its name in the Huber (or R-2SUM, resp.) corresponding
row of the Table . In Table 2, we show the Kendall-τ score for different values of s/slim. For a given set of
parameters (n, δ, s), we generated 100 experiments with random locations for the out-of-band entries. The
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TABLE 1. Kendall-τ , HuberSUM(δ), R2SUM(λ), Robust Seriation (with Froebenius
norm) scores for the different methods for n = 200, δ = 20, and s/slim = 5. The re-
sults are averaged over 100 instances of A ∈ Mn(δ, s). The first seven methods are used
with the 2-SUM loss, the six middle ones with the HuberSUM(δ) loss, where δ was cho-
sen following the rule described at the end of §2.2, and the two last middle ones with the
R2SUM(λ) loss. and Some scores are scaled to simplify the table.

KENDALL-
τ

HUBER
×1e−6

R2SUM
×1e−6

DIST2R 2SUM
×1e−6

TIME (S)

SPECTRAL 0.86 ±0.06 7.76 ±0.61 2.67 ±0.19 73.6 ±5.3 7.7 ±0.4 3.54E-01
GNCR 0.87 ±0.15 7.21 ±0.40 2.47 ±0.17 67.6 ±4.7 7.5 ±0.3 6.99E-01
FAQ 0.89 ±0.08 7.19 ±0.31 2.46 ±0.14 67.6 ±4.1 7.4 ±0.2 3.37E+00

LWCD 0.89 ±0.08 7.18 ±0.30 2.46 ±0.14 67.5 ±3.9 7.4 ±0.2 2.99E+00
UBI 0.89 ±0.06 7.32 ±0.31 2.52 ±0.12 69.5 ±3.3 7.5 ±0.2 1.45E+00

MANOPT 0.86 ±0.06 7.72 ±0.58 2.66 ±0.18 73.2 ±5.2 7.6 ±0.4 3.90E+00

η-SPECTRAL 0.97 ±0.00 6.74 ±0.13 2.03 ±0.02 50.8 ±0.8 7.6 ±0.2 1.07E+00
HGNCR 0.89 ±0.22 6.91 ±0.52 2.11 ±0.26 53.6 ±8.6 7.7 ±0.4 9.06E+00
H-FAQ 0.95 ±0.08 6.84 ±0.32 2.01 ±0.08 49.0 ±3.9 7.7 ±0.3 4.28E-01

H-LWCD 0.94 ±0.09 6.88 ±0.34 2.03 ±0.11 49.7 ±5.0 7.7 ±0.3 3.00E+00
H-UBI 0.97 ±0.00 6.74 ±0.13 2.05 ±0.02 51.4 ±1.1 7.6 ±0.2 3.08E+00

H-MANOPT 0.92 ±0.06 7.05 ±0.39 2.26 ±0.15 59.7 ±5.2 7.6 ±0.3 9.22E+00

R-FAQ 0.95 ±0.10 6.97 ±0.40 1.99 ±0.08 44.9 ±4.3 7.9 ±0.4 3.39E-01
R-LWCD 0.94 ±0.09 7.03 ±0.42 2.01 ±0.09 46.0 ±4.8 8.0 ±0.4 3.32E+00

TABLE 2. Kendall-τ score for different values of s/slim, for the same methods as in Table 1,
and n = 200, δ = 20.

s/sLIM = 0.5 s/sLIM = 1 s/sLIM = 2.5 s/sLIM = 5 s/sLIM = 7.5 s/sLIM = 10

SPECTRAL 0.96 ±0.01 0.95 ±0.01 0.91 ±0.03 0.86 ±0.06 0.84 ±0.06 0.80 ±0.09

GNCR 0.98 ±0.00 0.96 ±0.04 0.93 ±0.07 0.87 ±0.15 0.81 ±0.20 0.80 ±0.18

FAQ 0.98 ±0.00 0.97 ±0.00 0.94 ±0.02 0.89 ±0.08 0.87 ±0.08 0.82 ±0.13

LWCD 0.98 ±0.00 0.97 ±0.00 0.94 ±0.02 0.89 ±0.08 0.87 ±0.08 0.82 ±0.13

UBI 0.97 ±0.00 0.96 ±0.01 0.92 ±0.03 0.89 ±0.06 0.86 ±0.07 0.82 ±0.12

MANOPT 0.97 ±0.00 0.95 ±0.01 0.91 ±0.03 0.86 ±0.06 0.84 ±0.06 0.80 ±0.09

η-SPECTRAL 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.00 0.94 ±0.06

HGNCR 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.89 ±0.22 0.85 ±0.23 0.83 ±0.25

H-FAQ 1.00 ±0.00 1.00 ±0.00 0.99 ±0.01 0.95 ±0.08 0.94 ±0.09 0.91 ±0.13

H-LWCD 1.00 ±0.00 1.00 ±0.00 0.99 ±0.02 0.94 ±0.09 0.94 ±0.09 0.90 ±0.14

H-UBI 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.01 0.94 ±0.03

H-MANOPT 1.00 ±0.00 0.99 ±0.00 0.97 ±0.02 0.92 ±0.06 0.89 ±0.07 0.84 ±0.10

R-FAQ 1.00 ±0.00 1.00 ±0.00 0.99 ±0.04 0.95 ±0.10 0.94 ±0.10 0.90 ±0.15

R-LWCD 0.99 ±0.00 1.00 ±0.00 0.99 ±0.04 0.94 ±0.09 0.94 ±0.10 0.90 ±0.16

results displayed in Tables 1 and 2 are averaged over these experiments, with the standard deviation given
after the ± sign. The experiments with different values of n and δ exhibit similar trends, as one can see
in Tables S2 and S3. Overall, η-Spect. finds the best ordering, and is also time efficient. Uncons is also
competitive. Some methods such as HGnCR do not perform as good in average, but have a higher standard
deviation over the 100 simulations. They actually perform well on most simulations, but fail on a few ones.
Overall this results in a lower mean Kendall-τ score and a higher standard deviation.
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5.1.2. E. coli genome reconstruction. We performed experiments with real data from Escherichia coli reads
sequenced by Loman et al. [2015] with the Oxford Nanopore Technology MinION’s device. We used the
minimap [Li, 2016] tool that measures the overlap between reads to build the similarity matrix. The resulting
matrix is sparse and of size n ' 104. Removing its smallest values with a threshold can help in the task of
reordering it [Recanati et al., 2017]. We performed a grid search with 24 threshold values linearly spaced in
a reasonable range (500-700) that kept the whole matrix connected. For each of them, we compute

√
λ = δ

from the number of non-zero entries of the matrix as explained in 2.2. We only show the results yielding the
best R2SUM(λ) score in Figure 5.

We only tested the η-Spectral and UnCons methods since they exhibit the best performance on synthetic
data and are scalable (one boils down to computing the highest eigenvalues of a sparse matrix, the other
follows a first order unconstrained optimization scheme). The UnCons method failed to find an approxi-
mately correct ordering. The η-Spectral method outperformed UnCons in the R2SUM(λ) score sense, and
successfully reordered the genome. Nevertheless, it is quite sensitive to variations in the similarity matrix.
Among the 24 threshold parameters used in the grid-search, only a few (the ones with lowest R2SUM(λ)
score) yielded a correct ordering.

Figure 5 displays the ordering found by our method versus one given by mapping the reads to a reference
genome with the BWA sequence alignment tool [Li and Durbin, 2010]. Some reads could not be aligned
to the reference genome with BWA, probably due to high sequencing errors. For these reads, the software
outputs an “infinite” position. This results in the cloud of points located at the top of the figure. Observe
also a small zone where the ordering is reversed, which is zoomed-in in Figure S8b.
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FIGURE 5. Ordering found by η-Spectral vs true ordering (obtained by mapping the reads
to a reference genome with BWA.

5.2. Seriation with Duplication. We performed synthetic experiments in which we generate the data as
follows. We first build a strong-R matrix S of size N , and a random duplication count vector c ∈ Nn such
that N =

∑n
i=1 ci. We generate a random assignment matrix Z ∈ Zc, and the corresponding observed

matrix A = ZSZT . We then test Algorithm 3 by providing it with A and c and comparing its output Zout

and Sout to the ground truth.
Specifically, we compute the relative Froebenius distance between S and Sout, d2R = ‖S−Sout‖F /‖S‖F ,

and we compute a distance between the assignment matrices as follows. For a given bin index i ∈ [1, n]
(i.e. a row Zi), there are ci locations for the non-zeros of the i-th row of Z and of Zout (which can also be
viewed as two subsets Li and Lout

i of [1, N ]). To compute the distance between these positions, we first
14



TABLE 3. Results of synthetic experiments for Seriation with Duplications from matrices
S ∈ MN (δ, s) with n = 200, δ = n/5, s = 0, and various values of N/n, where
the (Robust Seriation) problem is tackled with either Spectral, η-Spectral or H-UBI within
Algorithm 3. From the output Sout and Zout of Algorithm 3 and the ground truth S and
Z from which the data A is generated, D2S is the relative Froebenius distance between S
and Sout, Huber is the (HuberSUM(δ)) loss on S, meanDist, stdDist and medianDist are the
average, standard deviation and median of the distance between the positions assigned to a
index k by Z and Zout (see main text for details). Time is the amount of CPU time elapsed
until convergence of Algorithm 3.

N/n METHOD D2S HUBER MEANDIST STDDIST TIME
(×1e−7) (×1e−3s)

1.33

SPECTRAL 0.53 ±0.08 1.67 ±0.33 11.8 ±3.5 13.2 ±1.7 7.45 ±4.08

η-SPECTRAL 0.12 ±0.06 0.76 ±0.06 0.8 ±0.8 2.4 ±2.2 2.85 ±1.78

H-UBI 0.09 ±0.06 0.74 ±0.05 0.6 ±0.6 1.8 ±1.9 3.99 ±2.76

2

SPECTRAL 0.38 ±0.05 1.48 ±0.26 10.3 ±4.2 10.5 ±2.8 1.30 ±0.25

η-SPECTRAL 0.21 ±0.04 0.99 ±0.12 4.1 ±4.1 6.9 ±3.9 0.50 ±0.19

H-UBI 0.19 ±0.05 0.96 ±0.14 4.0 ±5.8 6.2 ±4.6 0.79 ±0.31

4

SPECTRAL 0.29 ±0.02 1.45 ±0.09 18.4 ±4.5 11.8 ±3.1 1.34 ±0.23

η-SPECTRAL 0.22 ±0.02 1.29 ±0.06 16.3 ±6.8 12.2 ±5.1 0.61 ±0.14

H-UBI 0.22 ±0.02 1.26 ±0.06 15.9 ±7.2 12.0 ±5.6 0.91 ±0.25

compute a matching between the elements of Li and Lout
i using the Hungarian algorithm [Kuhn, 1955].

Then, we compute the distance between each matched pair of elements (k, kout) ∈ Li × Lout
i , and store

the average distance between matching pairs for row i. Supplementary Figures S6 and S7 illustrates this
process. The average over all rows of this average distance is given in Table 3 as meanDist, and we also
provide its standard deviation and median.

In the experiments, we built dense strong-R, Toeplitz matrices S where the entries follow a power law
of the distance to the diagonal, Skl = |k − l|−γ , which is consistent with the observed frequency of intra-
chromosomal interactions [Lieberman-Aiden et al., 2009b]. We used N = 200 and tried several values for
the exponent γ and the ratioN/n, namely γ ∈ {0.1, 0.5, 1} andN/n ∈ {1.33, 2, 4}. The results are shown
in Tables 4, S5, S6, and some qualitative results are shown in Figure S2. We also conducted experiments
with sparse, band matrices S ∈ MN (δ, s) as in Section 2. The results are shown in Tables 3, S7, S8, and
some qualitative results are shown in Figure S3. The η-Spectral method works best for dense matrices, and is
outperformed by H-UBI for maatrices inMN (δ, s). We observe that, as expected, the recovered assignment
Zout is closer to Z when N/n is smaller. However, the D2S scores and the qualitative Figures S2 and S3
suggest that for large N/n, the recovered matrix Sout may be close to S although the assignment is not
well recovered. Intuitively, this means the problem is degenerate, with several assignment matrices roughly
leading to the same matrix S, and the algorithm finds one of these.

6. CONCLUSION

We introduced the Robust Seriation problem, which arises in e.g. de novo genome assembly. We show
that for a class of similarity matrices modeling those observed in genome assembly, the problem of Ro-
bust Seriation is equivalent to a modified 2-SUM problem. This modified problem can be relaxed, with an
objective function using a Huber loss instead of the squared loss present in 2-SUM. We adapt several relax-
ations of permutation problems to this 2-SUM problem with Huber loss and also introduce new relaxations,
including the η-Spectral method, which is computationally efficient and performs well in our experiments.
Notably, it successfully reorders a bacterial genome from third generation sequencing data. Finally, we in-
troduced the framework of Seriation with Duplications, which is a generalization of Robust Seriation, with
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TABLE 4. Results of synthetic experiments for Seriation with Duplications from dense,
strong-R matrices of size n = 200, with the same metrics and methods as in Table 3, with
γ = 0.5.

N/n METHOD D2S HUBER MEANDIST STDDIST TIME
(×1e−7) (×1e−2s)

1.33

SPECTRAL 0.25 ±0.04 1.36 ±0.03 6.1 ±1.8 7.9 ±1.6 8.74 ±4.85

η-SPECTRAL 0.15 ±0.02 1.30 ±0.01 2.2 ±0.7 3.7 ±1.1 6.12 ±4.84

H-UBI 0.24 ±0.04 1.35 ±0.03 5.5 ±1.6 7.3 ±1.4 11.06 ±7.56

2

SPECTRAL 0.27 ±0.02 1.41 ±0.02 9.5 ±1.6 8.4 ±1.3 7.47 ±3.20

η-SPECTRAL 0.22 ±0.02 1.37 ±0.02 6.6 ±1.5 6.7 ±1.9 7.89 ±3.89

H-UBI 0.26 ±0.02 1.40 ±0.02 9.0 ±1.5 8.1 ±1.2 10.09 ±4.90

4

SPECTRAL 0.18 ±0.01 1.35 ±0.01 14.4 ±2.8 8.7 ±2.7 6.53 ±1.90

η-SPECTRAL 0.18 ±0.01 1.35 ±0.01 14.3 ±2.9 8.9 ±2.9 7.59 ±2.28

H-UBI 0.19 ±0.01 1.35 ±0.01 14.8 ±2.5 8.8 ±2.1 8.62 ±2.46

the aim of analyzing Hi-C data from cancer genomes. We show promising qualitative results on synthetic
data.
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7. SUPPLEMENTARY MATERIAL

7.1. Seriation and Robust Seriation Algorithms.

7.1.1. Spectral ordering algorithm. The spectral ordering algorithm [Atkins et al., 1998] is the baseline for
solving Seriation. It is closely related to the well-known spectral clustering algorithm [Von Luxburg, 2007].
For any vector x, the objective in (2-SUM) reads

n∑
i,j=1

Aij (xi − xj)2 = xTLAx (1)

where LA = diag(A1)−A is the Laplacian matrix of A. This means that the 2-SUM problem amounts to

min
π∈P

πTLAπ

where π is a permutation vector. The most aggressive relaxation to the problem would be to fully drop the
constraints π ∈ P and solve the unconstrained problem,

min
x∈Rn

xTLAx

The solution to this relaxation is x∗ = 0, for which the objective achieves the minimum 0 (note that from
the expression of (1), LA is positive semi-definite, since A has non-negative entries). Projecting x∗ on Pn is
a degenerate problem : all permutation vectors are at the same distance from 0 (i.e., they all have the same
norm, since they all have the same set of values). Some additional constraints are thus necessary to make
the relaxation useful. Since all permutation vectors have the same norm c = ‖π‖ (in other words, they all
belong to a sphere Σn), a slightly more refined relaxation is to optimize over that sphere,

min
x : ‖x‖=c

xTLAx

This problem is no other than an eigenvector problem. Its solution is x∗ = c1n, which also achieves the
minimum 0 (see the expression from (1) when all xi are equal). Again, this optimum is non-informative.
Any permutation π has the same distance to x∗, d =

∑n
i=1(c− i)2, thus projecting back x∗ to Pn is totally

degenerate. This can be viewed geometrically on Figure 3. Now, we can add an orthogonality constraint to
the smallest eigenvector, 1,

min
x : ‖x‖=c, x⊥1

xTLAx

It still is an eigenvector problem. The solution is the second smallest eigenvector, called the Fiedler vector. A
permutation is recovered from this eigenvector by sorting its coefficients (which is impossible for 1): given
x = (x1, x2, ..., xn), the spectral algorithm outputs a permutation π such that xπ(1) ≤ xπ(2) ≤ ... ≤ xπ(n).
This procedure is summarized as Algorithm 1.

7.1.2. Spectral Relaxation for Robust Seriation. We describe here the method η-Spectral, for reordering a
matrix into an approximate R-matrix. The absolute value of a real number x ∈ R can be expressed as the
solution of an minimization problem over a real variable η,

|x| = argmin
η≥0

x2

η
+ η

Similarly, the Huber function defined by

hδ(x) =

{
x2 if |x| ≤ δ,
δ(2|x| − δ) otherwise

can be expressed as

hδ(x) = argmin
0≤η≤δ

x2

η
+ η
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Using this variational form, we can write HuberSUM(δ) as an optimization problem over variables π and
η ∈ Rn×n,

minimize
∑n

i,j=1Aij

(
(πi−πj)2

ηij
+ ηij

)
such that π ∈ P,

0 ≤ ηij ≤ δ, for all i, j.
(η-HuberSUM)

The objective in η-HuberSUM is jointly convex in (π, η) (sum and combination of linear functions with
quadratic over linear). The constraint set for η is convex, and although P is not, it can be relaxed to
PH. However we found empirically that an alternate minimization scheme that is not based on convex
optimization but rather exploits the efficiency of the spectral algorithm shows good performances. We
present it in Algorithm 2. We use the spectral algorithm to (approximately) solve (2-SUM) in step 3. Here,
γ is a parameter that controls the influence of the previous iterates of η, the case γ = 0 is just plain alternate
minimization. In practice, we evaluate the objective of (HuberSUM(δ)) for A and π(t) at each iteration, and
keep the iterate π with the lowest score.

7.1.3. Unconstrained optimization with Iterative Bias (UBI). We propose an iterative method where each
outer iteration t solves a subproblem biased towards a direction x∗(t−1) given by the previous iteration, with
an unconstrained optimization descent method (instead of Frank-Wolfe), in Algorithm S1. The bias is added
in order to avoid the trivial minimum in the center of PH.

Algorithm S1 Iterative scheme with biased unconstrained optimization inHn.

Input: An objective function f , an initial bias direction π(0) ∈ Pn, an increasing bias function h : R→ R,
a maximum number of outer iterations T , an optimization algorithm A.

1: Set t = 0
2: while t < T do
3: Compute

x
(t+1)
∗ ∈ argmin

x∈Hn

{
f(x)− h(xTx

(t)
∗ )
}

using algorithm A.

4: Set π(t+1) = argsortx
(t+1)
∗

5: t← t+ 1.
6: end while

Output: A permutation π(T ).

In practice, f is the objective from 2-SUM or HuberSUM(δ), and h is a scaled sigmoid function,

h(t) =
1

1 + exp(−λt)
.

The sigmoid function is non convex but smooth. It is also bounded, so the optimum of
{
f(x)− h(xTπ(t))

}
is always finite with f = f2SUM and f = fHuber.

Figure S1 illustrates the iterative procedure. The colored crosses indicate the minima of the sequence of
biased functions. The last one (with the level lines) is biased towards the optimum. Empirically, we found
better results by using π(t) rather than x(t)

∗ in step 3 of Algorithm S1, which is what we eventually used
in the experiments. Optimization of f in Hn is done through unconstrained optimization in Rn−1 of the
composition of f with an affine transformation described in the following paragraph (§7.1.4).

7.1.4. Implementation detail : from Rn−1 toHn. The idea of the methods UBI (§ 7.1.3) and Manopt is to re-
lax the set of permutations Pn to the whole space Rn, or to the sphere Σn =

{
x ∈ Rn : ‖x‖22 =

∑n
i=1 i

2
}

,
respectively. However, we have seen in § 3.3.1 and Figure 3 that the set of permutation lie in a hyperplane
of dimension n−1,Hn = {x ∈ Rn|xT1 = n(n+1)

2 } (which simply means that all permutation vectors have
the same sum).
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(3,1,2)

(2,1,3) (1,2,3)

(1,3,2)

(2,3,1)(3,2,1)

FIGURE S1. Illustration of Algorithm S1 in the 3-Permutahedron PH3 (filled polygon,
same representation as in Figure 3). The colored crosses (from flashy green (right) to red
(left)) represent the solutions x(t)

∗ obtained at the outer loops of the algorithm, and the
associated colored arrows in the center point towards the associated bias that was used at
iteration t. In blue are the level lines of

{
f(x)− h(xTx

(t)
∗ )
}

with f = f2SUM and t = 5

(red arrow).

Thus, we compute a basis of Hn and use an affine transformation from Rn−1 to Hn such that 0n−1

corresponds to cn = (n + 1)/21n ∈ Hn. In practice, we used, U = (u(1), . . . , u(n−1)) ∈ Rn×n−1, e.g.,
u(j) = ũ(j)

‖ũ(j)‖ , with 
ũ

(j)
i = 0 if i < j,
ũ

(j)
j = −j
ũ

(j)
i = 1 if i > j,

The vectors {u(j)}1≤j≤n−1 are orthonormal and are all orthogonal to 1n. Any point x ∈ Hn can be written
as x = A(y) , Uy + cn with y ∈ Rn−1. For any f : Rn → R, we define fHn : Rn−1 → R by
fHn(y) = f(Uy + cn) in order to perform unconstrained optimization (UBI) on fHn . The intersection of
the sphere Σn withHn, represented by the black dashed circle in Figure 3, is the transformation of a sphere
Σ̃n−1 by A, so we used (Manopt) with fHn on a sphere in Rn−1 in the experiments.

7.1.5. Frank-Wolfe with Tie-Break (FWTB) : Linear Minimization Oracle. The conditional gradient (Frank-
Wolfe) algorithm is suited to optimization in PHn since the linear minimization oracle (LMO) performed at
each iteration boils down to sorting the entries of a vector g ∈ Rn (hence, it has a computational complexity
of O(n log n)). Specifically, the LMO solves,

minimize
∑n

i=1 πigi
such that π ∈ PHn

(LMO)

where gi is the i-th entry of the gradient of the loss function. This linear form is minimized on a vertex of
PH, i.e. on a permutation π∗. Let σ ∈ Pn be a permutation that sorts the entries of g by decreasing order,
such that gσ1 ≥ . . . ≥ gσn , then π∗ is defined by π∗σ1 = 1, . . . , π∗σn = n.

The method (FWTB) adds a tie-breaking constraint (e.g., π1 + 1 ≤ πn) in order to break the symmetry
and exclude the center cn from the feasible set, as suggested by Lim and Wright [2014]. Yet, while Fogel
et al. [2013], Lim and Wright [2014] proposed convex optimization methods that could incorporate any
such linear constraint into the problem seamlessly, if one wants to use Frank-Wolfe in the restriction of PH
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where the tie-break is satisfied, the LMO has to be modified. The new LMO must solve,
minimize

∑n
i=1 πigi

such that
{
π ∈ PHn,
πi + 1 ≤ πj .

(LMO-tb)

where we let 1 ≤ i 6= j ≤ n be the tie-break indexes (in Fogel et al. [2013], Lim and Wright [2014], i = 1
and j = n). Lim and Wright [2014] propose an algorithm for solving LMO that preserves the O(n log n)
complexity of the LMO. We describe in Algorithm S2 a slightly simplified version of theirs, for any tie-break
indexes 1 ≤ i 6= j ≤ n. We use the matlab-like notation x(i) to denote xi for ease of reading.

Algorithm S2 Minimizing gTπ over PHn with tie-break π(i) + 1 ≤ π(j).

1: g′, σ ← sort g in decreasing order ( i.e., g(σ1) ≥ . . . ≥ g(σn) )
2: for k ← 1 to n− 1 do
3: if g′(k) < g(i)+g(j)

2 then
4: break
5: end if
6: σ−1 ← argsortσ
7: Set z̃ = (1, . . . , k − 1, k + 2, . . . , n)T ∈ Rn−2

8: π(l)← z̃(σ−1(l)) for l ∈ {1, . . . , n}r {i, j}
9: π(i)← k

10: π(j)← k + 1.
11: end for
Output: A permutation π(T ).

Proposition 7.1. Algorithm S2 minimizes gTπ over PHn with tie-break π(i) + 1 ≤ π(j).

Proof. Without loss of generality, let us assume for simplicity that g is already sorted by decreasing value.
Let π∗ be the solution of LMO. If π∗i + 1 ≤ π∗j , then π∗ is also solution of LMO-tb. Otherwise, the solution
of LMO-tb will be a permutation π where the constraint is active : πi+ 1 = πj [Lim and Wright, 2014]. Let
k = πi. There are n− 1 possible values for k : {1, . . . , n− 1}. For a given k, the vector π̃k, the restriction
of π to the n− 2 indexes other than i and j is given by Smith’s rule : it is the concatenation of the remaining
values π̃k = (1, . . . , k − 1, k + 2, . . . , n) (given that g is sorted). Therefore, the permutation π optimal for
LMO-tb is determined by k. Let us note g̃ ∈ Rn−2 the vector g without the two entries corresponding to
indexes i and j, that is to say, if i < j, g̃ = (g1, . . . , gi−1, gi+1, . . . , gj−1, gj+1, . . . , n). To know the optimal
value of k, let us observe the difference between the objective of LMO-tb for k = K and k = K + 1, with
1 ≤ K ≤ n− 2. For a given k, he objective in LMO-tb can be written as the sum g̃T π̃k + kgi + (k + 1)gj .
Let us write the tilde scalar product part first.

g̃T π̃K = 1g̃1 + 2g̃2 + . . .+ (K − 1)g̃K−1 + (K + 2)g̃K + (K + 3)g̃K+1 + . . .+ ng̃n−2

g̃T π̃K+1 = 1g̃1 + 2g̃2 + . . .+ (K − 1)g̃K−1 + Kg̃K + (K + 3)g̃K+1 + . . .+ ng̃n−2

The difference between the objective values for k = K and k = K + 1 is therefore ∆K = 2g̃K − (gi + gj).
Since we assumed g sorted by decreasing order, g̃ also is, and consequently, ∆K decreases with K. The
optimal K∗ is therefore the smallest (first) index k for which g̃k <

(gi+gj)
2 , and if g̃k ≥

(gi+gj)
2 for all

k ∈ {1, . . . , n− 2}, then K∗ = n− 1.

7.2. Frank-Wolfe with Tie-Break (FWTB) is biased. Using a tie-break constraint to break the symmetry
and solve a problem such as 2-SUM or HuberSUM(δ) can perform surprisingly poorly because the tie-break
constraint actually introduces a bias in the problem. To illustrate this, let us focus on the 2-SUM problem.
The loss function is homogeneous,

f2SUM (tx) =
∑
i,j

Aij(txi − txj)2 = t2
∑
i,j

Aij(xi − xj)2 = t2f2SUM (x).
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TABLE S1. Kendall-τ score for different values of s/slim, for the spectral method and
Frank-Wolfe with default and initialized tie-breaks (-I variants), with n = 200, δ = 20.

s/sLIM = 0.5 s/sLIM = 1 s/sLIM = 2.5 s/sLIM = 5 s/sLIM = 7.5 s/sLIM = 10

SPECTRAL 0.96 ±0.01 0.95 ±0.01 0.91 ±0.03 0.86 ±0.06 0.84 ±0.06 0.80 ±0.09

FWTB 0.40 ±0.27 0.33 ±0.27 0.32 ±0.26 0.34 ±0.22 0.28 ±0.21 0.24 ±0.20

H-FWTB 0.50 ±0.31 0.36 ±0.27 0.32 ±0.25 0.32 ±0.22 0.25 ±0.21 0.22 ±0.18

FWTB-I 0.91 ±0.20 0.92 ±0.13 0.84 ±0.19 0.73 ±0.20 0.71 ±0.13 0.64 ±0.15

H-FWTB-I 0.98 ±0.01 0.94 ±0.13 0.86 ±0.15 0.70 ±0.18 0.63 ±0.15 0.57 ±0.17

Similarly, f1SUM (tx) = tf1SUM (x) for t > 0. Hence, scaling down a given vector x, e.g., letting x← 1
2x,

reduces the objective function but does not add information about the optimal permutation (the projection
on the set of permutations is the same for both vectors). What we are interested in is to find a direction x∗

which is optimal compared to other vectors x of same norm. In the original problem over permutations, all
permutation vectors have the same norm. In the spectral relaxations, we optimize over a sphere. However,
when we relax to PH, the most prominent descent direction of the function is towards the center. The
tie-breaking constraint prevents iterates reaching the center, but it adds a bias in a given direction because
not all points saturating the tie-breaking contraint have the same norm nor the same distance to the center.
On the set of points in PHn where the tie-break is active, e.g., {x ∈ PHn | x1 + 1 ≤ xn}, the point
c̃ = c+ en− 1

n1 has a squared distance to c and `2 norm : ‖c̃− c‖22 ' 1, ‖c̃‖22 ' n3

4 , whereas a permutation
π that satisfies the constraints has a distance to c that scales in n3 and a larger norm : ‖π − c‖22 ' n3

12 ,
‖π‖22 ' n3

3 . Therefore, although the direction c̃ may not be optimal for 2-SUM (compared to other vectors
of same norm), the minimizer of 2-SUM with tie-break may be closer to the direction of c̃ than to the optimal
one. This is what we observe in Figure 3 for the bad (orange, top-right triangle) tie-break.

When n becomes large, this may actually lead to numerical precision issues. Indeed, the n−1 first entries
of c̃ are equal. When the optimum x∗ in the tie-break-constrained PH gets close to c̃, the variations among
the n− 1 first entries of x∗ also shrink and the precision required to sort them (in order to project back onto
the set of permutations) may become too high.

In Figure 3, we also display a good (green, top-left triangle) tie-break. In practice, although there are(
n
2

)
non-redundant choices for the indexes i and j constituting a tie-breaking constraint πi + 1 ≤ πj , we

can use the solution πspectr. of the cheap, spectral ordering (Algorithm 1) to find a good candidate tie-break.
Specifically, chose i ∈ argminπspectr. and j ∈ argmaxπspectr..

The performances of FWTB with the naive (i = 1, j = n) and spectral-initialized tie-breaking strategies
are compared to that of the basic spectral Algorithm 1 in Table S1 (a -I is appended to the algorithm name
for the spectral-initialized tie-break results), with the same experimental setup as in Section 2 with matrices
inMn(δ, s).

We can see that using a default tie-breaking constraint performs very poorly on average. Using the
solution of the spectral algorithm to define the tie-breaking constraint significantly improves the performance
compared to using a default tie-break. Still, it does not outperform the spectral algorithm except in a very
low noise setting.

7.3. Seriation with Duplication Algorithms. We now detail algorithmic solutions to several subproblems
required by seriation with duplications.

7.3.1. Projection on SR (step 3 of Algorithm 3). In step 3 of Algorithm 3, we wish to compute (Π∗, S∗),
solution of (Robust Seriation) for S(t). To do so, we can use one of the algorithms presented in Section 2.
However, these algorithms do not address the problem of Robust Seriation directly. Rather, they seek to find
a permutation that is optimal for a objective function which coincides with Robust Seriation for the specific
class ofMn(δ, s) matrices. Two problems arise then. First, in our Seriation with Duplication setting (SD),
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the matrices may not fit the classMn(δ, s), especially when the matrix S to be recovered is dense (and not
a band matrix). Second, the output of the algorithm is a permutation Π∗, but what we are really interested in
step 3 of Algorithm 3 is the matrix S∗ ∈ SNR that is the closest to S(t). To approximate S∗ ∈ SNR , we first use
one of the methods introduced in Section 2 to find a permutation Π∗ that makes Π∗S

(t)ΠT
∗ as close to SNR as

possible. Still, in general the permuted matrix Π∗S
(t)ΠT

∗ will not be in SNR . We then project Π∗S
(t)ΠT

∗ onto
SNR , which is solved with linear programming. Indeed, the projection, in `1 norm for example of a matrix
S, reads

minimize
∑N

i,j=1 |Rij − Sij |
such that R ∈ SNR .

(R-proj)

We can also use a Froebenius norm and consider the sum of squares instead of the absolute differences. We
would then use quadratic programming, as we have then a quadratic objective with linear constraints. The
constraint R ∈ SNR can indeed be written as linear constaints on R. Specifically, we consider the vectorized
forms of S and R, s, r ∈ RN2

, which are the concatenation of the columns of S and R, respectively. Impos-
ing R ∈ SR is equivalent to saying that ru ≤ rv for all pairs of indexes (u, v) such that the corresponding
subscripts for u are on a diagonal higher than those for v. There is one linear constraint per pair (u, v) (and
there are N(N−1)

2 pairs), but we can reduce the number of constraints by adding slack variables {λk}1≤k≤N
and impose that for each element ru on a given diagonal k, 1 ≤ k ≤ N − 1, ru ≤ λk+1 and ru ≥ λk.
Finally, we can use a priori knowledge on how the values are supposed to decrease when moving away
from the diagonal (e.g., a power law Sij = |i − j|−γ as in our experiments, which is consistent with the
intra-chromosomal frequency observed in Lieberman-Aiden et al. [2009b]), to upper bound the values λk.
We end up with the following optimization problem over the variable (r, λ)T ,

minimize ‖r − s‖

such that C

(
r
λ

)
≤ 0,

0 ≤ λ ≤ b

(R-proj)

where the matrix C contains the strong-R constraints expressed between r and λ, and the vector b ∈ RN
contains upper bounds on the values of λk, e.g., bk = k−γ .

7.3.2. Projection on duplication constraints (step 4 of Algorithm 3). In step 4 of Algorithm 3, we wish to
compute the projection of S on the set of matrices X that satisfy ZXZT = A, that is to say, solve the
following optimization problem on variable X ,

minimize
∑N

k,l=1 |Skl −Xkl|
such that ZXZT = A.

(dupli-proj)

The constraints impose that for each pair (i, j) ∈ [1, n]× [1, n], Aij =
∑

k∈Li,l∈Lj
Xkl, where Li ⊂ [1, N ]

is the set of indexes assigned to i through the assignment matrix Z. The objective is also separable, since

N∑
k,l=1

|Skl −Xkl| =
n∑

i,j=1

∑
k∈Li,l∈Lj

|Skl −Xkl|

We can then solve separately, for each pair (i, j), the subproblem,

minimize
∑

k∈Li,l∈Lj
|Skl −Xkl|

such that Aij =
∑

k∈Li,l∈Lj
Xkl.

(dupli-proj(i,j))

For a given pair (i, j), Li and Lj are known (through Z), and if we consider the vectorization (stacking of
the columns into a single vector) of the submatrices XLi,Lj and SLi,Lj , denoted x and s respectively, and
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Algorithm S3 Minimizing ‖s− x‖ with non-negativity (x ≥ 0) and sum (xT1 = a) constraints.

Input: A target vector s ∈ Rp+, a value a ≥ 0.
1: s′, σ ← sort s in decreasing order ( i.e., s(σ1) ≥ . . . ≥ s(σn) )
2: for k ← 1 to n do
3: x̃′(k)← s′(k) + 1

k (a−
∑k

i=1 s
′(i))

4: if x̃′(k) < 0 then
5: k ← k − 1
6: break
7: end if
8: end for
9: x′(j) = s′(j) + 1

k (a−
∑k

i=1 s
′(i)) for j = 1, . . . , k

10: x′(j) = 0 for j > k
11: x(σj) = x′(j) for j = 1, . . . , p.
Output: A vector x ∈ Rp+.

denote a = Aij , the subproblem on the variable x reads

minimize ‖s− x‖
such that xT1 = a,

x ≥ 0.
(dupli-proj(i,j))

We impose non-negativity of the coefficients of X since this is part of the definition of similarity matrices.
The above general problem of approximating a vector with a non-negative vector of fixed norm can be solved
exactly when the norm is the `2 norm (this solution is optimal for the `1 norm too) with Algorithm S3.

7.4. E. coli experiment. We expand the discussion about the results of η-Spectral on data from E. coli
DNA reads. Although we observe a few isolated outiers in Figure 5, we believe their presence would almost
not change the consensus sequence derived from the layout in a full OLC pipeline. Moreover, remark that
the ground truth position obtained by mapping the reads to a reference genome is not error-proof (especially
in repeated regions).

While Subfigure S8a strictly shows the ordering found by the η-Spectral algorithm versus the one obtained
by mapping the reads to a reference genome with BWA, Figure 5 includes two operations on the ordering
to make the plot easier to read. First, note that this bacterial genome is not linear but circular, thus the
reference ordering is defined up to a shift. In Figure 5, we chose the shift so as to match the ordering found
by η-Spectral as much as possible, in order to visualize more easily whether it resembles a straight line.
Specifically, we replaced the vector (π1, π2, . . . , πn−1, πn) with (πk, πk+1, . . . , πn−1, πn, π1, π2, . . . , πk−1),
with k chosen as the breakpoint appearing on Figure S8a. Then, we flipped the permutation in order to
observe a line of slope +1, i.e. we applied a flip πi ← n + 1 − πi, which is an operation that leaves the
objective invariant as noted in § 3.3.1.

Finally, subfigure S8b zooms in a part of Subfigure 5 where the ordering is wrong. However, the ordering
is not random in this zone, it is rather “upside-down”. Therefore, in the “upside-down” part, the local
ordering is correct (recall that the ordering is defined up to a shift). It is likely that the elements in the
“upside-down” part are weakly connected to the rest of the reads (meaning that they only overlap with some
other reads at their very edges), resulting in few inconsistencies in the global ordering when this subset is
flipped.
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(A) Ordering found by η-Spectral vs ref.
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(B) Zoom in wrongly reordered part

FIGURE S8. Ordering found by the η-Spectral algorithm versus the one obtained by map-
ping the reads to a linearized reference genome (left), and a zoom in a wrongly reordered
part (right). In S8a, we do not observe a straight line because the genome is circular, there-
fore a permutation is “correct” up to a shift. The points scattered in the top are reads that
could not be mapped to the reference genome.

7.5. Projecting on binary strong-R matrices.

Lemma 7.2. Given a binary symmetric matrix S ∈ {0, 1}n×n, it has a binary projection in `1 norm onto
the set of strong-R-matrices, that is to say, there exists a solution R ∈ {0, 1}n×n to the following problem,

minimize
∑n

i,j=1 |Rij − Sij |
such that R ∈ SR.

(R-proj)

Proof. Consider a given diagonal 0 ≤ k ≤ n − 1 in the lower triangle. The strong-R constraints are
lower and upper bounds on the values of Rij on the k-th diagonal. Let mk , mini,j : |i−j|=k Rij , and
Mk , maxi,j : |i−j|=k Rij . Recall that S has only ones and zeros on the k-th diagonal. From R-proj, Rij
has values in [0, 1]. Clearly, a solution of R-proj satisfies,

Rij =

{
M|i−j|, if Sij = 1

m|i−j|, if Sij = 0.

Let 0 ≤ pk ≤ n − k denote the number of ones on the k-th diagonal of S, and 0 ≤ zk = n − k − pk the
number of zeros on the k-th diagonal of S. Summing over all the diagonals of the matrix, the objective in
R-proj can be written as,

‖S −R‖1 = p0 (1−M0) + z0 (m0 − 0) + 2
∑n−1

k=1 pk (1−Mk) + zk (mk − 0) (2)

where we have separated the main diagonal from the others that are coupled with their symmetric. Now, we
have that 0 ≤ mk ≤Mk ≤ 1 for all 0 ≤ k ≤ n− 1. The strong-R constraints also require that Mk ≤ mk−1

for 1 ≤ k ≤ n− 1. The minimizer of R-proj saturates these constraints (Mk = mk−1), and equation (2) can
finally be written as,

‖S −R‖1 = p0 (1−M0) + z0m0 + 2
∑n−1

k=1 pk (1−mk−1) + zkmk

= p0 (1−M0) + (z0 − 2p1)m0 + 2
∑n−1

k=1 (zk − pk+1)mk +
∑n−1

k=1 pk.

where by convention pn , 0. R-proj seeks to minimize this objective on the variables (M0,m0,m1, . . . ,mn−1),
under the constraints 1 ≥M0 ≥ m0, mk−1 ≥ mk for 1 ≤ k ≤ n− 1, and mk ≥ 0 for 0 ≤ k ≤ n− 1. All
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in all, we can rewrite R-proj as a linear program over the variable x = (M0,m0,m1, . . . ,mn−1) ∈ Rn+1,

minimize cTx
such that Ax ≤ b , x ≥ 0.

where

A =


−1
1 −1

1 −1
. . . . . .

1 −1

 , b =


−1
0
...
0

 , c =


−p0

(z0 − 2p1)
2(z1 − p2)

...
2(zn−1 − pn)

 .

Now, observe that b ∈ Rn+1 has integer entries, and that A ∈ R(n+1)×(n+1) is totally unimodular. It
follows that it has an integral solution x∗ [Papadimitriou and Steiglitz, 1998][Th. 13.3]. From the previous
considerations, the corresponding matrix R ∈ SR has entries in {0, 1}.

7.6. Supplementary Tables.

7.6.1. Robust Seriation. Tables S2 and S3 display the Kendall-τ correlation between the ordering found
and the ground truth for different values of s/slim and of n, with δ = n/10 and δ = n/20 respectively. For
given values of δ/n and s/slim, the problem is easier (i.e., the methods perform better) when n increases.

7.6.2. Seriation with Duplications. Tables S4, S5 and S6 display additional results of Seriation with Dupli-
cation (with the same scores as in Table 4) on dense matrices expanding thoses from §5.2. Tables S7, S8
expand the results from §5.2 on matrices inMN (δ, s).
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TABLE S2. Kendall-τ score for different values of s/slim, for the same methods as in Ta-
ble 1, for different values of n (namely, 100, 200, 500), and δ = n/10 (namely, 10, 20, 50).

s/sLIM = 0.5 s/sLIM = 1 s/sLIM = 2.5 s/sLIM = 5 s/sLIM = 7.5 s/sLIM = 10

n = 100

SPECTRAL 0.91 ±0.08 0.83 ±0.13 0.72 ±0.19 0.62 ±0.21 0.55 ±0.20 0.48 ±0.21

GNCR 0.92 ±0.13 0.82 ±0.23 0.70 ±0.26 0.62 ±0.26 0.55 ±0.25 0.48 ±0.24

FAQ 0.93 ±0.09 0.85 ±0.17 0.72 ±0.24 0.61 ±0.25 0.55 ±0.25 0.48 ±0.23

LWCD 0.93 ±0.10 0.85 ±0.17 0.72 ±0.24 0.61 ±0.25 0.55 ±0.25 0.48 ±0.23

UBI 0.92 ±0.09 0.85 ±0.16 0.73 ±0.24 0.62 ±0.24 0.56 ±0.24 0.49 ±0.23

MANOPT 0.92 ±0.08 0.84 ±0.13 0.72 ±0.19 0.62 ±0.21 0.55 ±0.20 0.48 ±0.21

n = 100

η-SPECTR. 0.99 ±0.00 0.98 ±0.00 0.89 ±0.17 0.74 ±0.25 0.65 ±0.26 0.56 ±0.26

HGNCR 0.98 ±0.06 0.96 ±0.14 0.80 ±0.25 0.65 ±0.30 0.54 ±0.29 0.49 ±0.29

H-FAQ 0.97 ±0.09 0.90 ±0.16 0.80 ±0.25 0.70 ±0.29 0.64 ±0.28 0.55 ±0.26

H-LWCD 0.97 ±0.09 0.90 ±0.16 0.80 ±0.25 0.70 ±0.29 0.65 ±0.28 0.55 ±0.28

H-UBI 0.99 ±0.00 0.98 ±0.04 0.88 ±0.20 0.75 ±0.25 0.62 ±0.26 0.54 ±0.25

H-MANOPT 0.98 ±0.05 0.91 ±0.14 0.78 ±0.23 0.65 ±0.24 0.56 ±0.21 0.48 ±0.21

n = 100
R-FAQ 0.96 ±0.09 0.91 ±0.16 0.80 ±0.25 0.70 ±0.28 0.65 ±0.27 0.54 ±0.28

R-LWCD 0.95 ±0.09 0.89 ±0.17 0.78 ±0.24 0.69 ±0.28 0.62 ±0.28 0.53 ±0.28

n = 200

SPECTRAL 0.96 ±0.01 0.95 ±0.01 0.91 ±0.03 0.86 ±0.06 0.84 ±0.06 0.80 ±0.09

GNCR 0.98 ±0.00 0.96 ±0.04 0.93 ±0.07 0.87 ±0.15 0.81 ±0.20 0.80 ±0.18

FAQ 0.98 ±0.00 0.97 ±0.00 0.94 ±0.02 0.89 ±0.08 0.87 ±0.08 0.82 ±0.13

LWCD 0.98 ±0.00 0.97 ±0.00 0.94 ±0.02 0.89 ±0.08 0.87 ±0.08 0.82 ±0.13

UBI 0.97 ±0.00 0.96 ±0.01 0.92 ±0.03 0.89 ±0.06 0.86 ±0.07 0.82 ±0.12

MANOPT 0.97 ±0.00 0.95 ±0.01 0.91 ±0.03 0.86 ±0.06 0.84 ±0.06 0.80 ±0.09

n = 200

η-SPECTR. 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.00 0.94 ±0.06

HGNCR 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.89 ±0.22 0.85 ±0.23 0.83 ±0.25

H-FAQ 1.00 ±0.00 1.00 ±0.00 0.99 ±0.01 0.95 ±0.08 0.94 ±0.09 0.91 ±0.13

H-LWCD 1.00 ±0.00 1.00 ±0.00 0.99 ±0.02 0.94 ±0.09 0.94 ±0.09 0.90 ±0.14

H-UBI 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.01 0.94 ±0.03

H-MANOPT 1.00 ±0.00 0.99 ±0.00 0.97 ±0.02 0.92 ±0.06 0.89 ±0.07 0.84 ±0.10

n = 200
R-FAQ 1.00 ±0.00 1.00 ±0.00 0.99 ±0.04 0.95 ±0.10 0.94 ±0.10 0.90 ±0.15

R-LWCD 0.99 ±0.00 1.00 ±0.00 0.99 ±0.04 0.94 ±0.09 0.94 ±0.10 0.90 ±0.16

n = 500

SPECTRAL 0.98 ±0.00 0.98 ±0.00 0.96 ±0.00 0.95 ±0.01 0.94 ±0.01 0.93 ±0.01

GNCR 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.00 0.95 ±0.05

FAQ 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.00 0.95 ±0.00

LWCD 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.00 0.95 ±0.00

UBI 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.01 0.95 ±0.00 0.94 ±0.00

MANOPT 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.95 ±0.00 0.94 ±0.01 0.93 ±0.01

n = 500

η-SPECTR. 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00

HGNCR 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00

H-FAQ 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00

H-LWCD 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00

H-UBI 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00

H-MANOPT 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.98 ±0.01 0.97 ±0.01

n = 500
R-FAQ 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

R-LWCD 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.01
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(B) Sout for N/n = 1.33
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FIGURE S2. Original matrix S (with parameter γ = 0.5) from which the data (A, c) is
generated (A), output Sout recovered from (A, c) by Algorithm 3 (used with η-spectral)
with N/n = 1.33 (B) and with N/n = 4 (C). The meanDist metric is 0.98 for N/n = 1.33
(B) and 10.40 for N/n = 4 (C)
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50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(B) Sout for N/n = 1.33
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FIGURE S3. Original matrix S (with parameters δ = n/5, s = 0) from which the data
(A, c) is generated (A), output Sout recovered from (A, c) by Algorithm 3 (used with η-
spectral) with N/n = 1.33 (B) and with N/n = 4 (C). The meanDist metric is 1.03 for
N/n = 1.33 (B) and 7.26 for N/n = 4 (C)
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2 ) at step 3 of Alg 3
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FIGURE S4. Three steps of Algorithm 3 for a dense matrix S (with parameter γ = 0.5,
n = 200, N/n = 4).

29



50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(A) Π∗S
(t)ΠT

∗ at step 3 of Alg 3

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(B) S(t+ 1
2 ) at step 3 of Alg 3
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(C) SA at step 4 of Alg 3

FIGURE S5. Three steps of Algorithm 3 for a sparse matrix S with parameters n = 200,
δ = 40, s = 0, N/n = 4.
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FIGURE S6. Mean distance computation between two assignments I = {1, 8, 11, 20} and
J = {3, 8, 13, 17} corresponding to the non-zeros in a given row i of two assignment
matrices Z1 and Z2. Before computing the δi, a matching between I and J is performed.
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FIGURE S7. Plot of the true assignment matrix Z (blue diamonds) vs the one obtained
with Algorithm 3 (black crosses) for an experiment with a sparse matrix S with n = 200,
δ = n/5. For each row, we compute the mean distance between the non-zero represented
by the blue diamonds and the black crosses, as illustrated in Figure S6. The average over all
rows of this mean distance is of 1.03 here. Left: assignment matrices. Right: Histogram of
the mean distance between the matched non-zero locations (distance between black crosses
and associated blue diamond), among the rows i of the two assignment matrices plotted on
the left.
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TABLE S3. Kendall-τ score for different values of s/slim, for the same methods as in Ta-
ble 1, for different values of n (namely, 100 , 200 , 500), and δ = n/20 (namely, 5 , 10 , 25).

s/sLIM = 0.5 s/sLIM = 1 s/sLIM = 2.5 s/sLIM = 5 s/sLIM = 7.5 s/sLIM = 10

n = 100

SPECTRAL 0.46 ±0.24 0.39 ±0.21 0.31 ±0.20 0.25 ±0.16 0.22 ±0.15 0.20 ±0.14

GNCR 0.43 ±0.28 0.37 ±0.21 0.32 ±0.21 0.25 ±0.16 0.25 ±0.14 0.20 ±0.13

FAQ 0.45 ±0.25 0.39 ±0.22 0.31 ±0.21 0.25 ±0.17 0.23 ±0.15 0.22 ±0.14

LWCD 0.45 ±0.26 0.39 ±0.22 0.31 ±0.21 0.25 ±0.17 0.23 ±0.15 0.22 ±0.14

UBI 0.45 ±0.26 0.40 ±0.22 0.32 ±0.21 0.26 ±0.17 0.23 ±0.15 0.23 ±0.14

MANOPT 0.46 ±0.25 0.40 ±0.21 0.31 ±0.20 0.25 ±0.16 0.22 ±0.15 0.21 ±0.14

n = 100

η-SPECTR. 0.65 ±0.33 0.50 ±0.28 0.37 ±0.24 0.28 ±0.19 0.25 ±0.16 0.23 ±0.16

HGNCR 0.53 ±0.31 0.43 ±0.26 0.36 ±0.22 0.25 ±0.17 0.22 ±0.15 0.18 ±0.14

H-FAQ 0.48 ±0.26 0.41 ±0.23 0.33 ±0.23 0.28 ±0.17 0.24 ±0.16 0.23 ±0.15

H-LWCD 0.49 ±0.27 0.42 ±0.23 0.34 ±0.23 0.28 ±0.18 0.24 ±0.16 0.23 ±0.16

H-UBI 0.60 ±0.35 0.52 ±0.29 0.40 ±0.26 0.28 ±0.19 0.25 ±0.16 0.23 ±0.15

H-MANOPT 0.54 ±0.30 0.44 ±0.25 0.33 ±0.22 0.25 ±0.16 0.22 ±0.15 0.21 ±0.14

n = 100
R-FAQ 0.48 ±0.25 0.41 ±0.22 0.33 ±0.21 0.26 ±0.18 0.23 ±0.15 0.23 ±0.16

R-LWCD 0.47 ±0.24 0.41 ±0.22 0.32 ±0.21 0.25 ±0.16 0.22 ±0.15 0.22 ±0.15

n = 200

SPECTRAL 0.72 ±0.21 0.59 ±0.24 0.49 ±0.26 0.42 ±0.23 0.35 ±0.20 0.31 ±0.18

GNCR 0.69 ±0.29 0.56 ±0.31 0.45 ±0.26 0.37 ±0.27 0.34 ±0.22 0.32 ±0.23

FAQ 0.72 ±0.24 0.60 ±0.26 0.49 ±0.26 0.41 ±0.24 0.35 ±0.21 0.33 ±0.20

LWCD 0.72 ±0.24 0.60 ±0.26 0.49 ±0.27 0.42 ±0.25 0.36 ±0.21 0.33 ±0.20

UBI 0.73 ±0.26 0.59 ±0.28 0.50 ±0.28 0.42 ±0.25 0.35 ±0.21 0.33 ±0.21

MANOPT 0.72 ±0.22 0.59 ±0.24 0.49 ±0.26 0.42 ±0.24 0.35 ±0.20 0.31 ±0.18

n = 200

η-SPECTR. 0.99 ±0.00 0.91 ±0.21 0.65 ±0.33 0.52 ±0.30 0.41 ±0.25 0.37 ±0.23

HGNCR 0.73 ±0.33 0.61 ±0.32 0.50 ±0.31 0.44 ±0.29 0.39 ±0.25 0.35 ±0.22

H-FAQ 0.75 ±0.24 0.63 ±0.27 0.53 ±0.29 0.46 ±0.27 0.38 ±0.23 0.35 ±0.23

H-LWCD 0.75 ±0.23 0.62 ±0.27 0.53 ±0.29 0.46 ±0.27 0.38 ±0.23 0.35 ±0.22

H-UBI 0.94 ±0.19 0.82 ±0.30 0.69 ±0.34 0.57 ±0.32 0.46 ±0.28 0.40 ±0.23

H-MANOPT 0.84 ±0.23 0.67 ±0.29 0.54 ±0.29 0.45 ±0.26 0.36 ±0.21 0.31 ±0.19

n = 200
R-FAQ 0.75 ±0.23 0.62 ±0.26 0.53 ±0.28 0.45 ±0.27 0.38 ±0.23 0.33 ±0.23

R-LWCD 0.74 ±0.22 0.62 ±0.25 0.51 ±0.27 0.44 ±0.25 0.37 ±0.23 0.33 ±0.21

n = 500

SPECTRAL 0.96 ±0.03 0.93 ±0.05 0.86 ±0.11 0.76 ±0.18 0.71 ±0.19 0.67 ±0.21

GNCR 0.90 ±0.21 0.80 ±0.28 0.71 ±0.31 0.60 ±0.31 0.62 ±0.29 0.55 ±0.31

FAQ 0.98 ±0.03 0.95 ±0.06 0.87 ±0.13 0.76 ±0.21 0.72 ±0.22 0.67 ±0.24

LWCD 0.98 ±0.03 0.95 ±0.06 0.87 ±0.13 0.76 ±0.21 0.72 ±0.22 0.67 ±0.24

UBI 0.97 ±0.02 0.95 ±0.04 0.88 ±0.14 0.76 ±0.24 0.71 ±0.25 0.67 ±0.25

MANOPT 0.97 ±0.03 0.94 ±0.06 0.86 ±0.12 0.76 ±0.18 0.72 ±0.19 0.67 ±0.22

n = 500

η-SPECTR. 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.96 ±0.12 0.88 ±0.18 0.81 ±0.24

HGNCR 1.00 ±0.00 0.96 ±0.18 0.87 ±0.28 0.80 ±0.32 0.70 ±0.36 0.75 ±0.33

H-FAQ 0.99 ±0.02 0.98 ±0.06 0.91 ±0.13 0.82 ±0.21 0.78 ±0.23 0.74 ±0.26

H-LWCD 0.99 ±0.03 0.97 ±0.07 0.90 ±0.13 0.80 ±0.21 0.77 ±0.23 0.72 ±0.25

H-UBI 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.98 ±0.07 0.95 ±0.13 0.92 ±0.17

H-MANOPT 1.00 ±0.00 0.99 ±0.01 0.93 ±0.12 0.81 ±0.21 0.76 ±0.22 0.72 ±0.25

n = 500
R-FAQ 0.99 ±0.03 0.97 ±0.07 0.90 ±0.13 0.80 ±0.21 0.76 ±0.23 0.72 ±0.25

R-LWCD 0.98 ±0.03 0.96 ±0.06 0.89 ±0.13 0.80 ±0.21 0.76 ±0.23 0.71 ±0.25
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TABLE S4. Results for Seriation with Duplications on dense, strong-R matrices (with sev-
eral values of the parameter γ and N/n), and no noise added.

γ N/n METHOD D2S HUBER (X1E-7) MEANDIST STDDIST TIME (X1E-2S)

0.1

1.33

SPECTRAL 0.03 ±0.00 8.33 ±0.01 3.0 ±0.7 5.5 ±1.0 5.14 ±1.36

η-SPECTR. 0.03 ±0.00 8.33 ±0.01 3.0 ±0.7 5.5 ±1.0 5.75 ±1.41

H-UBI 0.02 ±0.00 8.33 ±0.01 2.8 ±0.7 5.2 ±1.0 6.37 ±1.60

2

SPECTRAL 0.03 ±0.00 8.37 ±0.01 7.1 ±1.0 7.5 ±1.0 5.05 ±1.05

η-SPECTR. 0.03 ±0.00 8.37 ±0.01 7.1 ±1.0 7.6 ±1.0 5.41 ±1.07

H-UBI 0.03 ±0.00 8.37 ±0.01 7.0 ±1.0 7.5 ±0.9 6.14 ±1.17

4

SPECTRAL 0.02 ±0.00 8.35 ±0.01 12.8 ±2.2 7.8 ±1.8 5.41 ±2.03

η-SPECTR. 0.02 ±0.00 8.35 ±0.01 12.9 ±2.3 7.9 ±2.1 5.86 ±2.16

H-UBI 0.03 ±0.00 8.35 ±0.01 13.1 ±1.4 7.9 ±1.4 7.05 ±2.36

0.5

1.33

SPECTRAL 0.25 ±0.04 1.36 ±0.03 6.1 ±1.8 7.9 ±1.6 8.74 ±4.85

η-SPECTR. 0.15 ±0.02 1.30 ±0.01 2.2 ±0.7 3.7 ±1.1 6.12 ±4.84

H-UBI 0.24 ±0.04 1.35 ±0.03 5.5 ±1.6 7.3 ±1.4 11.06 ±7.56

2

SPECTRAL 0.27 ±0.02 1.41 ±0.02 9.5 ±1.6 8.4 ±1.3 7.47 ±3.20

η-SPECTR. 0.22 ±0.02 1.37 ±0.02 6.6 ±1.5 6.7 ±1.9 7.89 ±3.89

H-UBI 0.26 ±0.02 1.40 ±0.02 9.0 ±1.5 8.1 ±1.2 10.09 ±4.90

4

SPECTRAL 0.18 ±0.01 1.35 ±0.01 14.4 ±2.8 8.7 ±2.7 6.53 ±1.90

η-SPECTR. 0.18 ±0.01 1.35 ±0.01 14.3 ±2.9 8.9 ±2.9 7.59 ±2.28

H-UBI 0.19 ±0.01 1.35 ±0.01 14.8 ±2.5 8.8 ±2.1 8.62 ±2.46

1

1.33

SPECTRAL 0.61 ±0.02 2.10 ±0.13 15.2 ±2.4 15.2 ±1.4 9.04 ±8.61

η-SPECTR. 0.30 ±0.06 1.48 ±0.08 2.2 ±1.4 3.1 ±1.5 15.35 ±7.54

H-UBI 0.30 ±0.12 1.50 ±0.15 2.4 ±2.1 3.1 ±2.1 26.12 ±2.96

2

SPECTRAL 0.60 ±0.03 2.46 ±0.11 19.3 ±6.6 12.6 ±4.9 1.78 ±0.31

η-SPECTR. 0.42 ±0.04 1.91 ±0.13 10.3 ±8.6 9.8 ±6.4 1.20 ±0.51

H-UBI 0.49 ±0.05 2.06 ±0.14 10.4 ±7.9 8.5 ±6.0 2.57 ±0.21

4

SPECTRAL 0.37 ±0.02 1.81 ±0.05 19.3 ±4.7 11.6 ±4.4 1.96 ±0.50

η-SPECTR. 0.34 ±0.01 1.78 ±0.04 20.0 ±6.9 13.2 ±6.1 1.00 ±0.34

H-UBI 0.36 ±0.01 1.80 ±0.04 18.9 ±5.2 11.5 ±4.8 2.25 ±0.65

32



TABLE S5. Results for Seriation with Duplications on dense, strong-R matrices (with sev-
eral values of the parameter γ and N/n), and noiseProp=5%.

γ N/n METHOD D2S HUBER (X1E-7) MEANDIST STDDIST TIME (X1E-2S)

0.1

1.33

SPECTRAL 0.07 ±0.00 8.36 ±0.01 5.7 ±0.9 7.2 ±1.3 1.27 ±0.78

η-SPECTR. 0.07 ±0.00 8.36 ±0.01 5.7 ±0.9 7.2 ±1.2 1.39 ±0.80

H-UBI 0.07 ±0.00 8.35 ±0.02 5.2 ±0.9 6.4 ±1.4 1.48 ±0.93

2

SPECTRAL 0.07 ±0.00 8.38 ±0.01 8.5 ±0.8 7.7 ±0.8 6.62 ±4.69

η-SPECTR. 0.07 ±0.00 8.38 ±0.01 8.5 ±0.8 7.7 ±0.9 7.62 ±5.05

H-UBI 0.07 ±0.00 8.37 ±0.01 8.4 ±0.8 7.5 ±0.9 8.75 ±6.02

4

SPECTRAL 0.06 ±0.00 8.35 ±0.01 13.7 ±2.4 7.9 ±2.7 5.15 ±1.49

η-SPECTR. 0.06 ±0.00 8.35 ±0.01 13.8 ±2.3 8.0 ±2.7 5.47 ±1.58

H-UBI 0.06 ±0.00 8.35 ±0.01 13.8 ±2.2 7.9 ±2.7 6.17 ±1.58

0.5

1.33

SPECTRAL 0.27 ±0.04 1.37 ±0.03 6.7 ±1.8 8.4 ±1.6 1.60 ±0.58

η-SPECTR. 0.17 ±0.02 1.31 ±0.01 2.6 ±0.7 4.1 ±1.0 1.61 ±0.78

H-UBI 0.25 ±0.03 1.36 ±0.02 5.6 ±1.5 7.3 ±1.4 2.01 ±0.74

2

SPECTRAL 0.28 ±0.02 1.41 ±0.02 9.7 ±1.5 8.5 ±1.2 1.07 ±0.58

η-SPECTR. 0.23 ±0.02 1.37 ±0.02 6.7 ±1.4 6.6 ±1.9 1.08 ±0.64

H-UBI 0.26 ±0.02 1.40 ±0.02 9.0 ±1.5 8.1 ±1.3 1.46 ±0.91

4

SPECTRAL 0.19 ±0.01 1.35 ±0.01 14.4 ±2.4 8.4 ±2.1 6.21 ±1.85

η-SPECTR. 0.19 ±0.01 1.35 ±0.01 14.2 ±2.8 8.7 ±2.6 6.72 ±1.72

H-UBI 0.19 ±0.01 1.35 ±0.01 14.8 ±2.6 8.8 ±2.2 7.86 ±1.89

1

1.33

SPECTRAL 0.62 ±0.02 2.10 ±0.13 15.3 ±2.4 15.3 ±1.3 9.20 ±8.34

η-SPECTR. 0.32 ±0.06 1.49 ±0.08 2.3 ±1.1 3.2 ±1.3 18.45 ±6.40

H-UBI 0.32 ±0.11 1.50 ±0.16 2.6 ±2.3 3.2 ±2.3 26.30 ±3.52

2

SPECTRAL 0.61 ±0.03 2.46 ±0.12 19.4 ±6.7 12.6 ±4.9 2.13 ±0.66

η-SPECTR. 0.42 ±0.04 1.92 ±0.13 10.6 ±8.8 10.1 ±6.6 1.52 ±0.75

H-UBI 0.49 ±0.05 2.06 ±0.15 10.3 ±7.9 8.4 ±6.1 3.43 ±0.80

4

SPECTRAL 0.37 ±0.02 1.80 ±0.05 19.0 ±4.9 11.2 ±4.6 1.44 ±0.30

η-SPECTR. 0.35 ±0.01 1.79 ±0.04 20.0 ±6.8 13.2 ±6.0 0.77 ±0.17

H-UBI 0.37 ±0.02 1.80 ±0.05 18.9 ±4.9 11.3 ±4.4 1.83 ±0.41
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TABLE S6. Results for Seriation with Duplications on dense, strong-R matrices (with sev-
eral values of the parameter γ and N/n), and noiseProp=10%.

γ N/n METHOD D2S HUBER (X1E-7) MEANDIST STDDIST TIME (X1E-2S)

0.1

1.33

SPECTRAL 0.13 ±0.00 8.36 ±0.01 8.0 ±0.7 8.0 ±1.0 1.26 ±0.74

η-SPECTR. 0.13 ±0.00 8.36 ±0.01 7.9 ±0.7 7.9 ±1.1 1.23 ±0.83

H-UBI 0.13 ±0.00 8.35 ±0.02 7.1 ±0.7 6.5 ±1.0 1.43 ±0.87

2

SPECTRAL 0.12 ±0.00 8.38 ±0.01 11.1 ±0.9 8.4 ±0.9 6.44 ±4.31

η-SPECTR. 0.12 ±0.00 8.38 ±0.01 11.0 ±0.8 8.4 ±0.9 7.08 ±4.86

H-UBI 0.12 ±0.00 8.38 ±0.01 10.8 ±0.9 8.2 ±1.0 8.49 ±5.50

4

SPECTRAL 0.11 ±0.00 8.35 ±0.01 15.6 ±2.8 8.2 ±2.9 5.54 ±1.55

η-SPECTR. 0.11 ±0.00 8.35 ±0.01 15.5 ±2.5 8.3 ±3.0 6.19 ±2.23

H-UBI 0.11 ±0.00 8.35 ±0.01 15.5 ±2.0 8.2 ±1.8 6.98 ±2.38

0.5

1.33

SPECTRAL 0.31 ±0.03 1.38 ±0.02 7.5 ±1.6 9.0 ±1.4 1.73 ±0.50

η-SPECTR. 0.21 ±0.02 1.31 ±0.01 3.0 ±0.6 4.3 ±1.1 1.67 ±0.79

H-UBI 0.29 ±0.03 1.36 ±0.02 6.1 ±1.6 7.5 ±1.5 2.06 ±0.81

2

SPECTRAL 0.29 ±0.02 1.41 ±0.02 9.8 ±1.4 8.5 ±1.2 1.08 ±0.59

η-SPECTR. 0.25 ±0.02 1.38 ±0.02 7.0 ±1.3 6.9 ±1.9 0.90 ±0.57

H-UBI 0.28 ±0.02 1.40 ±0.02 9.3 ±1.5 8.1 ±1.3 1.25 ±0.69

4

SPECTRAL 0.21 ±0.01 1.35 ±0.01 14.6 ±2.6 8.5 ±2.2 6.65 ±2.23

η-SPECTR. 0.21 ±0.01 1.35 ±0.01 14.4 ±3.3 8.8 ±3.1 7.54 ±2.72

H-UBI 0.21 ±0.01 1.35 ±0.01 15.1 ±2.5 8.8 ±2.2 8.95 ±3.53

1

1.33

SPECTRAL 0.64 ±0.02 2.10 ±0.13 15.4 ±2.3 15.4 ±1.3 8.93 ±8.70

η-SPECTR. 0.35 ±0.05 1.52 ±0.07 2.5 ±1.1 3.4 ±1.3 20.46 ±7.24

H-UBI 0.36 ±0.10 1.54 ±0.16 2.9 ±2.4 3.4 ±2.4 29.20 ±3.68

2

SPECTRAL 0.61 ±0.03 2.46 ±0.11 19.6 ±6.6 12.9 ±4.8 1.70 ±0.36

η-SPECTR. 0.43 ±0.04 1.92 ±0.13 10.4 ±8.6 9.9 ±6.4 1.18 ±0.54

H-UBI 0.50 ±0.04 2.07 ±0.14 10.6 ±7.8 8.7 ±6.2 2.49 ±0.24

4

SPECTRAL 0.38 ±0.02 1.81 ±0.05 19.7 ±5.2 11.7 ±5.0 1.59 ±0.42

η-SPECTR. 0.36 ±0.01 1.79 ±0.04 20.0 ±6.9 13.1 ±6.0 0.87 ±0.25

H-UBI 0.38 ±0.02 1.80 ±0.05 19.5 ±5.8 11.9 ±5.4 1.85 ±0.43
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TABLE S7. Results for Seriation with Duplications on sparse, strong-R matrices (with sev-
eral values of the parameter s/slim and N/n), and δ = n/5.

s/sLIM N/n METHOD D2S HUBER (X1E-7) MEANDIST STDDIST TIME (X1E-2S)

0

1.33

SPECTRAL 0.53 ±0.08 1.67 ±0.33 11.8 ±3.5 13.2 ±1.7 7.45 ±4.08

η-SPECTR. 0.12 ±0.06 0.76 ±0.06 0.8 ±0.8 2.4 ±2.2 2.85 ±1.78

H-UBI 0.09 ±0.06 0.74 ±0.05 0.6 ±0.6 1.8 ±1.9 3.99 ±2.76

2

SPECTRAL 0.38 ±0.05 1.48 ±0.26 10.3 ±4.2 10.5 ±2.8 1.30 ±0.25

η-SPECTR. 0.21 ±0.04 0.99 ±0.12 4.1 ±4.1 6.9 ±3.9 0.50 ±0.19

H-UBI 0.19 ±0.05 0.96 ±0.14 4.0 ±5.8 6.2 ±4.6 0.79 ±0.31

4

SPECTRAL 0.29 ±0.02 1.45 ±0.09 18.4 ±4.5 11.8 ±3.1 1.34 ±0.23

η-SPECTR. 0.22 ±0.02 1.29 ±0.06 16.3 ±6.8 12.2 ±5.1 0.61 ±0.14

H-UBI 0.22 ±0.02 1.26 ±0.06 15.9 ±7.2 12.0 ±5.6 0.91 ±0.25

0.5

1.33

SPECTRAL 0.52 ±0.08 1.68 ±0.33 11.1 ±3.5 12.9 ±1.8 8.79 ±3.83

η-SPECTR. 0.21 ±0.03 0.87 ±0.06 1.3 ±0.7 2.6 ±2.0 4.15 ±3.10

H-UBI 0.19 ±0.02 0.85 ±0.04 0.9 ±0.5 1.8 ±1.5 5.95 ±4.06

2

SPECTRAL 0.40 ±0.04 1.55 ±0.23 10.3 ±3.8 10.5 ±2.6 1.33 ±0.24

η-SPECTR. 0.24 ±0.03 1.07 ±0.11 4.3 ±4.0 7.0 ±3.9 0.55 ±0.22

H-UBI 0.23 ±0.05 1.06 ±0.16 4.6 ±7.0 6.4 ±5.1 0.76 ±0.33

4

SPECTRAL 0.30 ±0.03 1.50 ±0.09 19.0 ±5.1 12.1 ±3.5 1.35 ±0.19

η-SPECTR. 0.24 ±0.02 1.34 ±0.06 16.3 ±7.1 12.0 ±5.1 0.65 ±0.17

H-UBI 0.24 ±0.02 1.31 ±0.06 15.8 ±7.1 11.8 ±5.6 0.97 ±0.26

1

1.33

SPECTRAL 0.51 ±0.07 1.65 ±0.30 9.9 ±3.1 12.4 ±1.8 1.03 ±0.28

η-SPECTR. 0.26 ±0.02 0.95 ±0.05 1.5 ±0.6 2.7 ±1.9 0.41 ±0.33

H-UBI 0.25 ±0.02 0.94 ±0.04 1.2 ±0.5 2.1 ±1.7 0.59 ±0.72

2

SPECTRAL 0.39 ±0.04 1.51 ±0.18 9.2 ±3.9 10.0 ±2.7 1.24 ±0.25

η-SPECTR. 0.27 ±0.04 1.13 ±0.13 4.5 ±5.2 6.9 ±4.4 0.55 ±0.23

H-UBI 0.26 ±0.04 1.11 ±0.14 4.3 ±6.3 6.3 ±4.7 0.80 ±0.36

4

SPECTRAL 0.30 ±0.02 1.50 ±0.09 18.7 ±5.0 12.1 ±3.3 1.29 ±0.18

η-SPECTR. 0.25 ±0.02 1.37 ±0.06 16.5 ±7.2 12.1 ±5.2 0.64 ±0.20

H-UBI 0.25 ±0.01 1.34 ±0.06 15.4 ±6.6 11.4 ±4.9 0.91 ±0.27

2.5

1.33

SPECTRAL 0.51 ±0.05 1.71 ±0.23 8.1 ±2.4 11.1 ±2.0 1.79 ±1.50

η-SPECTR. 0.35 ±0.01 1.25 ±0.04 1.9 ±0.4 2.7 ±1.4 0.90 ±1.39

H-UBI 0.35 ±0.01 1.24 ±0.04 1.8 ±0.4 2.4 ±1.3 1.20 ±1.48

2

SPECTRAL 0.43 ±0.03 1.69 ±0.13 9.3 ±4.5 10.2 ±3.4 1.24 ±0.22

η-SPECTR. 0.34 ±0.03 1.39 ±0.13 5.1 ±6.3 7.0 ±4.8 0.49 ±0.18

H-UBI 0.34 ±0.04 1.38 ±0.15 5.1 ±7.0 6.3 ±5.1 0.75 ±0.30

4

SPECTRAL 0.36 ±0.02 1.64 ±0.07 19.1 ±5.3 12.1 ±3.7 1.30 ±0.20

η-SPECTR. 0.32 ±0.01 1.52 ±0.06 16.6 ±7.2 12.1 ±5.3 0.64 ±0.15

H-UBI 0.32 ±0.01 1.49 ±0.05 15.6 ±6.3 11.3 ±4.6 0.97 ±0.29

5

1.33

SPECTRAL 0.54 ±0.02 2.01 ±0.09 6.7 ±1.0 9.0 ±1.8 1.08 ±0.14

η-SPECTR. 0.45 ±0.01 1.77 ±0.03 2.7 ±0.3 3.0 ±1.1 0.43 ±0.34

H-UBI 0.45 ±0.01 1.77 ±0.03 2.8 ±0.3 3.1 ±1.0 0.98 ±0.54

2

SPECTRAL 0.49 ±0.02 2.00 ±0.10 9.1 ±5.0 9.5 ±3.5 1.21 ±0.20

η-SPECTR. 0.43 ±0.03 1.83 ±0.11 5.5 ±6.4 6.4 ±4.7 0.45 ±0.14

H-UBI 0.43 ±0.03 1.83 ±0.11 5.5 ±6.2 6.3 ±4.5 0.89 ±0.42

4

SPECTRAL 0.45 ±0.01 1.83 ±0.07 19.7 ±5.3 12.3 ±3.9 1.25 ±0.22

η-SPECTR. 0.43 ±0.01 1.76 ±0.06 17.5 ±7.1 11.8 ±4.9 0.61 ±0.16

H-UBI 0.43 ±0.01 1.74 ±0.05 16.5 ±5.9 11.2 ±4.5 0.87 ±0.29
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TABLE S8. Results for Seriation with Duplications on sparse, strong-R matrices (with sev-
eral values of the parameter s/slim and N/n), and δ = n/10.

s/sLIM N/n METHOD D2S HUBER (X1E-7) MEANDIST STDDIST TIME (X1E-2S)

0

1.33

SPECTRAL 0.85 ±0.04 6.42 ±0.63 29.1 ±14.3 23.4 ±8.1 2.13 ±3.72

η-SPECTR. 0.28 ±0.17 1.86 ±1.13 5.4 ±12.2 6.6 ±8.5 5.67 ±3.65

H-UBI 0.29 ±0.22 2.09 ±1.66 8.5 ±17.2 8.4 ±11.7 10.01 ±5.36

2

SPECTRAL 0.87 ±0.02 1.01 ±0.06 44.7 ±11.9 26.7 ±7.4 9.01 ±13.31

η-SPECTR. 0.49 ±0.10 0.43 ±0.11 26.3 ±17.2 21.1 ±10.8 85.15 ±27.35

H-UBI 0.53 ±0.14 0.52 ±0.21 28.9 ±17.9 22.3 ±11.8 176.26 ±39.43

4

SPECTRAL 0.78 ±0.05 1.19 ±0.10 47.5 ±7.7 21.3 ±5.1 1.04 ±0.62

η-SPECTR. 0.39 ±0.02 0.44 ±0.02 29.6 ±7.2 18.0 ±5.4 0.60 ±0.13

H-UBI 0.50 ±0.17 0.65 ±0.33 33.1 ±10.6 18.6 ±6.0 1.76 ±0.40

0.5

1.33

SPECTRAL 0.86 ±0.04 6.90 ±0.63 29.6 ±14.6 23.7 ±8.3 2.07 ±3.74

η-SPECTR. 0.37 ±0.13 2.38 ±1.09 6.0 ±12.8 7.2 ±9.1 6.62 ±3.44

H-UBI 0.37 ±0.17 2.46 ±1.51 7.6 ±16.0 7.4 ±11.0 10.88 ±4.48

2

SPECTRAL 0.87 ±0.01 1.05 ±0.06 45.1 ±12.4 27.0 ±7.4 8.42 ±3.70

η-SPECTR. 0.51 ±0.09 0.47 ±0.10 27.1 ±17.4 21.8 ±11.4 89.50 ±28.54

H-UBI 0.56 ±0.13 0.58 ±0.21 29.5 ±18.4 22.5 ±12.0 175.28 ±48.61

4

SPECTRAL 0.78 ±0.05 1.23 ±0.11 47.1 ±7.8 20.7 ±5.2 1.08 ±0.60

η-SPECTR. 0.40 ±0.02 0.46 ±0.02 29.9 ±7.1 18.6 ±5.5 0.62 ±0.15

H-UBI 0.49 ±0.16 0.64 ±0.32 31.8 ±9.8 18.2 ±6.1 1.78 ±0.42

1

1.33

SPECTRAL 0.88 ±0.03 7.67 ±0.69 29.4 ±14.3 23.5 ±8.2 1.57 ±3.20

η-SPECTR. 0.42 ±0.11 2.79 ±1.26 5.7 ±12.5 6.6 ±8.9 6.34 ±3.79

H-UBI 0.41 ±0.14 2.81 ±1.45 6.4 ±14.6 6.5 ±10.0 10.22 ±4.59

2

SPECTRAL 0.87 ±0.01 1.14 ±0.06 44.7 ±12.2 26.7 ±7.1 1.53 ±2.76

η-SPECTR. 0.51 ±0.08 0.51 ±0.12 26.1 ±17.7 21.1 ±11.7 8.06 ±2.78

H-UBI 0.58 ±0.13 0.64 ±0.23 29.0 ±18.4 21.6 ±11.9 17.74 ±4.40

4

SPECTRAL 0.75 ±0.06 1.26 ±0.14 44.6 ±7.7 20.5 ±5.2 1.21 ±0.55

η-SPECTR. 0.40 ±0.01 0.48 ±0.02 29.4 ±7.0 18.3 ±6.2 0.63 ±0.16

H-UBI 0.42 ±0.08 0.51 ±0.18 28.8 ±8.6 18.0 ±6.4 1.59 ±0.38

2.5

1.33

SPECTRAL 0.90 ±0.03 9.46 ±0.74 30.2 ±14.5 23.8 ±8.6 1.76 ±3.33

η-SPECTR. 0.51 ±0.05 4.19 ±0.66 3.9 ±8.3 5.1 ±6.2 6.31 ±3.76

H-UBI 0.54 ±0.11 4.58 ±1.53 9.4 ±17.5 8.5 ±12.5 11.94 ±4.72

2

SPECTRAL 0.88 ±0.01 1.33 ±0.06 44.8 ±12.2 26.9 ±7.1 2.28 ±3.51

η-SPECTR. 0.55 ±0.05 0.63 ±0.10 26.0 ±17.3 21.1 ±11.5 7.16 ±2.69

H-UBI 0.61 ±0.11 0.75 ±0.25 28.0 ±18.9 21.2 ±12.5 18.28 ±4.10

4

SPECTRAL 0.72 ±0.06 1.31 ±0.19 41.8 ±8.7 20.6 ±5.4 1.35 ±0.41

η-SPECTR. 0.45 ±0.01 0.55 ±0.03 31.5 ±7.1 19.1 ±5.3 0.62 ±0.16

H-UBI 0.44 ±0.01 0.53 ±0.03 28.2 ±7.9 17.8 ±6.2 1.49 ±0.38

5

1.33

SPECTRAL 0.93 ±0.02 1.33 ±0.09 31.4 ±13.8 24.9 ±8.8 2.60 ±4.09

η-SPECTR. 0.64 ±0.04 0.75 ±0.07 6.5 ±11.3 7.0 ±8.9 6.73 ±4.22

H-UBI 0.68 ±0.10 0.83 ±0.19 12.4 ±18.4 10.6 ±13.2 16.54 ±3.74

2

SPECTRAL 0.88 ±0.01 1.73 ±0.08 44.4 ±11.6 27.0 ±6.9 4.87 ±5.68

η-SPECTR. 0.63 ±0.03 0.87 ±0.08 26.5 ±16.0 21.3 ±10.4 7.03 ±2.69

H-UBI 0.65 ±0.06 0.92 ±0.16 26.0 ±17.9 20.0 ±12.1 19.58 ±2.81

4

SPECTRAL 0.66 ±0.04 1.23 ±0.22 35.4 ±7.3 18.5 ±5.3 1.42 ±0.19

η-SPECTR. 0.57 ±0.01 0.68 ±0.03 30.9 ±5.6 19.0 ±4.9 0.58 ±0.14

H-UBI 0.56 ±0.01 0.66 ±0.03 28.6 ±7.1 17.2 ±5.8 0.94 ±0.29
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