On Nesterov’s Nonsmooth Chebyshev-Rosenbrock Functions

Michael L. Overton
Courant Institute of Mathematical Sciences
New York University

Les Houches, 8 February 2016
<table>
<thead>
<tr>
<th>Yurii Nesterov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Some Nonsmooth Analysis</td>
</tr>
<tr>
<td>Nesterov’s Chebyshev-Rosenbrock Functions</td>
</tr>
<tr>
<td>Other Examples of Behavior of BFGS on Nonsmooth Functions</td>
</tr>
</tbody>
</table>
It seems we first met in 1988 at the Tokyo ISMP. We don’t have a proof of this, but we do have a proof that we were both at the meeting: we both used the beautiful gray bag with the Samurai warrior design for many years, bringing it to other conferences long after everyone else abandoned theirs!
It seems we first met in 1988 at the Tokyo ISMP. We don’t have a proof of this, but we do have a proof that we were both at the meeting: we both used the beautiful gray bag with the Samurai warrior design for many years, bringing it to other conferences long after everyone else abandoned theirs!

We definitely met in 1994 at the Ann Arbor ISMP, where I learned about the Nesterov-Todd primal-dual interior-point algorithm for SDP.
It seems we first met in 1988 at the Tokyo ISMP. We don’t have a proof of this, but we do have a proof that we were both at the meeting: we both used the beautiful gray bag with the Samurai warrior design for many years, bringing it to other conferences long after everyone else abandoned theirs!

We definitely met in 1994 at the Ann Arbor ISMP, where I learned about the Nesterov-Todd primal-dual interior-point algorithm for SDP.

We met again on many subsequent occasions, most notably during very enjoyable extended visits to Louvain-la-neuve in 2004 and 2008.
It seems we first met in 1988 at the Tokyo ISMP. We don’t have a proof of this, but we do have a proof that we were both at the meeting: we both used the beautiful gray bag with the Samurai warrior design for many years, bringing it to other conferences long after everyone else abandoned theirs!

We definitely met in 1994 at the Ann Arbor ISMP, where I learned about the Nesterov-Todd primal-dual interior-point algorithm for SDP.

We met again on many subsequent occasions, most notably during very enjoyable extended visits to Louvain-la-neuve in 2004 and 2008.

Always a great pleasure to interact with this brilliant but modest colleague!
Introduction

Yurii Nesterov

Nonsmooth, Nonconvex Optimization
Example
Methods Suitable for Nonsmooth Functions
Failure of Steepest Descent: Simpler Example
The BFGS Method ("Full" Version)
BFGS for Nonsmooth Optimization
With BFGS
Some Nonsmooth Analysis

Nesterov's Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions
Problem: find x that locally minimizes f, where $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is
Problem: find x that locally minimizes f, where $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is continuous.
Problem: find x that locally minimizes f, where $f : \mathbb{R}^n \to \mathbb{R}$ is

- Continuous
- Not differentiable everywhere, in particular often not differentiable at local minimizers
Nonsmooth, Nonconvex Optimization

Problem: find \(x \) that locally minimizes \(f \), where \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is

- Continuous
- Not differentiable everywhere, in particular often not differentiable at local minimizers
- Not convex
Problem: find \(x \) that locally minimizes \(f \), where \(f : \mathbb{R}^n \to \mathbb{R} \) is

- Continuous
- Not differentiable everywhere, in particular often not differentiable at local minimizers
- Not convex
- Usually, but not always, locally Lipschitz
Problem: find x that locally minimizes f, where $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is

- Continuous
- Not differentiable everywhere, in particular often not differentiable at local minimizers
- Not convex
- Usually, but not always, locally Lipschitz

Lots of interesting applications
Problem: find x that locally minimizes f, where $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is

- Continuous
- Not differentiable everywhere, in particular often not differentiable at local minimizers
- Not convex
- Usually, but not always, locally Lipschitz

Lots of interesting applications

Any locally Lipschitz function is differentiable almost everywhere on its domain. So, whp, can evaluate gradient at any given point.
Problem: find x that locally minimizes f, where $f : \mathbb{R}^n \to \mathbb{R}$ is

- Continuous
- Not differentiable everywhere, in particular often not differentiable at local minimizers
- Not convex
- Usually, but not always, locally Lipschitz

Lots of interesting applications

Any locally Lipschitz function is differentiable almost everywhere on its domain. So, whp, can evaluate gradient at any given point. What happens if we simply use steepest descent (gradient descent) with a standard line search?
Example

Nesterov's Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions

Some Nonsmooth Analysis

The BFGS Method ("Full" Version)

BFGS for Nonsmooth Optimization

With BFGS

Methods Suitable for Nonsmooth Functions

Failure of Steepest Descent: Simpler Example

Example

Steepest descent iterates

$f(x) = 10^*|x_2 - x_1^2| + (1 - x_1)^2$
In fact, it’s been known for several decades that at any given iterate, one should exploit the gradient information obtained at several points, not just at one point. Some such methods:
In fact, it’s been known for several decades that at any given iterate, one should exploit the gradient information obtained at several points, not just at one point. Some such methods:

- Bundle methods (C. Lemaréchal, K.C. Kiwiel, etc.): extensive practical use and theoretical analysis, but complicated in nonconvex case
In fact, it’s been known for several decades that at any given iterate, one should exploit the gradient information obtained at several points, not just at one point. Some such methods:

- **Bundle methods** (C. Lemaréchal, K.C. Kiwiel, etc.): extensive practical use and theoretical analysis, but complicated in nonconvex case

- **Gradient sampling**: an easily stated method with nice convergence theory (J.V. Burke, A.S. Lewis, M.L.O., 2005; K.C. Kiwiel, 2007), but computationally intensive
In fact, it’s been known for several decades that at any given iterate, one should exploit the gradient information obtained at several points, not just at one point. Some such methods:

- **Bundle methods** (C. Lemaréchal, K.C. Kiwiel, etc.): extensive practical use and theoretical analysis, but complicated in nonconvex case
- **Gradient sampling**: an easily stated method with nice convergence theory (J.V. Burke, A.S. Lewis, M.L.O., 2005; K.C. Kiwiel, 2007), but computationally intensive
- **BFGS**: traditional workhorse for smooth optimization, works amazingly well for nonsmooth optimization too, but very limited convergence theory
In fact, it’s been known for several decades that at any given iterate, one should exploit the gradient information obtained at several points, not just at one point. Some such methods:

- **Bundle methods** (C. Lemaréchal, K.C. Kiwiel, etc.): extensive practical use and theoretical analysis, but complicated in nonconvex case
- **Gradient sampling**: an easily stated method with nice convergence theory (J.V. Burke, A.S. Lewis, M.L.O., 2005; K.C. Kiwiel, 2007), but computationally intensive
- **BFGS**: traditional workhorse for smooth optimization, works amazingly well for nonsmooth optimization too, but very limited convergence theory

A completely different approach using randomized gradient-free methods: the first complexity result for nonsmooth, nonconvex optimization (Y. Nesterov and V. Spokoiny, JFoCM, 2015).
Let $f(x) = 6|x_1| + 3x_2$. Note that f is polyhedral and convex.
Failure of Steepest Descent: Simpler Example

Let $f(x) = 6|x_1| + 3x_2$. Note that f is polyhedral and convex.

On this function, using a bisection-based backtracking line search with “Armijo” parameter in $[0, \frac{1}{3}]$ and starting at $\begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}$, steepest descent generates the sequence

$$2^{-k} \begin{bmatrix} 2(-1)^k \\ 3 \end{bmatrix}, \quad k = 1, 2, \ldots,$$

converging to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
Failure of Steepest Descent: Simpler Example

Let $f(x) = 6|x_1| + 3x_2$. Note that f is polyhedral and convex.

On this function, using a bisection-based backtracking line search with “Armijo” parameter in $[0, 1/3]$ and starting at $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$, steepest descent generates the sequence

$$2^{-k} \begin{bmatrix} 2(-1)^k \\ 3 \end{bmatrix}, \quad k = 1, 2, \ldots,$$

converging to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

In contrast, BFGS with the same line search rapidly reduces the function value towards $-\infty$ (arbitrarily far, in exact arithmetic) (A.S. Lewis and S. Zhang, 2010).
The BFGS Method ("Full" Version)

Broyden, Fletcher, Goldfarb, Shanno independently, 1970
Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters $0 < \beta < \gamma < 1$
Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters $0 < \beta < \gamma < 1$

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)
The BFGS Method ("Full" Version)

Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters \(0 < \beta < \gamma < 1 \)

Initialize iterate \(x \) and positive-definite symmetric matrix \(H \)
(which is supposed to approximate the inverse Hessian of \(f \))

Repeat
The BFGS Method ("Full" Version)

Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters $0 < \beta < \gamma < 1$

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

- Set $d = -H \nabla f(x)$. Let $\alpha = \nabla f(x)^T d < 0$
Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters $0 < \beta < \gamma < 1$

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

- Set $d = -H\nabla f(x)$. Let $\alpha = \nabla f(x)^T d < 0$
- Armijo-Wolfe line search: find t so that $f(x + td) < f(x) + \beta t\alpha$
 and $\nabla f(x + td)^T d > \gamma\alpha$
The BFGS Method ("Full" Version)

Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters $0 < \beta < \gamma < 1$

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

- Set $d = -H \nabla f(x)$. Let $\alpha = \nabla f(x)^T d < 0$
- Armijo-Wolfe line search: find t so that $f(x + td) < f(x) + \beta t \alpha$
 and $\nabla f(x + td)^T d > \gamma \alpha$
- Set $s = td$, $y = \nabla f(x + td) - \nabla f(x)$
The BFGS Method ("Full" Version)

Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters $0 < \beta < \gamma < 1$

Initialize iterate x and positive-definite symmetric matrix H

(Which is supposed to approximate the inverse Hessian of f)

Repeat

- Set $d = -H \nabla f(x)$. Let $\alpha = \nabla f(x)^T d < 0$
- Armijo-Wolfe line search: find t so that $f(x + td) < f(x) + \beta t \alpha$
 and $\nabla f(x + td)^T d > \gamma \alpha$
- Set $s = td$, $y = \nabla f(x + td) - \nabla f(x)$
- Replace x by $x + td$
The BFGS Method ("Full" Version)

Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters \(0 < \beta < \gamma < 1\)

Initialize iterate \(x\) and positive-definite symmetric matrix \(H\) (which is supposed to approximate the inverse Hessian of \(f\))

Repeat

- Set \(d = -H \nabla f(x)\). Let \(\alpha = \nabla f(x)^T d < 0\)
- Armijo-Wolfe line search: find \(t\) so that \(f(x + td) < f(x) + \beta t \alpha\) and \(\nabla f(x + td)^T d > \gamma \alpha\)
- Set \(s = td, \ y = \nabla f(x + td) - \nabla f(x)\)
- Replace \(x\) by \(x + td\)
- Replace \(H\) by \(VHV^T + \frac{1}{s^T y} ss^T\), where \(V = I - \frac{1}{s^T y} sy^T\)
The BFGS Method ("Full" Version)

Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters $0 < \beta < \gamma < 1$

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

- Set $d = -H\nabla f(x)$. Let $\alpha = \nabla f(x)^T d < 0$
- Armijo-Wolfe line search: find t so that $f(x + td) < f(x) + \beta t\alpha$
 and $\nabla f(x + td)^T d > \gamma \alpha$
- Set $s = td$, $y = \nabla f(x + td) - \nabla f(x)$
- Replace x by $x + td$
- Replace H by $VHV^T + \frac{1}{s^T y} s s^T$, where $V = I - \frac{1}{s^T y} s y^T$

Note that H can be computed in $O(n^2)$ operations since V is a rank one perturbation of the identity
The BFGS Method (“Full” Version)

Choose line search parameters $0 < \beta < \gamma < 1$

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

- Set $d = -H \nabla f(x)$. Let $\alpha = \nabla f(x)^T d < 0$
- Armijo-Wolfe line search: find t so that $f(x + td) < f(x) + \beta t \alpha$
 and $\nabla f(x + td)^T d > \gamma \alpha$
- Set $s = td$, $y = \nabla f(x + td) - \nabla f(x)$
- Replace x by $x + td$
- Replace H by $V H V^T + \frac{1}{s^T y} ss^T$, where $V = I - \frac{1}{s^T y} sy^T$

Note that H can be computed in $O(n^2)$ operations since V is a
rank one perturbation of the identity

The Armijo condition ensures “sufficient decrease” in f
The BFGS Method ("Full" Version)

Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters $0 < \beta < \gamma < 1$

Initialize iterate x and positive-definite symmetric matrix H (which is supposed to approximate the inverse Hessian of f)

Repeat

- Set $d = -H \nabla f(x)$. Let $\alpha = \nabla f(x)^T d < 0$
- Armijo-Wolfe line search: find t so that $f(x + td) < f(x) + \beta t \alpha$ and $\nabla f(x + td)^T d > \gamma \alpha$
- Set $s = td$, $y = \nabla f(x + td) - \nabla f(x)$
- Replace x by $x + td$
- Replace H by $V H V^T + \frac{1}{s^T y} s s^T$, where $V = I - \frac{1}{s^T y} s y^T$

Note that H can be computed in $O(n^2)$ operations since V is a rank one perturbation of the identity

The Armijo condition ensures "sufficient decrease" in f

The Wolfe condition ensures that the directional derivative along the line increases algebraically, which guarantees that $s^T y > 0$ and that the new H is positive definite.
In 1982, C. Lemaréchal observed that quasi-Newton methods can be effective for nonsmooth optimization, but dismissed them as there was no theory behind them and no good way to terminate them.
In 1982, C. Lemaréchal observed that quasi-Newton methods can be effective for nonsmooth optimization, but dismissed them as there was no theory behind them and no good way to terminate them. Otherwise, there is not much in the literature on the subject until A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in detail, but our convergence results are limited to very special cases.
In 1982, C. Lemaréchal observed that quasi-Newton methods can be effective for nonsmooth optimization, but dismissed them as there was no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in detail, but our convergence results are limited to very special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on reducing the magnitude of the directional derivative along the line!
In 1982, C. Lemaréchal observed that quasi-Newton methods can be effective for nonsmooth optimization, but dismissed them as there was no theory behind them and no good way to terminate them. Otherwise, there is not much in the literature on the subject until A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in detail, but our convergence results are limited to very special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse “Hessian” approximation, with some tiny eigenvalues converging to zero, corresponding to “infinitely large” curvature in the directions defined by the associated eigenvectors.
In 1982, C. Lemaréchal observed that quasi-Newton methods can be effective for nonsmooth optimization, but dismissed them as there was no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in detail, but our convergence results are limited to very special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse “Hessian” approximation, with some tiny eigenvalues converging to zero, corresponding to “infinitely large” curvature in the directions defined by the associated eigenvectors.

Remarkably, the condition number of the inverse Hessian approximation typically reaches 10^{16} before the method breaks down.
BFGS for Nonsmooth Optimization

In 1982, C. Lemaréchal observed that quasi-Newton methods can be effective for nonsmooth optimization, but dismissed them as there was no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in detail, but our convergence results are limited to very special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse “Hessian” approximation, with some tiny eigenvalues converging to zero, corresponding to “infinitely large” curvature in the directions defined by the associated eigenvectors.

Remarkably, the condition number of the inverse Hessian approximation typically reaches 10^{16} before the method breaks down.

We have never seen convergence to non-stationary points that cannot be explained by numerical difficulties.
In 1982, C. Lemaréchal observed that quasi-Newton methods can be effective for nonsmooth optimization, but dismissed them as there was no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in detail, but our convergence results are limited to very special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse “Hessian” approximation, with some tiny eigenvalues converging to zero, corresponding to “infinitely large” curvature in the directions defined by the associated eigenvectors.

Remarkably, the condition number of the inverse Hessian approximation typically reaches 10^{16} before the method breaks down.

We have never seen convergence to non-stationary points that cannot be explained by numerical difficulties.

Convergence rate of BFGS is typically linear (not superlinear) in the nonsmooth case.
With BFGS

$$f(x) = 10^*|x_2 - x_1^2| + (1 - x_1)^2$$
Some Nonsmooth Analysis

The Clarke Subdifferential
Note that
\[0 \in \partial^C f(x) = 0 \]
at \[x = [1; 1]^T \]

Regularity
Partly Smooth Functions
Illustration of U and V-spaces on Same Example

Nesterov’s Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions
Assume $f : \mathbb{R}^n \to \mathbb{R}$ is locally Lipschitz, and let $D = \{ x \in \mathbb{R}^n : f \text{ is differentiable at } x \}$. Note that $0 \in \partial^C f(x) = 0$ at $x = [1; 1]^T$.

Regularity
Partly Smooth Functions
Illustration of U and V-spaces on Same Example
Nesterov’s Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions
Assume $f : \mathbb{R}^n \to \mathbb{R}$ is locally Lipschitz, and let $D = \{ x \in \mathbb{R}^n : f \text{ is differentiable at } x \}$.

Rademacher’s Theorem: $\mathbb{R}^n \setminus D$ has measure zero.
The Clarke Subdifferential

Assume $f : \mathbb{R}^n \to \mathbb{R}$ is locally Lipschitz, and let $D = \{ x \in \mathbb{R}^n : f \text{ is differentiable at } x \}$. Rademacher’s Theorem: $\mathbb{R}^n \setminus D$ has measure zero.

The Clarke subdifferential of f at \bar{x} is

$$\partial^C f(\bar{x}) = \text{conv} \left\{ \lim_{x \to \bar{x}, x \in D} \nabla f(x) \right\}.$$
The Clarke Subdifferential

Assume $f : \mathbb{R}^n \to \mathbb{R}$ is locally Lipschitz, and let $D = \{ x \in \mathbb{R}^n : f \text{ is differentiable at } x \}$. Rademacher’s Theorem: $\mathbb{R}^n \setminus D$ has measure zero.

The Clarke subdifferential of f at \bar{x} is

$$\partial^C f(\bar{x}) = \text{conv} \left\{ \lim_{x \to \bar{x}, x \in D} \nabla f(x) \right\}.$$

F.H. Clarke, 1973 (he used the name “generalized gradient”).
Assume $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is locally Lipschitz, and let $D = \{x \in \mathbb{R}^n : f \text{ is differentiable at } x\}$.

Rademacher’s Theorem: $\mathbb{R}^n \setminus D$ has measure zero.

The Clarke subdifferential of f at \bar{x} is

$$\partial^C f(\bar{x}) = \text{conv} \left\{ \lim_{x \rightarrow \bar{x}, x \in D} \nabla f(x) \right\}.$$

F.H. Clarke, 1973 (he used the name “generalized gradient”).

If f is continuously differentiable at \bar{x}, then $\partial^C f(\bar{x}) = \{\nabla f(\bar{x})\}$.

Note that $0 \in \partial^C f(x) = 0$ at $x = [1; 1]^T$.

F.H. Clarke, 1973 (he used the name “generalized gradient”).

If f is continuously differentiable at \bar{x}, then $\partial^C f(\bar{x}) = \{\nabla f(\bar{x})\}$.

F.H. Clarke, 1973 (he used the name “generalized gradient”).
The Clarke Subdifferential

Assume $f : \mathbb{R}^n \to \mathbb{R}$ is locally Lipschitz, and let $D = \{ x \in \mathbb{R}^n : f \text{ is differentiable at } x \}$.

Rademacher’s Theorem: $\mathbb{R}^n \setminus D$ has measure zero.

The Clarke subdifferential of f at \bar{x} is

$$
\partial^C f(\bar{x}) = \text{conv}\{ \lim_{x \to \bar{x}, x \in D} \nabla f(x) \}.
$$

F.H. Clarke, 1973 (he used the name “generalized gradient”).

If f is continuously differentiable at \bar{x}, then $\partial^C f(\bar{x}) = \{ \nabla f(\bar{x}) \}$.

If f is convex, $\partial^C f$ is the subdifferential of convex analysis.
The Clarke Subdifferential

Assume \(f : \mathbb{R}^n \to \mathbb{R} \) is locally Lipschitz, and let \(D = \{ x \in \mathbb{R}^n : f \text{ is differentiable at } x \} \).

Rademacher’s Theorem: \(\mathbb{R}^n \setminus D \) has measure zero.

The Clarke subdifferential of \(f \) at \(\bar{x} \) is

\[
\partial^C f(\bar{x}) = \text{conv} \left\{ \lim_{x \to \bar{x}, x \in D} \nabla f(x) \right\}.
\]

F.H. Clarke, 1973 (he used the name “generalized gradient”).

If \(f \) is continuously differentiable at \(\bar{x} \), then \(\partial^C f(\bar{x}) = \{ \nabla f(\bar{x}) \} \).

If \(f \) is convex, \(\partial^C f \) is the subdifferential of convex analysis.

We say \(\bar{x} \) is Clarke stationary for \(f \) if \(0 \in \partial^C f(\bar{x}) \).
Note that $0 \in \partial^C f(x) = 0$ at $x = [1; 1]^T$
Regularity

A locally Lipschitz, directionally differentiable function \(f \) is (Clarke) \textit{regular} near a point \(\bar{x} \) when its directional derivative
\[x \mapsto f'(x; d) \]
is upper semicontinuous near \(\bar{x} \) for every fixed direction \(d \).
A locally Lipschitz, directionally differentiable function f is (Clarke) \emph{regular} near a point \bar{x} when its directional derivative $x \mapsto f'(x; d)$ is upper semicontinuous near \bar{x} for every fixed direction d.

In this case $0 \in \partial^C f(\bar{x})$ is equivalent to the first-order optimality condition $f'(\bar{x}, d) \geq 0$ for all directions d.
A locally Lipschitz, directionally differentiable function f is (Clarke) \textit{regular} near a point \bar{x} when its directional derivative $x \mapsto f'(x; d)$ is upper semicontinuous near \bar{x} for every fixed direction d.

In this case $0 \in \partial^C f(\bar{x})$ is equivalent to the first-order optimality condition $f'(\bar{x}, d) \geq 0$ for all directions d.

- All convex functions are regular
A locally Lipschitz, directionally differentiable function f is (Clarke) regular near a point \bar{x} when its directional derivative $x \mapsto f'(x; d)$ is upper semicontinuous near \bar{x} for every fixed direction d.

In this case $0 \in \partial^C f(\bar{x})$ is equivalent to the first-order optimality condition $f'(\bar{x}, d) \geq 0$ for all directions d.

- All convex functions are regular
- All smooth functions are regular
A locally Lipschitz, directionally differentiable function f is (Clarke) \textit{regular} near a point \bar{x} when its directional derivative $x \mapsto f'(x; d)$ is upper semicontinuous near \bar{x} for every fixed direction d.

In this case $0 \in \partial^C f(\bar{x})$ is equivalent to the first-order optimality condition $f'(\bar{x}, d) \geq 0$ for all directions d.

- All convex functions are regular
- All smooth functions are regular
- Nonsmooth concave functions are not regular

Example: $f(x) = -|x|$
A regular function f is *partly smooth* at \bar{x} relative to a manifold \mathcal{M} containing \bar{x} (A.S. Lewis 2003) if

$$0 \in \partial^C f(x) = 0$$

at $x = [1; 1]^T$.

Partly Smooth Functions

Illustration of U and V-spaces on Same Example

Nesterov’s Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions
Partly Smooth Functions

A regular function f is *partly smooth* at \bar{x} relative to a manifold \mathcal{M} containing \bar{x} (A.S. Lewis 2003) if

- its restriction to \mathcal{M} is twice continuously differentiable near \bar{x}
Partly Smooth Functions

A regular function f is *partly smooth* at \bar{x} relative to a manifold \mathcal{M} containing \bar{x} (A.S. Lewis 2003) if

- its restriction to \mathcal{M} is twice continuously differentiable near \bar{x}
- the Clarke subdifferential $\partial^C f$ is continuous on \mathcal{M} near \bar{x}
A regular function f is \textit{partly smooth} at \bar{x} relative to a manifold \mathcal{M} containing \bar{x} (A.S. Lewis 2003) if

- its restriction to \mathcal{M} is twice continuously differentiable near \bar{x}
- the Clarke subdifferential $\partial^C f$ is continuous on \mathcal{M} near \bar{x}
- $\text{par} \partial^C f(\bar{x})$, the subspace parallel to the affine hull of the subdifferential of f at \bar{x}, is exactly the subspace normal to \mathcal{M} at \bar{x}.
A regular function \(f \) is \textit{partly smooth} at \(\bar{x} \) relative to a manifold \(M \) containing \(\bar{x} \) (A.S. Lewis 2003) if

- its restriction to \(M \) is twice continuously differentiable near \(\bar{x} \)
- the Clarke subdifferential \(\partial^C f \) is continuous on \(M \) near \(\bar{x} \)
- \(\text{par} \partial^C f(\bar{x}) \), the subspace parallel to the affine hull of the subdifferential of \(f \) at \(\bar{x} \), is exactly the subspace normal to \(M \) at \(\bar{x} \).

We refer to \(\text{par} \partial^C f(x) \) as the \textit{V-space} for \(f \) at \(\bar{x} \) (with respect to \(M \)), and to its orthogonal complement, the subspace tangent to \(M \) at \(\bar{x} \), as the \textit{U-space} for \(f \) at \(\bar{x} \).
Partly Smooth Functions

A regular function f is *partly smooth* at \bar{x} relative to a manifold M containing \bar{x} (A.S. Lewis 2003) if

- its restriction to M is twice continuously differentiable near \bar{x}
- the Clarke subdifferential $\partial^C f$ is continuous on M near \bar{x}
- $\text{par} \partial^C f(\bar{x})$, the subspace parallel to the affine hull of the subdifferential of f at \bar{x}, is exactly the subspace normal to M at \bar{x}.

We refer to $\text{par} \partial^C f(x)$ as the *V-space* for f at \bar{x} (with respect to M), and to its orthogonal complement, the subspace tangent to M at \bar{x}, as the *U-space* for f at \bar{x}.

For nonzero y in the V-space, the mapping $t \mapsto f(\bar{x} + ty)$ is necessarily nonsmooth at $t = 0$, while for nonzero y in the U-space, $t \mapsto f(\bar{x} + ty)$ is differentiable at $t = 0$ as long as f is locally Lipschitz.
Yurii Nesterov

Introduction

Some Nonsmooth Analysis

The Clarke Subdifferential

Note that

\[0 \in \partial^C f(x) = 0 \]

at \(x = [1; 1]^T \)

Regularity

Partly Smooth Functions

Illustration of U and V-spaces on Same Example

Nesterov's Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions

Illustration of U and V-spaces on Same Example

\[f(x) = 10^* |x_2 - x_1^2| + (1 - x_1)^2 \]

contours of \(f \)

starting point

optimal point

steepest descent

grad samp (1st phase)

grad samp (2nd phase)

bfgs
Nesterov’s Chebyshev-Rosenbrock Functions

Introduction
Some Nonsmooth Analysis
Nesterov’s Chebyshev-Rosenbrock Functions
Nesterov’s First Chebyshev-Rosenbrock Function
Why BFGS Takes So Many Iterations to Minimize \(N_2 \)
Length of a Piecewise Linear Descent Path
Nesterov’s First C-R Function: Nonsmooth Case
Nesterov’s Second Nonsmooth C-R Function
Contour Plots of the Nonsmooth Variants for \(n = 2 \)
Properties of the Second Nonsmooth Variant \(\hat{N}_1 \)
The Mordukhovich Subdifferential Relationship Between \(\partial^C f \) and \(\partial f \)
Nesterov’s First Chebyshev-Rosenbrock Function

Nesterov (2008, private comm.): consider the function

\[N_p(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1|^p, \quad \text{where } p \in [1, 2] \]
Nesterov’s First Chebyshev-Rosenbrock Function

Nesterov (2008, private comm.): consider the function

\[N_p(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1|^p, \text{ where } p \in [1, 2] \]

The unique minimizer is \(x^* = [1, 1, \ldots, 1]^T \) with \(N_p(x^*) = 0 \).
Nesterov (2008, private comm.): consider the function

\[N_p(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1|^p, \quad \text{where } p \in [1, 2] \]

The unique minimizer is \(x^* = [1, 1, \ldots, 1]^T \) with \(N_p(x^*) = 0 \).
Define \(\hat{x} = [-1, 1, 1, \ldots, 1]^T \) with \(N_p(\hat{x}) = 1 \) and the manifold

\[\mathcal{M}_N = \{ x : x_{i+1} = 2x_i^2 - 1, \quad i = 1, \ldots, n - 1 \} \]
Nesterov’s First Chebyshev-Rosenbrock Function

Nesterov (2008, private comm.): consider the function

\[N_p(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1|^p, \quad \text{where } p \in [1, 2] \]

The unique minimizer is \(x^* = [1, 1, \ldots, 1]^T \) with \(N_p(x^*) = 0 \).

Define \(\hat{x} = [-1, 1, 1, \ldots, 1]^T \) with \(N_p(\hat{x}) = 1 \) and the manifold

\[\mathcal{M}_N = \{ x : x_{i+1} = 2x_i^2 - 1, \quad i = 1, \ldots, n - 1 \} \]

For \(x \in \mathcal{M}_N \), e.g. \(x = x^* \) or \(x = \hat{x} \), the 2nd term of \(N_p \) is zero. Starting at \(\hat{x} \), BFGS needs to approximately follow \(\mathcal{M}_N \) to reach \(x^* \) (unless it “gets lucky”).

\[\text{The Mordukhovich Subdifferential Relationship Between } \partial^C f \text{ and } \hat{\partial}^C f \]
Nesterov (2008, private comm.): consider the function

\[N_p(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1|^p, \quad \text{where } p \in [1, 2] \]

The unique minimizer is \(x^* = [1, 1, \ldots, 1]^T \) with \(N_p(x^*) = 0 \).

Define \(\hat{x} = [-1, 1, 1, \ldots, 1]^T \) with \(N_p(\hat{x}) = 1 \) and the manifold

\[\mathcal{M}_N = \{ x : x_{i+1} = 2x_i^2 - 1, \quad i = 1, \ldots, n - 1 \} \]

For \(x \in \mathcal{M}_N \), e.g. \(x = x^* \) or \(x = \hat{x} \), the 2nd term of \(N_p \) is zero. Starting at \(\hat{x} \), BFGS needs to approximately follow \(\mathcal{M}_N \) to reach \(x^* \) (unless it “gets lucky”).

When \(p = 2 \): \(N_2 \) is \textbf{smooth} but not convex. Starting at \(\hat{x} \):

The Mordukhovich Subdifferential Relationship

Between \(\partial^C f \) and
Nesterov (2008, private comm.): consider the function

\[N_p(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1|^p, \quad \text{where } p \in [1, 2] \]

The unique minimizer is \(x^* = [1, 1, \ldots, 1]^T \) with \(N_p(x^*) = 0 \).

Define \(\hat{x} = [-1, 1, 1, \ldots, 1]^T \) with \(N_p(\hat{x}) = 1 \) and the manifold

\[\mathcal{M}_N = \{ x : x_{i+1} = 2x_i^2 - 1, \quad i = 1, \ldots, n - 1 \} \]

For \(x \in \mathcal{M}_N \), e.g. \(x = x^* \) or \(x = \hat{x} \), the 2nd term of \(N_p \) is zero. Starting at \(\hat{x} \), BFGS needs to approximately follow \(\mathcal{M}_N \) to reach \(x^* \) (unless it “gets lucky”).

When \(p = 2 \): \(N_2 \) is smooth but not convex. Starting at \(\hat{x} \):

- \(n = 5 \): BFGS needs 370 iterations to reduce \(N_2 \) below \(10^{-15} \)
Nesterov’s First Chebyshev-Rosenbrock Function

Nesterov (2008, private comm.): consider the function

\[N_p(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1|^p, \quad \text{where } p \in [1, 2] \]

The unique minimizer is \(x^* = [1, 1, \ldots, 1]^T \) with \(N_p(x^*) = 0 \).

Define \(\hat{x} = [-1, 1, 1, \ldots, 1]^T \) with \(N_p(\hat{x}) = 1 \) and the manifold

\[\mathcal{M}_N = \{ x : x_{i+1} = 2x_i^2 - 1, \quad i = 1, \ldots, n - 1 \} \]

For \(x \in \mathcal{M}_N \), e.g. \(x = x^* \) or \(x = \hat{x} \), the 2nd term of \(N_p \) is zero.

Starting at \(\hat{x} \), BFGS needs to approximately follow \(\mathcal{M}_N \) to reach \(x^* \) (unless it “gets lucky”).

When \(p = 2 \): \(N_2 \) is **smooth** but not convex. Starting at \(\hat{x} \):

- \(n = 5 \): BFGS needs 370 iterations to reduce \(N_2 \) below \(10^{-15} \)
- \(n = 10 \): needs \(\sim 50,000 \) iterations to reduce \(N_2 \) below \(10^{-15} \)

even though \(N_2 \) is **smooth**!
Let \(T_i(x) \) denote the \(i \)th Chebyshev polynomial. For \(x \in M_N \),

\[
x_{i+1} = 2x_i^2 - 1 = T_2(x_i) = T_2(T_2(x_{i-1}))
\]
Let $T_i(x)$ denote the ith Chebyshev polynomial. For $x \in \mathcal{M}_N$,

$$x_{i+1} = 2x_i^2 - 1 = T_2(x_i) = T_2(T_2(x_{i-1})) = T_2(T_2(\ldots T_2(x_1) \ldots)) = T_{2^i}(x_1).$$
Let $T_i(x)$ denote the ith Chebyshev polynomial. For $x \in \mathcal{M}_N$,

$$x_{i+1} = 2x_i^2 - 1 = T_2(x_i) = T_2(T_2(x_{i-1})) = T_2^i(x_1).$$

To move from \hat{x} to x^* along the manifold \mathcal{M}_N exactly requires
Let $T_i(x)$ denote the ith Chebyshev polynomial. For $x \in \mathcal{M}_N$,

\[x_{i+1} = 2x_i^2 - 1 = T_2(x_i) = T_2(T_2(x_{i-1})) = T_2(T_2(\ldots T_2(x_1) \ldots)) = T_{2^i}(x_1). \]

To move from \hat{x} to x^* along the manifold \mathcal{M}_N exactly requires

- x_1 to change from -1 to 1.
Why BFGS Takes So Many Iterations to Minimize N_2

Let $T_i(x)$ denote the ith Chebyshev polynomial. For $x \in \mathcal{M}_N$,

$$x_{i+1} = 2x_i^2 - 1 = T_2(x_i) = T_2(T_2(x_{i-1}))$$

$$= T_2(T_2(\ldots T_2(x_1) \ldots)) = T_{2^i}(x_1).$$

To move from \hat{x} to x^* along the manifold \mathcal{M}_N exactly requires

- x_1 to change from -1 to 1
- $x_2 = 2x_1^2 - 1$ to trace the graph of $T_2(x_1)$ on $[-1, 1]$
Let $T_i(x)$ denote the ith Chebyshev polynomial. For $x \in \mathcal{M}_N$,

$$x_{i+1} = 2x_i^2 - 1 = T_2(x_i) = T_2(T_2(x_{i-1}))$$

$$= T_2(T_2(\ldots T_2(x_1) \ldots)) = T_{2^i}(x_1).$$

To move from \hat{x} to x^* along the manifold \mathcal{M}_N exactly requires

- x_1 to change from -1 to 1
- $x_2 = 2x_1^2 - 1$ to trace the graph of $T_2(x_1)$ on $[-1, 1]$.
- $x_3 = T_2(T_2(x))$ to trace the graph of $T_4(x_1)$ on $[-1, 1]$.

Let $T_i(x)$ denote the ith Chebyshev polynomial. For $x \in M_N$,

\[x_{i+1} = 2x_i^2 - 1 = T_2(x_i) = T_2(T_2(x_{i-1})) = T_2(T_2(\ldots T_2(x_1) \ldots)) = T_{2^i}(x_1). \]

To move from \hat{x} to x^* along the manifold M_N exactly requires

- x_1 to change from -1 to 1
- $x_2 = 2x_1^2 - 1$ to trace the graph of $T_2(x_1)$ on $[-1, 1]$
- $x_3 = T_2(T_2(x))$ to trace the graph of $T_4(x_1)$ on $[-1, 1]$
- $x_n = T_{2^{n-1}}(x)$ to trace the graph of $T_{2^{n-1}}(x_1)$ on $[-1, 1]$

which has $2^{n-1} - 1$ extrema in $(-1, 1)$.
Why BFGS Takes So Many Iterations to Minimize N_2

Let $T_i(x)$ denote the ith Chebyshev polynomial. For $x \in \mathcal{M}_N$,

$$
x_{i+1} = 2x_i^2 - 1 = T_2(x_i) = T_2(T_2(x_{i-1})) = T_2(T_2(\ldots T_2(x_1) \ldots)) = T_{2^i}(x_1).
$$

To move from \hat{x} to x^* along the manifold \mathcal{M}_N exactly requires

- x_1 to change from -1 to 1
- $x_2 = 2x_1^2 - 1$ to trace the graph of $T_2(x_1)$ on $[-1, 1]$
- $x_3 = T_2(T_2(x))$ to trace the graph of $T_4(x_1)$ on $[-1, 1]$
- $x_n = T_{2^{n-1}}(x)$ to trace the graph of $T_{2^{n-1}}(x_1)$ on $[-1, 1]$

which has $2^{n-1} - 1$ extrema in $(-1, 1)$.

Even though BFGS will not track the manifold \mathcal{M}_N exactly, it will follow it approximately. So, since the manifold is highly oscillatory, BFGS must take relatively short steps to obtain reduction in N_2 in the line search, and hence it takes many iterations!
Let $T_i(x)$ denote the ith Chebyshev polynomial. For $x \in \mathcal{M}_N$,
\[
x_{i+1} = 2x_i^2 - 1 = T_2(x_i) = T_2(T_2(x_{i-1})) \\
= T_2(T_2(\ldots T_2(x_1) \ldots)) = T_{2^i}(x_1).
\]

To move from \hat{x} to x^* along the manifold \mathcal{M}_N exactly requires

- x_1 to change from -1 to 1
- $x_2 = 2x_1^2 - 1$ to trace the graph of $T_2(x_1)$ on $[-1, 1]$
- $x_3 = T_2(T_2(x))$ to trace the graph of $T_4(x_1)$ on $[-1, 1]$
- $x_n = T_{2^{n-1}}(x)$ to trace the graph of $T_{2^{n-1}}(x_1)$ on $[-1, 1]$

which has $2^{n-1} - 1$ extrema in $(-1, 1)$.

Even though BFGS will not track the manifold \mathcal{M}_N exactly, it will
follow it approximately. So, since the manifold is highly oscillatory,
BFGS must take relatively short steps to obtain reduction in N_2 in the
line search, and hence it takes many iterations!

At the very end, since N_2 is smooth, BFGS is superlinearly convergent!
Let $T_i(x)$ denote the ith Chebyshev polynomial. For $x \in M_N$,
\begin{align*}
x_{i+1} &= 2x_i^2 - 1 = T_2(x_i) = T_2(T_2(x_{i-1})) \\
&= T_2(T_2(\ldots T_2(x_1) \ldots)) = T_{2^i}(x_1).
\end{align*}

To move from \hat{x} to x^* along the manifold M_N exactly requires

- x_1 to change from -1 to 1
- $x_2 = 2x_1^2 - 1$ to trace the graph of $T_2(x_1)$ on $[-1, 1]$
- $x_3 = T_2(T_2(x))$ to trace the graph of $T_4(x_1)$ on $[-1, 1]$
- $x_n = T_{2^{n-1}}(x)$ to trace the graph of $T_{2^{n-1}}(x_1)$ on $[-1, 1]$

which has $2^{n-1} - 1$ extrema in $(-1, 1)$.

Even though BFGS will not track the manifold M_N exactly, it will follow it approximately. So, since the manifold is highly oscillatory, BFGS must take relatively short steps to obtain reduction in N_2 in the line search, and hence it takes many iterations!

At the very end, since N_2 is smooth, BFGS is superlinearly convergent!

Newton’s method is not much faster, although it converges quadratically at the end.
F. Jarre (2013): if the second term (the sum) in Nesterov’s smooth Chebyshev-Rosenbrock function N_2 is weighted by 400, any continuous piecewise linear descent path starting at \hat{x} and leading to the global minimizer x^* has at least 1.618^n linear segments.
Nesterov’s First C-R Function: Nonsmooth Case

\[N_1(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1| \]
Nesterov’s First C-R Function: Nonsmooth Case

\[N_1(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1| \]

\(N_1 \) is nonsmooth (though locally Lipschitz) as well as nonconvex. The second term is still zero on the manifold \(\mathcal{M}_N \), but \(N_1 \) is not differentiable on \(\mathcal{M}_N \).
Nesterov’s First C-R Function: Nonsmooth Case

\[N_1(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1| \]

\(N_1 \) is nonsmooth (though locally Lipschitz) as well as nonconvex. The second term is still zero on the manifold \(\mathcal{M}_N \), but \(N_1 \) is not differentiable on \(\mathcal{M}_N \).

However, \(N_1 \) is regular at \(x \in \mathcal{M}_N \) and partly smooth at \(x \) w.r.t. \(\mathcal{M}_N \), and \(x^* = [1, 1, \ldots, 1]^T \) is its only stationary point.
Nesterov’s First C-R Function: Nonsmooth Case

\[N_1(x) = \frac{1}{4} (x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1| \]

\(N_1 \) is nonsmooth (though locally Lipschitz) as well as nonconvex. The second term is still zero on the manifold \(\mathcal{M}_N \), but \(N_1 \) is not differentiable on \(\mathcal{M}_N \).

However, \(N_1 \) is regular at \(x \in \mathcal{M}_N \) and partly smooth at \(x \) w.r.t. \(\mathcal{M}_N \), and \(x^* = [1, 1, \ldots, 1]^T \) is its only stationary point.

We cannot initialize BFGS at \(\hat{x} \), so starting at normally distributed random points:
Nesterov’s First C-R Function: Nonsmooth Case

\[N_1(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1| \]

\(N_1\) is nonsmooth (though locally Lipschitz) as well as nonconvex. The second term is still zero on the manifold \(\mathcal{M}_N\), but \(N_1\) is not differentiable on \(\mathcal{M}_N\).

However, \(N_1\) is regular at \(x \in \mathcal{M}_N\) and partly smooth at \(x\) w.r.t. \(\mathcal{M}_N\), and \(x^* = [1, 1, \ldots, 1]^T\) is its only stationary point.

We cannot initialize BFGS at \(\hat{x}\), so starting at normally distributed random points:

- \(n = 5\): BFGS reduces \(N_1\) only to about \(5 \times 10^{-3}\) in 1000 iterations
Nesterov’s First C-R Function: Nonsmooth Case

\[N_1(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1| \]

\(N_1\) is nonsmooth (though locally Lipschitz) as well as nonconvex. The second term is still zero on the manifold \(\mathcal{M}_N\), but \(N_1\) is not differentiable on \(\mathcal{M}_N\).

However, \(N_1\) is regular at \(x \in \mathcal{M}_N\) and partly smooth at \(x\) w.r.t. \(\mathcal{M}_N\), and \(x^* = [1, 1, \ldots, 1]^T\) is its only stationary point.

We cannot initialize BFGS at \(\hat{x}\), so starting at normally distributed random points:

- \(n = 5\): BFGS reduces \(N_1\) only to about \(5 \times 10^{-3}\) in 1000 iterations
- \(n = 10\): BFGS reduces \(N_1\) only to about \(2 \times 10^{-2}\) in 1000 iterations
Nesterov’s First C-R Function: Nonsmooth Case

\[N_1(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1| \]

\(N_1 \) is nonsmooth (though locally Lipschitz) as well as nonconvex. The second term is still zero on the manifold \(\mathcal{M}_N \), but \(N_1 \) is not differentiable on \(\mathcal{M}_N \).

However, \(N_1 \) is regular at \(x \in \mathcal{M}_N \) and partly smooth at \(x \) w.r.t. \(\mathcal{M}_N \), and \(x^* = [1, 1, \ldots, 1]^T \) is its only stationary point.

We cannot initialize BFGS at \(\hat{x} \), so starting at normally distributed random points:

- \(n = 5 \): BFGS reduces \(N_1 \) only to about \(5 \times 10^{-3} \) in 1000 iterations
- \(n = 10 \): BFGS reduces \(N_1 \) only to about \(2 \times 10^{-2} \) in 1000 iterations

The method appears to be converging, very slowly, but may be having numerical difficulties.
Nesterov’s Second Nonsmooth C-R Function

\[\hat{N}_1(x) = \frac{1}{4} |x_1 - 1| + \sum_{i=1}^{n-1} |x_{i+1} - 2|x_i| + 1|. \]

Again, the unique global minimizer is \(x^* \). The second term is zero on the set

\[S = \{ x : x_{i+1} = 2|x_i| - 1, \quad i = 1, \ldots, n - 1 \} \]

but \(S \) is not a manifold: it has “corners”.
Contour plots of nonsmooth Chebyshev-Rosenbrock functions N_1 (left) and \hat{N}_1 (right), with $n = 2$, with iterates generated by BFGS initialized at 7 different randomly generated points.
Contour plots of nonsmooth Chebyshev-Rosenbrock functions N_1 (left) and \hat{N}_1 (right), with $n = 2$, with iterates generated by BFGS initialized at 7 different randomly generated points. On the left, always get convergence to $x^* = [1, 1]^T$. On the right, most runs converge to $[1, 1]$ but some go to $x = [0, -1]^T$.
Properties of the Second Nonsmooth Variant \(\hat{N}_1 \)

When \(n = 2 \), the point \(x = [0, -1]^T \) is Clarke stationary for the second nonsmooth variant \(\hat{N}_1 \). We can see this because zero is in the convex hull of the gradient limits for \(\hat{N}_1 \) at the point \(x \).
When $n = 2$, the point $x = [0, -1]^T$ is Clarke stationary for the second nonsmooth variant \hat{N}_1. We can see this because zero is in the convex hull of the gradient limits for \hat{N}_1 at the point x. However, $x = [0, -1]^T$ is not a local minimizer, because $d = [1, 2]^T$ is a direction of linear descent: $\hat{N}_1'(x, d) < 0$.
When $n = 2$, the point $x = [0, -1]^T$ is Clarke stationary for the second nonsmooth variant \hat{N}_1. We can see this because zero is in the convex hull of the gradient limits for \hat{N}_1 at the point x. However, $x = [0, -1]^T$ is not a local minimizer, because $d = [1, 2]^T$ is a direction of linear descent: $\hat{N}_1'(x, d) < 0$.

These two properties mean that \hat{N}_1 is not regular at $[0, -1]^T$.

Consider a continuous function $f : \mathbb{R}^n \to \mathbb{R}$ (not necessarily Lipschitz) and a point $\bar{x} \in \mathbb{R}^n$. A vector $\bar{v} \in \mathbb{R}^n$ is a regular subgradient of f at \bar{x} (written $\bar{v} \in \hat{\partial} f(\bar{x})$) if

$$\liminf_{z \to \bar{x}, z \neq \bar{x}} \frac{f(z) - f(\bar{x}) - \langle \bar{v}, z - \bar{x} \rangle}{|z - \bar{x}|} \geq 0.$$
The Mordukhovich Subdifferential

Consider a continuous function $f : \mathbb{R}^n \to \mathbb{R}$ (not necessarily Lipschitz) and a point $\bar{x} \in \mathbb{R}^n$. A vector $\bar{v} \in \mathbb{R}^n$ is a regular subgradient of f at \bar{x} (written $\bar{v} \in \hat{\partial} f(\bar{x})$) if

$$\liminf_{z \to \bar{x}} \frac{f(z) - f(\bar{x}) - \langle \bar{v}, z - \bar{x} \rangle}{|z - \bar{x}|} \geq 0.$$

A vector $\bar{v} \in \mathbb{R}^n$ is a Mordukhovich subgradient of f at \bar{x} (written $\bar{v} \in \partial^M f(\bar{x})$) if there exist sequences $\{x\}$ and $\{v\}$ in \mathbb{R}^n satisfying

$$x \to \bar{x}$$
$$v \in \hat{\partial} f(x)$$
$$v \to \bar{v}.$$
The Mordukhovich Subdifferential

Consider a continuous function \(f : \mathbb{R}^n \to \mathbb{R} \) (not necessarily Lipschitz) and a point \(\bar{x} \in \mathbb{R}^n \). A vector \(\bar{v} \in \mathbb{R}^n \) is a regular subgradient of \(f \) at \(\bar{x} \) (written \(\bar{v} \in \partial f(\bar{x}) \)) if

\[
\liminf_{z \to \bar{x}, z \neq \bar{x}} \frac{f(z) - f(\bar{x}) - \langle \bar{v}, z - \bar{x} \rangle}{|z - \bar{x}|} \geq 0.
\]

A vector \(\bar{v} \in \mathbb{R}^n \) is a Mordukhovich subgradient of \(f \) at \(\bar{x} \) (written \(\bar{v} \in \partial^M f(\bar{x}) \)) if there exist sequences \(\{x\} \) and \(\{v\} \) in \(\mathbb{R}^n \) satisfying

\[
x \to \bar{x}
\]

\[
v \in \partial f(x)
\]

\[
v \to \bar{v}.
\]

We say \(f \) is Mordukhovich stationary at \(\bar{x} \) if \(0 \in \partial^M f(\bar{x}) \).
Relationship Between $\partial^C f$ and $\partial^M f$

For a locally Lipschitz function f, we have

$$\partial^C f(\bar{x}) = \text{conv} \partial^M f(\bar{x}).$$

and, if f is regular,

$$\partial^C f(\bar{x}) = \partial^M f(\bar{x}).$$
Relationship Between $\partial^C f$ and $\partial^M f$

For a locally Lipschitz function f, we have

$$\partial^C f(\bar{x}) = \text{conv} \; \partial^M f(\bar{x}).$$

and, if f is regular,

$$\partial^C f(\bar{x}) = \partial^M f(\bar{x}).$$

Example: let $g(x) = |x_1| - |x_2|$, $x \in \mathbb{R}^2$. Then

$$\partial^C g(0) = [-1,1] \times [-1,1] \quad \text{and} \quad \partial^M g(0) = [-1,1] \times \{-1,1\}$$

so g is not regular.
Back to Nesterov’s Second Nonsmooth C-R Function

Yurii Nesterov

Introduction

Some Nonsmooth Analysis

Nesterov’s Chebyshev-Rosenbrock Functions

Nesterov’s First Chebyshev-Rosenbrock Function

Why BFGS Takes So Many Iterations to Minimize N_2

Length of a Piecewise Linear Descent Path

Nesterov’s First C-R Function: Nonsmooth Case

Nesterov’s Second Nonsmooth C-R Function

Contour Plots of the Nonsmooth Variants for $n = 2$

Properties of the Second Nonsmooth Variant \hat{N}_1

The Mordukhovich Subdifferential Relationship Between $\partial^C f$ and ∂f
Theorem. For $n \geq 2$:

- \hat{N}_1 has 2^{n-1} Clarke stationary points.
Theorem. For $n \geq 2$:

- \tilde{N}_1 has 2^{n-1} Clarke stationary points
- \tilde{N}_1 has exactly one Mordukhovich stationary point, the global minimizer x^*
Theorem. For $n \geq 2$:

- \hat{N}_1 has 2^{n-1} Clarke stationary points
- \hat{N}_1 has exactly one Mordukhovich stationary point, the global minimizer x^*
- its only local minimizer is the global minimizer x^*

Theorem. For $n \geq 2$:

- \hat{N}_1 has 2^{n-1} Clarke stationary points
- \hat{N}_1 has exactly one Mordukhovich stationary point, the global minimizer x^*
- its only local minimizer is the global minimizer x^*

Furthermore, starting from enough randomly generated starting points, BFGS finds all 2^{n-1} Clarke stationary points!
Behavior of BFGS on the Second Nonsmooth Variant

Left: *sorted* final values of \hat{N}_1 for 1000 randomly generated starting points, when $n = 5$: BFGS finds all 16 Clarke stationary points. Right: same with $n = 6$: BFGS finds all 32 Clarke stationary points.
Convergence to Non-Locally-Minimizing Points

When \(f \) is smooth, convergence of methods such as BFGS to non-locally-minimizing stationary points or local maxima is possible but not likely, because of the line search, and such convergence will not be stable under perturbation.
When \(f \) is smooth, convergence of methods such as BFGS to non-locally-minimizing stationary points or local maxima is possible but not likely, because of the line search, and such convergence will not be stable under perturbation.

However, this kind of convergence is what we are seeing for the non-regular, non-smooth Nesterov Chebyshev-Rosenbrock example, and it is stable under perturbation. The same behavior occurs for gradient sampling or bundle methods.
When f is smooth, convergence of methods such as BFGS to non-locally-minimizing stationary points or local maxima is possible but not likely, because of the line search, and such convergence will not be stable under perturbation.

However, this kind of convergence is what we are seeing for the non-regular, non-smooth Nesterov Chebyshev-Rosenbrock example, and it is stable under perturbation. The same behavior occurs for gradient sampling or bundle methods.

Kiwiel (private communication): the Nesterov example is the first he had seen which causes his bundle code to have this behavior.
When \(f \) is \textit{smooth}, convergence of methods such as BFGS to non-locally-minimizing stationary points or local maxima is \textit{possible} but not likely, because of the line search, and such convergence will not be stable under perturbation.

However, this kind of convergence is what we are seeing for the non-regular, non-smooth Nesterov Chebyshev-Rosenbrock example, and it \textit{is} stable under perturbation. The same behavior occurs for gradient sampling or bundle methods.

Kiwiel (private communication): the Nesterov example is the first he had seen which causes his bundle code to have this behavior.

Nonetheless, we don’t know whether, in exact arithmetic, the methods would actually generate sequences converging to the nonminimizing Clarke stationary points. Experiments by Kaku (2011) suggest that the higher the precision used, the more likely BFGS is to eventually move away from such a point.
Experiments using BFGS with Extended Precision

M.S. thesis by A. Kaku experimenting with Sherry Li’s “double double” C++ package.
M.S. thesis by A. Kaku experimenting with Sherry Li’s “double double” C++ package.

“double double” is not the same as quadruple precision: each number is represented as the sum of two ordinary double precision numbers
M.S. thesis by A. Kaku experimenting with Sherry Li’s “double double” C++ package.
“double double” is not the same as quadruple precision: each number is represented as the sum of two ordinary double precision numbers

Thus, $1 + 10^{-30}$ and $1 + 10^{-300}$ are both valid “double double” numbers
Experiments using BFGS with Extended Precision

M.S. thesis by A. Kaku experimenting with Sherry Li’s “double double” C++ package.

“double double” is not the same as quadruple precision: each number is represented as the sum of two ordinary double precision numbers

Thus, $1 + 10^{-30}$ and $1 + 10^{-300}$ are both valid “double double” numbers

In practice, it is just a convenient, inexpensive software implementation that approximates quadruple precision (approximately 32 decimal digits of accuracy instead of 16)
Experiments using BFGS with Extended Precision

M.S. thesis by A. Kaku experimenting with Sherry Li’s “double double” C++ package.

“double double” is not the same as quadruple precision: each number is represented as the sum of two ordinary double precision numbers

Thus, \(1 + 10^{-30}\) and \(1 + 10^{-300}\) are both valid “double double” numbers

In practice, it is just a convenient, inexpensive software implementation that approximates quadruple precision (approximately 32 decimal digits of accuracy instead of 16)

Show plots from Kaku’s thesis.
Recent work by A. Griewank on automatic differentiation for nonsmooth optimization: leads to a more efficient method for optimization of Nesterov’s *second* nonsmooth Chebyshev-Rosenbrock since it is able to efficiently exploit the piecewise-linearity of the function.
Recent work by A. Griewank on automatic differentiation for nonsmooth optimization: leads to a more efficient method for optimization of Nesterov’s second nonsmooth Chebyshev-Rosenbrock since it is able to efficiently exploit the piecewise-linearity of the function.

Starting at \(\hat{x} \), it visits all \(2^{n-1} \) Clarke stationary points, but it does not get stuck at any of them because it repeatedly solves LPs that define the piecewise linear path leading to the global minimum.
Other Examples of Behavior of BFGS on Nonsmooth Functions
Let S^N denote the space of real symmetric $N \times N$ matrices, and

$$
\lambda_1(X) \geq \lambda_2(X) \geq \cdots \lambda_N(X)
$$

denote the eigenvalues of $X \in S^N$.
Let S^N denote the space of real symmetric $N \times N$ matrices, and

$$\lambda_1(X) \geq \lambda_2(X) \geq \cdots \lambda_N(X)$$

denote the eigenvalues of $X \in S^N$. We wish to minimize

$$f(X) = \log \prod_{i=1}^{N/2} \lambda_i(A \circ X)$$

where $A \in S^N$ is fixed and \circ is the Hadamard (componentwise) matrix product, subject to the constraints that X is positive semidefinite and has diagonal entries equal to 1.
Let S^N denote the space of real symmetric $N \times N$ matrices, and
\[\lambda_1(X) \geq \lambda_2(X) \geq \cdots \lambda_N(X) \]
denote the eigenvalues of $X \in S^N$. We wish to minimize
\[f(X) = \log \prod_{i=1}^{N/2} \lambda_i(A \circ X) \]
where $A \in S^N$ is fixed and \circ is the Hadamard (componentwise) matrix product, subject to the constraints that X is positive semidefinite and has diagonal entries equal to 1.
If we replace \prod by \sum we would have a semidefinite program.
Minimizing a Product of Eigenvalues

Let \(S^N \) denote the space of real symmetric \(N \times N \) matrices, and

\[
\lambda_1(X) \geq \lambda_2(X) \geq \cdots \lambda_N(X)
\]
denote the eigenvalues of \(X \in S^N \). We wish to minimize

\[
f(X) = \log \prod_{i=1}^{\frac{N}{2}} \lambda_i(A \circ X)
\]

where \(A \in S^N \) is fixed and \(\circ \) is the Hadamard (componentwise) matrix product, subject to the constraints that \(X \) is positive semidefinite and has diagonal entries equal to 1.

If we replace \(\prod \) by \(\sum \) we would have a semidefinite program.

Since \(f \) is not convex, may as well replace \(X \) by \(YY^T \) where
\(Y \in \mathbb{R}^{N \times N} \): eliminates psd constraint, and then also easy to eliminate diagonal constraint.
Minimizing a Product of Eigenvalues

Let \(S^N \) denote the space of real symmetric \(N \times N \) matrices, and

\[
\lambda_1(X) \geq \lambda_2(X) \geq \cdots \lambda_N(X)
\]

denote the eigenvalues of \(X \in S^N \). We wish to minimize

\[
f(X) = \log \prod_{i=1}^{N/2} \lambda_i(A \circ X)
\]

where \(A \in S^N \) is fixed and \(\circ \) is the Hadamard (componentwise) matrix product, subject to the constraints that \(X \) is positive semidefinite and has diagonal entries equal to 1.

If we replace \(\prod \) by \(\sum \) we would have a semidefinite program.

Since \(f \) is not convex, may as well replace \(X \) by \(YY^T \) where \(Y \in \mathbb{R}^{N \times N} \): eliminates psd constraint, and then also easy to eliminate diagonal constraint.

BFGS from 10 Randomly Generated Starting Points

Yurii Nesterov

Introduction

Some Nonsmooth Analysis

Nesterov's Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions

Minimizing a Product of Eigenvalues

BFGS from 10 Randomly Generated Starting Points

Evolution of Eigenvalues of $A \circ X$

Evolution of Eigenvalues of H

Why Did 44 Eigenvalues of H Converge to Zero?

Variation of f from Minimizer, along EigVecs of H

Minimizing the Spectral Radius

Nonsmooth Analysis of the Spectral Radius

\log eigenvalue product, $N=20$, $n=400$, $f_{\text{opt}} = -4.37938e+000$

$f - f_{\text{opt}}$, where f_{opt} is least value of f found over all runs
Evolution of Eigenvalues of $A \circ X$

- Introduction
- Some Nonsmooth Analysis
- Nesterov's Chebyshev-Rosenbrock Functions
- Other Examples of Behavior of BFGS on Nonsmooth Functions
- Minimizing a Product of Eigenvalues
- BFGS from 10 Randomly Generated Starting Points
- Evolution of Eigenvalues of $A \circ X$
- Why Did 44 Eigenvalues of H Converge to Zero?
- Variation of f from Minimizer, along EigVecs of H
- Minimizing the Spectral Radius
- Nonsmooth Analysis of the Spectral Radius
Evolution of Eigenvalues of $A \circ X$

Note that $\lambda_6(X), \ldots, \lambda_{14}(X)$ coalesce
Evolution of Eigenvalues of H

Why Did 44 Eigenvalues of H Converge to Zero?

Variation of f from Minimizer, along EigVecs of H

Minimizing the Spectral Radius

Nonsmooth Analysis of the Spectral Radius
Evolution of Eigenvalues of H

Why Did 44 Eigenvalues of H Converge to Zero? Variations of f from Minimizer along EigVecs of H Minimizing the Spectral Radius Nonsmooth Analysis of the Spectral Radius

44 eigenvalues of H converge to zero...why???
Why Did 44 Eigenvalues of H Converge to Zero?

The eigenvalue product is *partly smooth* with respect to the manifold of matrices with an eigenvalue with given multiplicity.
Why Did 44 Eigenvalues of H Converge to Zero?

The eigenvalue product is partly smooth with respect to the manifold of matrices with an eigenvalue with given multiplicity. Recall that at the computed minimizer,

$$\lambda_6(A \circ X) \approx \ldots \approx \lambda_{14}(A \circ X).$$

Matrix theory says that imposing multiplicity m on an eigenvalue a matrix $\in S^N$ is $\frac{m(m+1)}{2} - 1$ conditions, or 44 when $m = 9$, so the dimension of the V-space at this minimizer is 44.
Why Did 44 Eigenvalues of H Converge to Zero?

The eigenvalue product is *partly smooth* with respect to the manifold of matrices with an eigenvalue with given multiplicity. Recall that at the computed minimizer,

$$
\lambda_6(A \circ X) \approx \ldots \approx \lambda_{14}(A \circ X).
$$

Matrix theory says that imposing multiplicity m on an eigenvalue a matrix $\in S^N$ is $m(m+1)/2 - 1$ conditions, or 44 when $m = 9$, so the dimension of the V-space at this minimizer is 44.

And tiny eigenvalues of the BFGS matrix H approximating the “inverse Hessian” correspond to “infinite curvature”: nonsmoothness in the V-space.
Why Did 44 Eigenvalues of H Converge to Zero?

The eigenvalue product is *partly smooth* with respect to the manifold of matrices with an eigenvalue with given multiplicity. Recall that at the computed minimizer,

$$\lambda_6(A \circ X) \approx \ldots \approx \lambda_{14}(A \circ X).$$

Matrix theory says that imposing multiplicity m on an eigenvalue a matrix $\in S^N$ is $\frac{m(m+1)}{2} - 1$ conditions, or 44 when $m = 9$, so the dimension of the V-space at this minimizer is 44.

And tiny eigenvalues of the BFGS matrix H approximating the “inverse Hessian” correspond to “infinite curvature”: nonsmoothness in the V-space

Thus BFGS *automatically* detected the U and V space partitioning without knowing anything about the mathematical structure of f!
Variation of f from Minimizer, along EigVecs of H

Yurii Nesterov

Introduction

Some Nonsmooth Analysis

Nesterov's Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions

Minimizing a Product of Eigenvalues

BFGS from 10 Randomly Generated Starting Points

Evolution of Eigenvalues of $A \circ X$

Evolution of Eigenvalues of H

Why Did 44 Eigenvalues of H Converge to Zero?

Eigenvalues of H numbered smallest to largest

Variation of f from Minimizer, along EigVecs of H

Minimizing the Spectral Radius

Nonsmooth Analysis of the Spectral Radius

Log eigenvalue product, $N=20$, $n=400$, $f_{opt} = -4.37938e+000$

w is eigenvector for eigvalue 10 of final H

w is eigenvector for eigvalue 20 of final H

w is eigenvector for eigvalue 30 of final H

w is eigenvector for eigvalue 40 of final H

w is eigenvector for eigvalue 50 of final H

w is eigenvector for eigvalue 60 of final H
Minimizing the Spectral Radius

Given the discrete-time dynamical system with control input and measured output

\[z^{(k+1)} = Fz^{(k)} + Gu^{(k)}, \quad y^{(k)} = Hz^{(k)} \]

where \(F \in \mathbb{R}^{n \times n}, G \in \mathbb{R}^{n \times p}, H \in \mathbb{R}^{m \times n} \), the static output feedback problem is to find a controller \(X \in \mathbb{R}^{p \times m} \) so that, setting \(u^{(k)} = Xy^{(k)} \), all solutions of

\[z^{(k+1)} = (F + GXH)z^{(k)} \]

converge to zero, that is all eigenvalues of \(F + GXH \) are inside the unit disk (Schur stable), or prove that this is not possible.
Given the discrete-time dynamical system with control input and measured output

\[z^{(k+1)} = Fz^{(k)} + Gu^{(k)}, \quad y^{(k)} = Hz^{(k)} \]

where \(F \in \mathbb{R}^{n \times n}, G \in \mathbb{R}^{n \times p}, H \in \mathbb{R}^{m \times n} \), the static output feedback problem is to find a controller \(X \in \mathbb{R}^{p \times m} \) so that, setting \(u^{(k)} = Xy^{(k)} \), all solutions of

\[z^{(k+1)} = (F + GXH)z^{(k)} \]

converge to zero, that is all eigenvalues of \(F + GXH \) are inside the unit disk (Schur stable), or prove that this is not possible. Pose as optimization problem:

\[\min_{X \in \mathbb{R}^{p \times m}} \rho(F + GXH) \]

where \(\rho \) is spectral radius.
Minimizing the Spectral Radius

Given the discrete-time dynamical system with control input and measured output

\[z^{(k+1)} = Fz^{(k)} + Gu^{(k)}, \quad y^{(k)} = Hz^{(k)} \]

where \(F \in \mathbb{R}^{n \times n}, G \in \mathbb{R}^{n \times p}, H \in \mathbb{R}^{m \times n} \), the static output feedback problem is to find a controller \(X \in \mathbb{R}^{p \times m} \) so that, setting \(u^{(k)} = Xy^{(k)} \), all solutions of

\[z^{(k+1)} = (F + GXH)z^{(k)} \]

converge to zero, that is all eigenvalues of \(F + GXH \) are inside the unit disk (Schur stable), or prove that this is not possible. Pose as optimization problem:

\[\min_{X \in \mathbb{R}^{p \times m}} \rho(F + GXH) \]

where \(\rho \) is spectral radius.

NP-hard if add bounds on entries of \(X \)

The spectral radius ρ is not locally Lipschitz at matrices with multiple *active* eigenvalues (those attaining the maximal modulus).
The spectral radius ρ is not locally Lipschitz at matrices with multiple *active* eigenvalues (those attaining the maximal modulus).

Nonsmooth analysis of ρ in this case, deriving $\partial^M \rho$, was given by J.V. Burke and M.L.O. (2001), J.V. Burke, A.S. Lewis and M.L.O. (2005), etc.
The spectral radius ρ is not locally Lipschitz at matrices with multiple *active* eigenvalues (those attaining the maximal modulus).

Nonsmooth analysis of ρ in this case, deriving $\partial^M \rho$, was given by J.V. Burke and M.L.O. (2001), J.V. Burke, A.S. Lewis and M.L.O. (2005), etc.

But to apply BFGS, we assume that everywhere we evaluate ρ at $A(X) = F + GXH$, there is just one active real eigenvalue or active conjugate pair with multiplicity one, and break any “ties” arbitrarily.
Gradient of the spectral radius in real matrix space:

\[\nabla \rho(\tilde{A}) = \text{Re} \frac{\mu}{|\mu|} \frac{1}{v^*u} \]

where \(v \) and \(u \) are right and left eigenvectors for the relevant active eigenvalue \(\mu \) of \(\tilde{A} \), which is assumed to be simple and have nonnegative imaginary part.
Gradient of the spectral radius in real matrix space:

$$\nabla \rho(\tilde{A}) = \text{Re} \frac{\mu}{|\mu|} \frac{1}{v^*u}$$

where v and u are right and left eigenvectors for the relevant active eigenvalue μ of \tilde{A}, which is assumed to be simple and have nonnegative imaginary part.

Gradients may be arbitrarily large for μ nearly a multiple eigenvalue: spectral functions are not locally Lipschitz at an active multiple eigenvalue.
Gradient of the spectral radius in real matrix space:

$$\nabla \rho(\tilde{A}) = \text{Re} \frac{\mu}{|\mu|} \frac{1}{v^*u^*}$$

where v and u are right and left eigenvectors for the relevant active eigenvalue μ of \tilde{A}, which is assumed to be simple and have nonnegative imaginary part.

Gradients may be arbitrarily large for μ nearly a multiple eigenvalue: spectral functions are not locally Lipschitz at an active multiple eigenvalue.

Break ties for active eigenvalue arbitrarily.
Gradient of the spectral radius in real matrix space:

\[\nabla \rho(\tilde{A}) = \Re \frac{\mu}{|\mu|} \frac{1}{v^*u} \]

where \(v \) and \(u \) are right and left eigenvectors for the relevant active eigenvalue \(\mu \) of \(\tilde{A} \), which is assumed to be simple and have nonnegative imaginary part.

Gradients may be arbitrarily large for \(\mu \) nearly a multiple eigenvalue: spectral functions are not locally Lipschitz at an active multiple eigenvalue.

Break ties for active eigenvalue arbitrarily.

Since \(\tilde{A} \) is real, take \(\text{Im} \mu \geq 0 \) wlog.
Gradient of the Spectral Radius

Gradient of the spectral radius in real matrix space:

\[\nabla \rho(\tilde{A}) = \text{Re} \frac{\mu}{|\mu|} \frac{1}{v^*u^*} \]

where \(v \) and \(u \) are right and left eigenvectors for the relevant active eigenvalue \(\mu \) of \(\tilde{A} \), which is assumed to be simple and have nonnegative imaginary part.

Gradients may be arbitrarily large for \(\mu \) nearly a multiple eigenvalue: spectral functions are not locally Lipschitz at an active multiple eigenvalue.

Break ties for active eigenvalue arbitrarily.

Since \(\tilde{A} \) is real, take \(\text{Im} \ \mu \geq 0 \) wlog.

Defining \(A(X) = F + GXH \), use ordinary chain rule to obtain gradients of \(\rho(A(X)) \) in the \(X \) space.
Let F be an $n \times n$ Toeplitz matrix whose nonzeros are 0.5 on the main diagonal and first three superdiagonals and and the number -0.5 on the first subdiagonal. Not Schur stable.
Let F be an $n \times n$ Toeplitz matrix whose nonzeros are 0.5 on the main diagonal and first three superdiagonals and and the number -0.5 on the first subdiagonal. Not Schur stable.

First set of experiments: set $n = 8$ and optimize over $X \in \mathbb{R}^{p \times m}$ with $p = 1$ (setting $G = [1, \ldots, 1]^T$), and consider m ranging from 0 to 8 (setting H to the matrix whose rows are the first m rows of the identity matrix).
Numerical Results for some SOF Problems

Let F be an $n \times n$ Toeplitz matrix whose nonzeros are 0.5 on the main diagonal and first three superdiagonals and and the number -0.5 on the first subdiagonal. Not Schur stable.

First set of experiments: set $n = 8$ and optimize over $X \in \mathbb{R}^{p \times m}$ with $p = 1$ (setting $G = [1, \ldots, 1]^T$), and consider m ranging from 0 to 8 (setting H to the matrix whose rows are the first m rows of the identity matrix).

For each m, run BFGS from 100 randomly generated starting points to search for local minimizers of $\rho(F + GXH)$ over X and plot eigenvalues of $F + GXH$ for the best X found.
Let F be an $n \times n$ Toeplitz matrix whose nonzeros are 0.5 on the main diagonal and first three superdiagonals and and the number -0.5 on the first subdiagonal. Not Schur stable.

First set of experiments: set $n = 8$ and optimize over $X \in \mathbb{R}^{p \times m}$ with $p = 1$ (setting $G = [1, \ldots, 1]^T$), and consider m ranging from 0 to 8 (setting H to the matrix whose rows are the first m rows of the identity matrix).

For each m, run BFGS from 100 randomly generated starting points to search for local minimizers of $\rho(F + GXH)$ over X and plot eigenvalues of $F + GXH$ for the best X found.

Second set of experiments: $n = 15$, $p = 2$, with G having a second column $[1, -1, 1, -1, \ldots, 1]^T$.
Optimized Eigenvalues: $n = 8, \ p = 1$

* : known optimal value for $m = 7$ and $m = 8$
Sorted Final Values of ρ for 100 Runs of BFGS

- **Introduction**
- **Some Nonsmooth Analysis**
 - Nesterov’s Chebyshev-Rosenbrock Functions
 - Other Examples of Behavior of BFGS on Nonsmooth Functions
 - Minimizing a Product of Eigenvalues
 - BFGS from 10 Randomly Generated Starting Points
 - Evolution of Eigenvalues of $A \circ X$
 - Why Did 44 Eigenvalues of H Converge to Zero?
 - Variation of f from Minimizer, along EigVecs of H
 - Minimizing the Spectral Radius

- **Nonsmooth Analysis of the Spectral Radius**
Optimized Eigenvalues: \(n = 15, \ p = 2 \)

Yuri Nesterov

Introduction

Some Nonsmooth Analysis

Nesterov's Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions

Minimizing a Product of Eigenvalues

BFGS from 10 Randomly Generated Starting Points

Evolution of Eigenvalues of \(A \circ X \)

Evolution of Eigenvalues of \(H \)

Why Did 44 Eigenvalues of \(H \) Converge to Zero?

Variation of \(f \) from Minimizer, along EigVecs of \(H \)

Minimizing the Spectral Radius

Nonsmooth Analysis of the Spectral Radius

\(\ast \) : \text{known optimal value for } m = 8
Sorted Final Values of ρ for 100 Runs of BFGS

Yurii Nesterov

Introduction

Some Nonsmooth Analysis

Nesterov's Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions

Minimizing a Product of Eigenvalues

BFGS from 10 Randomly Generated Starting Points

Evolution of Eigenvalues of $A \circ X$

Evolution of Eigenvalues of H

Why Did 44 Eigenvalues of H Converge to Zero?

Variation of f from Minimizer, along EigVecs of H

Minimizing the Spectral Radius

Nonsmooth Analysis of the Spectral Radius
Challenge: Convergence of BFGS in Nonsmooth Case

Yurii Nesterov

Introduction

Some Nonsmooth Analysis

Nesterov’s Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions

Minimizing a Product of Eigenvalues

BFGS from 10 Randomly Generated Starting Points

Evolution of Eigenvalues of $A \circ X$

Evolution of Eigenvalues of H

Why Did Eigenvalues of H Converge to Zero?

Variation of f from Minimizer, along EigVecs of H

Minimizing the Spectral Radius

Nonsmooth Analysis of the Spectral Radii
Assume f is locally Lipschitz with bounded level sets and is semi-algebraic
Assume f is locally Lipschitz with bounded level sets and is semi-algebraic

Assume the initial x and H are generated randomly (e.g. from normal and Wishart distributions)
Assume f is locally Lipschitz with bounded level sets and is semi-algebraic

Assume the initial x and H are generated randomly (e.g. from normal and Wishart distributions)

Prove or disprove that the following hold with probability one:
Assume f is locally Lipschitz with bounded level sets and is semi-algebraic.

Assume the initial x and H are generated randomly (e.g. from normal and Wishart distributions).

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence $\{x\}$ with f differentiable at all iterates.
Assume f is locally Lipschitz with bounded level sets and is semi-algebraic.

Assume the initial x and H are generated randomly (e.g. from normal and Wishart distributions).

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence $\{x\}$ with f differentiable at all iterates.
2. Any cluster point \bar{x} is Clarke stationary.
Assume \(f \) is locally Lipschitz with bounded level sets and is semi-algebraic

Assume the initial \(x \) and \(H \) are generated randomly (e.g. from normal and Wishart distributions)

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence \(\{x\} \) with \(f \) differentiable at all iterates
2. Any cluster point \(\bar{x} \) is Clarke stationary
3. The sequence of function values generated (including all of the line search iterates) converges to \(f(\bar{x}) \) \(\mathbb{R} \)-linearly
Assume f is locally Lipschitz with bounded level sets and is semi-algebraic.

Assume the initial x and H are generated randomly (e.g. from normal and Wishart distributions).

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence $\{x\}$ with f differentiable at all iterates.
2. Any cluster point \bar{x} is Clarke stationary.
3. The sequence of function values generated (including all of the line search iterates) converges to $f(\bar{x})$ R-linearly.
4. If $\{x\}$ converges to \bar{x} where f is “partly smooth” w.r.t. a manifold \mathcal{M} then the subspace defined by the eigenvectors corresponding to eigenvalues of H converging to zero converges to the “V-space” of f w.r.t. \mathcal{M} at \bar{x}.

And Finally

Yurii Nesterov

Introduction

Some Nonsmooth Analysis

Nesterov’s Chebyshev-Rosenbrock Functions

Other Examples of Behavior of BFGS on Nonsmooth Functions

Minimizing a Product of Eigenvalues

BFGS from 10 Randomly Generated Starting Points

Evolution of Eigenvalues of \(A \circ X \)

Evolution of Eigenvalues of \(H \)

Why Did 44 Eigenvalues of \(H \) Converge to Zero?

Variation of \(f \) from Minimizer, along EigVecs of \(H \)

Minimizing the Spectral Radius

Nonsmooth Analysis of the Spectral