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■ It seems we first met in 1988 at the Tokyo ISMP. We don’t
have a proof of this, but we do have a proof that we were
both at the meeting: we both used the beautiful gray bag
with the Samurai warrior design for many years, bringing it to
other conferences long after everyone else abandoned theirs!
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■ It seems we first met in 1988 at the Tokyo ISMP. We don’t
have a proof of this, but we do have a proof that we were
both at the meeting: we both used the beautiful gray bag
with the Samurai warrior design for many years, bringing it to
other conferences long after everyone else abandoned theirs!

■ We definitely met in 1994 at the Ann Arbor ISMP, where I
learned about the Nesterov-Todd primal-dual interior-point
algorithm for SDP.
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■ It seems we first met in 1988 at the Tokyo ISMP. We don’t
have a proof of this, but we do have a proof that we were
both at the meeting: we both used the beautiful gray bag
with the Samurai warrior design for many years, bringing it to
other conferences long after everyone else abandoned theirs!

■ We definitely met in 1994 at the Ann Arbor ISMP, where I
learned about the Nesterov-Todd primal-dual interior-point
algorithm for SDP.

■ We met again on many subsequent occasions, most notably
during very enjoyable extended visits to Louvain-la-neuve in
2004 and 2008.
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■ It seems we first met in 1988 at the Tokyo ISMP. We don’t
have a proof of this, but we do have a proof that we were
both at the meeting: we both used the beautiful gray bag
with the Samurai warrior design for many years, bringing it to
other conferences long after everyone else abandoned theirs!

■ We definitely met in 1994 at the Ann Arbor ISMP, where I
learned about the Nesterov-Todd primal-dual interior-point
algorithm for SDP.

■ We met again on many subsequent occasions, most notably
during very enjoyable extended visits to Louvain-la-neuve in
2004 and 2008.

■ Always a great pleasure to interact with this brilliant but
modest colleague!
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Problem: find x that locally minimizes f , where f : Rn → R is
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Problem: find x that locally minimizes f , where f : Rn → R is

■ Continuous
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Problem: find x that locally minimizes f , where f : Rn → R is

■ Continuous
■ Not differentiable everywhere, in particular often not

differentiable at local minimizers
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■ Not differentiable everywhere, in particular often not

differentiable at local minimizers
■ Not convex
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■ Continuous
■ Not differentiable everywhere, in particular often not

differentiable at local minimizers
■ Not convex
■ Usually, but not always, locally Lipschitz
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Problem: find x that locally minimizes f , where f : Rn → R is

■ Continuous
■ Not differentiable everywhere, in particular often not

differentiable at local minimizers
■ Not convex
■ Usually, but not always, locally Lipschitz

Lots of interesting applications
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Problem: find x that locally minimizes f , where f : Rn → R is

■ Continuous
■ Not differentiable everywhere, in particular often not

differentiable at local minimizers
■ Not convex
■ Usually, but not always, locally Lipschitz

Lots of interesting applications

Any locally Lipschitz function is differentiable almost everywhere
on its domain. So, whp, can evaluate gradient at any given point.
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Problem: find x that locally minimizes f , where f : Rn → R is

■ Continuous
■ Not differentiable everywhere, in particular often not

differentiable at local minimizers
■ Not convex
■ Usually, but not always, locally Lipschitz

Lots of interesting applications

Any locally Lipschitz function is differentiable almost everywhere
on its domain. So, whp, can evaluate gradient at any given point.

What happens if we simply use steepest descent (gradient
descent) with a standard line search?
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In fact, it’s been known for several decades that at any given
iterate, one should exploit the gradient information obtained at
several points, not just at one point. Some such methods:
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In fact, it’s been known for several decades that at any given
iterate, one should exploit the gradient information obtained at
several points, not just at one point. Some such methods:

■ Bundle methods (C. Lemaréchal, K.C. Kiwiel, etc.):
extensive practical use and theoretical analysis, but
complicated in nonconvex case



Methods Suitable for Nonsmooth Functions

Yurii Nesterov

Introduction
Nonsmooth,
Nonconvex
Optimization

Example

Methods Suitable for
Nonsmooth
Functions
Failure of Steepest
Descent: Simpler
Example

The BFGS Method
(“Full” Version)

BFGS for
Nonsmooth
Optimization

With BFGS

Some Nonsmooth
Analysis

Nesterov’s
Chebyshev-
Rosenbrock
Functions

Other Examples of
Behavior of BFGS
on Nonsmooth
Functions

6 / 48

In fact, it’s been known for several decades that at any given
iterate, one should exploit the gradient information obtained at
several points, not just at one point. Some such methods:

■ Bundle methods (C. Lemaréchal, K.C. Kiwiel, etc.):
extensive practical use and theoretical analysis, but
complicated in nonconvex case

■ Gradient sampling: an easily stated method with nice
convergence theory (J.V. Burke, A.S. Lewis, M.L.O., 2005;
K.C. Kiwiel, 2007), but computationally intensive
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■ Gradient sampling: an easily stated method with nice
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■ BFGS: traditional workhorse for smooth optimization, works
amazingly well for nonsmooth optimization too, but very
limited convergence theory
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In fact, it’s been known for several decades that at any given
iterate, one should exploit the gradient information obtained at
several points, not just at one point. Some such methods:

■ Bundle methods (C. Lemaréchal, K.C. Kiwiel, etc.):
extensive practical use and theoretical analysis, but
complicated in nonconvex case

■ Gradient sampling: an easily stated method with nice
convergence theory (J.V. Burke, A.S. Lewis, M.L.O., 2005;
K.C. Kiwiel, 2007), but computationally intensive

■ BFGS: traditional workhorse for smooth optimization, works
amazingly well for nonsmooth optimization too, but very
limited convergence theory

A completely different approach using randomized gradient-free
methods: the first complexity result for nonsmooth, nonconvex
optimization (Y. Nesterov and V. Spokoiny, JFoCM, 2015).
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Let f(x) = 6|x1|+ 3x2. Note that f is polyhedral and convex.
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Let f(x) = 6|x1|+ 3x2. Note that f is polyhedral and convex.

On this function, using a bisection-based backtracking line

search with “Armijo” parameter in [0, 13 ] and starting at

[
2
3

]
,

steepest descent generates the sequence

2−k

[
2(−1)k

3

]
, k = 1, 2, . . . ,

converging to

[
0
0

]
.
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Let f(x) = 6|x1|+ 3x2. Note that f is polyhedral and convex.

On this function, using a bisection-based backtracking line

search with “Armijo” parameter in [0, 13 ] and starting at

[
2
3

]
,

steepest descent generates the sequence

2−k

[
2(−1)k

3

]
, k = 1, 2, . . . ,

converging to

[
0
0

]
.

In contrast, BFGS with the same line search rapidly reduces the
function value towards −∞ (arbitrarily far, in exact arithmetic)
(A.S. Lewis and S. Zhang, 2010).
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Broyden, Fletcher, Goldfarb, Shanno independently, 1970
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Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters 0 < β < γ < 1
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Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H

(which is supposed to approximate the inverse Hessian of f)
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Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H

(which is supposed to approximate the inverse Hessian of f)

Repeat
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Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H

(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)T d < 0
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Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H

(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)T d < 0
■ Armijo-Wolfe line search: find t so that f(x+ td) < f(x) + βtα

and ∇f(x+ td)T d > γα
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Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H

(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)T d < 0
■ Armijo-Wolfe line search: find t so that f(x+ td) < f(x) + βtα

and ∇f(x+ td)T d > γα

■ Set s = td, y = ∇f(x+ td)−∇f(x)
■ Replace x by x+ td
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■ Set d = −H∇f(x). Let α = ∇f(x)T d < 0
■ Armijo-Wolfe line search: find t so that f(x+ td) < f(x) + βtα

and ∇f(x+ td)T d > γα

■ Set s = td, y = ∇f(x+ td)−∇f(x)
■ Replace x by x+ td

■ Replace H by V HV T + 1

sT y
ssT , where V = I − 1

sT y
syT
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■ Set s = td, y = ∇f(x+ td)−∇f(x)
■ Replace x by x+ td

■ Replace H by V HV T + 1

sT y
ssT , where V = I − 1

sT y
syT

Note that H can be computed in O(n2) operations since V is a
rank one perturbation of the identity
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Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H

(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)T d < 0
■ Armijo-Wolfe line search: find t so that f(x+ td) < f(x) + βtα

and ∇f(x+ td)T d > γα

■ Set s = td, y = ∇f(x+ td)−∇f(x)
■ Replace x by x+ td

■ Replace H by V HV T + 1

sT y
ssT , where V = I − 1

sT y
syT

Note that H can be computed in O(n2) operations since V is a
rank one perturbation of the identity
The Armijo condition ensures “sufficient decrease” in f
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Broyden, Fletcher, Goldfarb, Shanno independently, 1970

Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H

(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)T d < 0
■ Armijo-Wolfe line search: find t so that f(x+ td) < f(x) + βtα

and ∇f(x+ td)T d > γα

■ Set s = td, y = ∇f(x+ td)−∇f(x)
■ Replace x by x+ td

■ Replace H by V HV T + 1

sT y
ssT , where V = I − 1

sT y
syT

Note that H can be computed in O(n2) operations since V is a
rank one perturbation of the identity
The Armijo condition ensures “sufficient decrease” in f

The Wolfe condition ensures that the directional derivative along
the line increases algebraically, which guarantees that sT y > 0
and that the new H is positive definite.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to very special cases.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to very special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on
reducing the magnitude of the directional derivative along the line!
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to very special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on
reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse
“Hessian” approximation, with some tiny eigenvalues converging to
zero, corresponding to “infinitely large” curvature in the directions
defined by the associated eigenvectors.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to very special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on
reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse
“Hessian” approximation, with some tiny eigenvalues converging to
zero, corresponding to “infinitely large” curvature in the directions
defined by the associated eigenvectors.

Remarkably, the condition number of the inverse Hessian
approximation typically reaches 1016 before the method breaks down.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to very special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on
reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse
“Hessian” approximation, with some tiny eigenvalues converging to
zero, corresponding to “infinitely large” curvature in the directions
defined by the associated eigenvectors.

Remarkably, the condition number of the inverse Hessian
approximation typically reaches 1016 before the method breaks down.

We have never seen convergence to non-stationary points that cannot
be explained by numerical difficulties.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to very special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on
reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse
“Hessian” approximation, with some tiny eigenvalues converging to
zero, corresponding to “infinitely large” curvature in the directions
defined by the associated eigenvectors.

Remarkably, the condition number of the inverse Hessian
approximation typically reaches 1016 before the method breaks down.

We have never seen convergence to non-stationary points that cannot
be explained by numerical difficulties.

Convergence rate of BFGS is typically linear (not superlinear) in the
nonsmooth case.
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f(x)=10*|x
2
 − x

1
2| + (1−x

1
)2

steepest descent, grad sampling and BFGS iterates
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.

Rademacher’s Theorem: Rn\D has measure zero.
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.

Rademacher’s Theorem: Rn\D has measure zero.

The Clarke subdifferential of f at x̄ is

∂Cf(x̄) = conv

{
lim

x→x̄,x∈D
∇f(x)

}
.
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.

Rademacher’s Theorem: Rn\D has measure zero.

The Clarke subdifferential of f at x̄ is

∂Cf(x̄) = conv

{
lim

x→x̄,x∈D
∇f(x)

}
.

F.H. Clarke, 1973 (he used the name “generalized gradient”).
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.

Rademacher’s Theorem: Rn\D has measure zero.

The Clarke subdifferential of f at x̄ is

∂Cf(x̄) = conv

{
lim

x→x̄,x∈D
∇f(x)

}
.

F.H. Clarke, 1973 (he used the name “generalized gradient”).

If f is continuously differentiable at x̄, then ∂Cf(x̄) = {∇f(x̄)}.
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.

Rademacher’s Theorem: Rn\D has measure zero.

The Clarke subdifferential of f at x̄ is

∂Cf(x̄) = conv

{
lim

x→x̄,x∈D
∇f(x)

}
.

F.H. Clarke, 1973 (he used the name “generalized gradient”).

If f is continuously differentiable at x̄, then ∂Cf(x̄) = {∇f(x̄)}.

If f is convex, ∂Cf is the subdifferential of convex analysis.
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.

Rademacher’s Theorem: Rn\D has measure zero.

The Clarke subdifferential of f at x̄ is

∂Cf(x̄) = conv

{
lim

x→x̄,x∈D
∇f(x)

}
.

F.H. Clarke, 1973 (he used the name “generalized gradient”).

If f is continuously differentiable at x̄, then ∂Cf(x̄) = {∇f(x̄)}.

If f is convex, ∂Cf is the subdifferential of convex analysis.

We say x̄ is Clarke stationary for f if 0 ∈ ∂Cf(x̄).
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f(x)=10*|x
2
 − x

1
2| + (1−x

1
)2

steepest descent, grad sampling and BFGS iterates
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A locally Lipschitz, directionally differentiable function f is
(Clarke) regular near a point x̄ when its directional derivative
x 7→ f ′(x; d) is upper semicontinuous near x̄ for every fixed
direction d.
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A locally Lipschitz, directionally differentiable function f is
(Clarke) regular near a point x̄ when its directional derivative
x 7→ f ′(x; d) is upper semicontinuous near x̄ for every fixed
direction d.

In this case 0 ∈ ∂Cf(x̄) is equivalent to the first-order optimality
condition f ′(x̄, d) ≥ 0 for all directions d.
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A locally Lipschitz, directionally differentiable function f is
(Clarke) regular near a point x̄ when its directional derivative
x 7→ f ′(x; d) is upper semicontinuous near x̄ for every fixed
direction d.

In this case 0 ∈ ∂Cf(x̄) is equivalent to the first-order optimality
condition f ′(x̄, d) ≥ 0 for all directions d.

■ All convex functions are regular
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A locally Lipschitz, directionally differentiable function f is
(Clarke) regular near a point x̄ when its directional derivative
x 7→ f ′(x; d) is upper semicontinuous near x̄ for every fixed
direction d.

In this case 0 ∈ ∂Cf(x̄) is equivalent to the first-order optimality
condition f ′(x̄, d) ≥ 0 for all directions d.

■ All convex functions are regular
■ All smooth functions are regular
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A locally Lipschitz, directionally differentiable function f is
(Clarke) regular near a point x̄ when its directional derivative
x 7→ f ′(x; d) is upper semicontinuous near x̄ for every fixed
direction d.

In this case 0 ∈ ∂Cf(x̄) is equivalent to the first-order optimality
condition f ′(x̄, d) ≥ 0 for all directions d.

■ All convex functions are regular
■ All smooth functions are regular
■ Nonsmooth concave functions are not regular

Example: f(x) = −|x|
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A regular function f is partly smooth at x̄ relative to a manifold
M containing x̄ (A.S. Lewis 2003) if



Partly Smooth Functions

Yurii Nesterov

Introduction

Some Nonsmooth
Analysis

The Clarke
Subdifferential
Note that
0 ∈ ∂Cf(x) = 0

at x = [1; 1]T

Regularity

Partly Smooth
Functions
Illustration of U and
V-spaces on Same
Example

Nesterov’s
Chebyshev-
Rosenbrock
Functions

Other Examples of
Behavior of BFGS
on Nonsmooth
Functions

15 / 48

A regular function f is partly smooth at x̄ relative to a manifold
M containing x̄ (A.S. Lewis 2003) if

■ its restriction to M is twice continuously differentiable near x̄
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A regular function f is partly smooth at x̄ relative to a manifold
M containing x̄ (A.S. Lewis 2003) if

■ its restriction to M is twice continuously differentiable near x̄
■ the Clarke subdifferential ∂Cf is continuous on M near x̄
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A regular function f is partly smooth at x̄ relative to a manifold
M containing x̄ (A.S. Lewis 2003) if

■ its restriction to M is twice continuously differentiable near x̄
■ the Clarke subdifferential ∂Cf is continuous on M near x̄
■ par ∂Cf(x̄), the subspace parallel to the affine hull of the

subdifferential of f at x̄, is exactly the subspace normal to
M at x̄.
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A regular function f is partly smooth at x̄ relative to a manifold
M containing x̄ (A.S. Lewis 2003) if

■ its restriction to M is twice continuously differentiable near x̄
■ the Clarke subdifferential ∂Cf is continuous on M near x̄
■ par ∂Cf(x̄), the subspace parallel to the affine hull of the

subdifferential of f at x̄, is exactly the subspace normal to
M at x̄.

We refer to par ∂Cf(x) as the V-space for f at x̄ (with respect
to M), and to its orthogonal complement, the subspace tangent
to M at x̄, as the U-space for f at x̄.
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A regular function f is partly smooth at x̄ relative to a manifold
M containing x̄ (A.S. Lewis 2003) if

■ its restriction to M is twice continuously differentiable near x̄
■ the Clarke subdifferential ∂Cf is continuous on M near x̄
■ par ∂Cf(x̄), the subspace parallel to the affine hull of the

subdifferential of f at x̄, is exactly the subspace normal to
M at x̄.

We refer to par ∂Cf(x) as the V-space for f at x̄ (with respect
to M), and to its orthogonal complement, the subspace tangent
to M at x̄, as the U-space for f at x̄.

For nonzero y in the V-space, the mapping t 7→ f(x̄+ ty) is
necessarily nonsmooth at t = 0, while for nonzero y in the
U-space, t 7→ f(x̄+ ty) is differentiable at t = 0 as long as f is
locally Lipschitz.
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Nesterov (2008, private comm.): consider the function

Np(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|p, where p ∈ [1, 2]
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Np(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|p, where p ∈ [1, 2]

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Np(x
∗) = 0.
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Nesterov (2008, private comm.): consider the function

Np(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|p, where p ∈ [1, 2]

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Np(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Np(x̂) = 1 and the manifold

MN = {x : xi+1 = 2x2i − 1, i = 1, . . . , n− 1}
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|xi+1 − 2x2i + 1|p, where p ∈ [1, 2]

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Np(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Np(x̂) = 1 and the manifold

MN = {x : xi+1 = 2x2i − 1, i = 1, . . . , n− 1}

For x ∈ MN , e.g. x = x∗ or x = x̂, the 2nd term of Np is zero.
Starting at x̂, BFGS needs to approximately follow MN to reach
x∗ (unless it “gets lucky”).
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For x ∈ MN , e.g. x = x∗ or x = x̂, the 2nd term of Np is zero.
Starting at x̂, BFGS needs to approximately follow MN to reach
x∗ (unless it “gets lucky”).

When p = 2: N2 is smooth but not convex. Starting at x̂:
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For x ∈ MN , e.g. x = x∗ or x = x̂, the 2nd term of Np is zero.
Starting at x̂, BFGS needs to approximately follow MN to reach
x∗ (unless it “gets lucky”).

When p = 2: N2 is smooth but not convex. Starting at x̂:

■ n = 5: BFGS needs 370 iterations to reduce N2 below 10−15
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Nesterov (2008, private comm.): consider the function

Np(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|p, where p ∈ [1, 2]

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Np(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Np(x̂) = 1 and the manifold

MN = {x : xi+1 = 2x2i − 1, i = 1, . . . , n− 1}

For x ∈ MN , e.g. x = x∗ or x = x̂, the 2nd term of Np is zero.
Starting at x̂, BFGS needs to approximately follow MN to reach
x∗ (unless it “gets lucky”).

When p = 2: N2 is smooth but not convex. Starting at x̂:

■ n = 5: BFGS needs 370 iterations to reduce N2 below 10−15

■ n = 10: needs ∼ 50,000 iterations to reduce N2 below 10−15

even though N2 is smooth!
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2
i − 1 = T2(xi) = T2(T2(xi−1))
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2
i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2
i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2
i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2
i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
■ x2 = 2x2

1 − 1 to trace the graph of T2(x1) on [−1, 1]
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2
i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
■ x2 = 2x2

1 − 1 to trace the graph of T2(x1) on [−1, 1]
■ x3 = T2(T2(x)) to trace the graph of T4(x1) on [−1, 1]
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2
i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
■ x2 = 2x2

1 − 1 to trace the graph of T2(x1) on [−1, 1]
■ x3 = T2(T2(x)) to trace the graph of T4(x1) on [−1, 1]
■ xn = T2n−1(x) to trace the graph of T2n−1(x1) on [−1, 1]

which has 2n−1 − 1 extrema in (−1, 1).
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2
i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
■ x2 = 2x2

1 − 1 to trace the graph of T2(x1) on [−1, 1]
■ x3 = T2(T2(x)) to trace the graph of T4(x1) on [−1, 1]
■ xn = T2n−1(x) to trace the graph of T2n−1(x1) on [−1, 1]

which has 2n−1 − 1 extrema in (−1, 1).
Even though BFGS will not track the manifold MN exactly, it will
follow it approximately. So, since the manifold is highly oscillatory,
BFGS must take relatively short steps to obtain reduction in N2 in the
line search, and hence it takes many iterations!
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,
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■ xn = T2n−1(x) to trace the graph of T2n−1(x1) on [−1, 1]

which has 2n−1 − 1 extrema in (−1, 1).
Even though BFGS will not track the manifold MN exactly, it will
follow it approximately. So, since the manifold is highly oscillatory,
BFGS must take relatively short steps to obtain reduction in N2 in the
line search, and hence it takes many iterations!

At the very end, since N2 is smooth, BFGS is superlinearly convergent!
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2
i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
■ x2 = 2x2

1 − 1 to trace the graph of T2(x1) on [−1, 1]
■ x3 = T2(T2(x)) to trace the graph of T4(x1) on [−1, 1]
■ xn = T2n−1(x) to trace the graph of T2n−1(x1) on [−1, 1]

which has 2n−1 − 1 extrema in (−1, 1).
Even though BFGS will not track the manifold MN exactly, it will
follow it approximately. So, since the manifold is highly oscillatory,
BFGS must take relatively short steps to obtain reduction in N2 in the
line search, and hence it takes many iterations!

At the very end, since N2 is smooth, BFGS is superlinearly convergent!

Newton’s method is not much faster, although it converges
quadratically at the end.
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F. Jarre (2013): if the second term (the sum) in Nesterov’s
smooth Chebyshev-Rosenbrock function N2 is weighted by 400,
any continuous piecewise linear descent path starting at x̂ and
leading to the global minimizer x∗ has

at least 1.618n linear segments.
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .

However, N1 is regular at x ∈ MN and partly smooth at x w.r.t.
MN , and x∗ = [1, 1, . . . , 1]T is its only stationary point.
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .

However, N1 is regular at x ∈ MN and partly smooth at x w.r.t.
MN , and x∗ = [1, 1, . . . , 1]T is its only stationary point.

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .

However, N1 is regular at x ∈ MN and partly smooth at x w.r.t.
MN , and x∗ = [1, 1, . . . , 1]T is its only stationary point.

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:

■ n = 5: BFGS reduces N1 only to about 5× 10−3 in 1000
iterations
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .

However, N1 is regular at x ∈ MN and partly smooth at x w.r.t.
MN , and x∗ = [1, 1, . . . , 1]T is its only stationary point.

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:

■ n = 5: BFGS reduces N1 only to about 5× 10−3 in 1000
iterations

■ n = 10: BFGS reduces N1 only to about 2× 10−2 in 1000
iterations
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .

However, N1 is regular at x ∈ MN and partly smooth at x w.r.t.
MN , and x∗ = [1, 1, . . . , 1]T is its only stationary point.

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:

■ n = 5: BFGS reduces N1 only to about 5× 10−3 in 1000
iterations

■ n = 10: BFGS reduces N1 only to about 2× 10−2 in 1000
iterations

The method appears to be converging, very slowly, but may be
having numerical difficulties.
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N̂1(x) =
1

4
|x1 − 1|+

n−1∑

i=1

|xi+1 − 2|xi|+ 1|.

Again, the unique global minimizer is x∗. The second term is
zero on the set

S = {x : xi+1 = 2|xi| − 1, i = 1, . . . , n− 1}

but S is not a manifold: it has “corners”.
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Nesterov−Chebyshev−Rosenbrock, first variant
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Nesterov−Chebyshev−Rosenbrock, second variant

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Contour plots of nonsmooth Chebyshev-Rosenbrock functions N1

(left) and N̂1 (right), with n = 2, with iterates generated by
BFGS initialized at 7 different randomly generated points.
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Nesterov−Chebyshev−Rosenbrock, first variant
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Nesterov−Chebyshev−Rosenbrock, second variant
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Contour plots of nonsmooth Chebyshev-Rosenbrock functions N1

(left) and N̂1 (right), with n = 2, with iterates generated by
BFGS initialized at 7 different randomly generated points.
On the left, always get convergence to x∗ = [1, 1]T . On the
right, most runs converge to [1, 1] but some go to x = [0,−1]T .
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When n = 2, the point x = [0,−1]T is Clarke stationary for the
second nonsmooth variant N̂1. We can see this because zero is
in the convex hull of the gradient limits for N̂1 at the point x.
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When n = 2, the point x = [0,−1]T is Clarke stationary for the
second nonsmooth variant N̂1. We can see this because zero is
in the convex hull of the gradient limits for N̂1 at the point x.

However, x = [0,−1]T is not a local minimizer, because
d = [1, 2]T is a direction of linear descent: N̂ ′

1(x, d) < 0.
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When n = 2, the point x = [0,−1]T is Clarke stationary for the
second nonsmooth variant N̂1. We can see this because zero is
in the convex hull of the gradient limits for N̂1 at the point x.

However, x = [0,−1]T is not a local minimizer, because
d = [1, 2]T is a direction of linear descent: N̂ ′

1(x, d) < 0.

These two properties mean that N̂1 is not regular at [0,−1]T .
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B.S. Mordukhovich (1976), R.T. Rockafellar and R. J.-B. Wets
(1998)

Consider a continuous function f : Rn → R (not necessarily
Lipschitz) and a point x̄ ∈ R

n. A vector v̄ ∈ R
n is a regular

subgradient of f at x̄ (written v̄ ∈ ∂̂f(x̄)) if

lim inf
z → x̄

z 6= x̄

f(z)− f(x̄)− 〈v̄, z − x̄〉

|z − x̄|
≥ 0.
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B.S. Mordukhovich (1976), R.T. Rockafellar and R. J.-B. Wets
(1998)

Consider a continuous function f : Rn → R (not necessarily
Lipschitz) and a point x̄ ∈ R

n. A vector v̄ ∈ R
n is a regular

subgradient of f at x̄ (written v̄ ∈ ∂̂f(x̄)) if

lim inf
z → x̄

z 6= x̄

f(z)− f(x̄)− 〈v̄, z − x̄〉

|z − x̄|
≥ 0.

A vector v̄ ∈ R
n is a Mordukhovich subgradient of f at x̄

(written v̄ ∈ ∂Mf(x̄)) if there exist sequences {x} and {v} in
R
n satisfying

x → x̄

v ∈ ∂̂f(x)

v → v̄.
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B.S. Mordukhovich (1976), R.T. Rockafellar and R. J.-B. Wets
(1998)

Consider a continuous function f : Rn → R (not necessarily
Lipschitz) and a point x̄ ∈ R

n. A vector v̄ ∈ R
n is a regular

subgradient of f at x̄ (written v̄ ∈ ∂̂f(x̄)) if

lim inf
z → x̄

z 6= x̄

f(z)− f(x̄)− 〈v̄, z − x̄〉

|z − x̄|
≥ 0.

A vector v̄ ∈ R
n is a Mordukhovich subgradient of f at x̄

(written v̄ ∈ ∂Mf(x̄)) if there exist sequences {x} and {v} in
R
n satisfying

x → x̄

v ∈ ∂̂f(x)

v → v̄.

We say f is Mordukhovich stationary at x̄ if 0 ∈ ∂Mf(x̄).
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For a locally Lipschitz function f , we have

∂Cf(x̄) = conv ∂Mf(x̄).

and, if f is regular,

∂Cf(x̄) = ∂Mf(x̄).
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For a locally Lipschitz function f , we have

∂Cf(x̄) = conv ∂Mf(x̄).

and, if f is regular,

∂Cf(x̄) = ∂Mf(x̄).

Example: let g(x) = |x1| − |x2|, x ∈ R
2. Then

∂Cg(0) = [−1, 1]× [−1, 1] and ∂Mg(0) = [−1, 1]× {−1, 1}

so g is not regular.
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Theorem. For n ≥ 2:

■ N̂1 has 2n−1 Clarke stationary points
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Theorem. For n ≥ 2:

■ N̂1 has 2n−1 Clarke stationary points
■ N̂1 has exactly one Mordukhovich stationary point, the

global minimizer x∗
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Theorem. For n ≥ 2:

■ N̂1 has 2n−1 Clarke stationary points
■ N̂1 has exactly one Mordukhovich stationary point, the

global minimizer x∗

■ its only local minimizer is the global minimizer x∗

M. Gürbüzbalaban and M.L.O., SIOPT, 2012.
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Theorem. For n ≥ 2:

■ N̂1 has 2n−1 Clarke stationary points
■ N̂1 has exactly one Mordukhovich stationary point, the

global minimizer x∗

■ its only local minimizer is the global minimizer x∗

M. Gürbüzbalaban and M.L.O., SIOPT, 2012.

Furthermore, starting from enough randomly generated starting
points, BFGS finds all 2n−1 Clarke stationary points!
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Left: sorted final values of N̂1 for 1000 randomly generated
starting points, when n = 5: BFGS finds all 16 Clarke stationary
points. Right: same with n = 6: BFGS finds all 32 Clarke
stationary points.
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When f is smooth, convergence of methods such as BFGS to
non-locally-minimizing stationary points or local maxima is
possible but not likely, because of the line search, and such
convergence will not be stable under perturbation.
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When f is smooth, convergence of methods such as BFGS to
non-locally-minimizing stationary points or local maxima is
possible but not likely, because of the line search, and such
convergence will not be stable under perturbation.

However, this kind of convergence is what we are seeing for the
non-regular, non-smooth Nesterov Chebyshev-Rosenbrock
example, and it is stable under perturbation. The same behavior
occurs for gradient sampling or bundle methods.
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When f is smooth, convergence of methods such as BFGS to
non-locally-minimizing stationary points or local maxima is
possible but not likely, because of the line search, and such
convergence will not be stable under perturbation.

However, this kind of convergence is what we are seeing for the
non-regular, non-smooth Nesterov Chebyshev-Rosenbrock
example, and it is stable under perturbation. The same behavior
occurs for gradient sampling or bundle methods.

Kiwiel (private communication): the Nesterov example is the first
he had seen which causes his bundle code to have this behavior.
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When f is smooth, convergence of methods such as BFGS to
non-locally-minimizing stationary points or local maxima is
possible but not likely, because of the line search, and such
convergence will not be stable under perturbation.

However, this kind of convergence is what we are seeing for the
non-regular, non-smooth Nesterov Chebyshev-Rosenbrock
example, and it is stable under perturbation. The same behavior
occurs for gradient sampling or bundle methods.

Kiwiel (private communication): the Nesterov example is the first
he had seen which causes his bundle code to have this behavior.

Nonetheless, we don’t know whether, in exact arithmetic, the
methods would actually generate sequences converging to the
nonminimizing Clarke stationary points. Experiments by Kaku
(2011) suggest that the higher the precision used, the more likely
BFGS is to eventually move away from such a point.
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M.S. thesis by A. Kaku experimenting with Sherry Li’s “double
double” C++ package.
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M.S. thesis by A. Kaku experimenting with Sherry Li’s “double
double” C++ package.

“double double” is not the same as quadruple precision: each
number is represented as the sum of two ordinary double
precision numbers
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M.S. thesis by A. Kaku experimenting with Sherry Li’s “double
double” C++ package.

“double double” is not the same as quadruple precision: each
number is represented as the sum of two ordinary double
precision numbers

Thus, 1 + 10−30 and 1 + 10−300 are both valid “double double”
numbers
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M.S. thesis by A. Kaku experimenting with Sherry Li’s “double
double” C++ package.

“double double” is not the same as quadruple precision: each
number is represented as the sum of two ordinary double
precision numbers

Thus, 1 + 10−30 and 1 + 10−300 are both valid “double double”
numbers

In practice, it is just a convenient, inexpensive software
implementation that approximates quadruple precision
(approximately 32 decimal digits of accuracy instead of 16)
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M.S. thesis by A. Kaku experimenting with Sherry Li’s “double
double” C++ package.

“double double” is not the same as quadruple precision: each
number is represented as the sum of two ordinary double
precision numbers

Thus, 1 + 10−30 and 1 + 10−300 are both valid “double double”
numbers

In practice, it is just a convenient, inexpensive software
implementation that approximates quadruple precision
(approximately 32 decimal digits of accuracy instead of 16)

Show plots from Kaku’s thesis.
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Recent work by A. Griewank on automatic differentiation for
nonsmooth optimization: leads to a more efficient method for
optimization of Nesterov’s second nonsmooth
Chebyshev-Rosenbrock since it is able to efficiently exploit the
piecewise-linearity of the function.
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Recent work by A. Griewank on automatic differentiation for
nonsmooth optimization: leads to a more efficient method for
optimization of Nesterov’s second nonsmooth
Chebyshev-Rosenbrock since it is able to efficiently exploit the
piecewise-linearity of the function.

Starting at x̂, it visits all 2n−1 Clarke stationary points, but it
does not get stuck at any of them because it repeatedly solves
LPs that define the piecewise linear path leading to the global
minimum.
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Let SN denote the space of real symmetric N ×N matrices, and

λ1(X) ≥ λ2(X) ≥ · · ·λN (X)

denote the eigenvalues of X ∈ SN .
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Let SN denote the space of real symmetric N ×N matrices, and

λ1(X) ≥ λ2(X) ≥ · · ·λN (X)

denote the eigenvalues of X ∈ SN . We wish to minimize

f(X) = log

N/2∏

i=1

λi(A ◦X)

where A ∈ SN is fixed and ◦ is the Hadamard (componentwise)
matrix product, subject to the constraints that X is positive
semidefinite and has diagonal entries equal to 1.
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Let SN denote the space of real symmetric N ×N matrices, and

λ1(X) ≥ λ2(X) ≥ · · ·λN (X)

denote the eigenvalues of X ∈ SN . We wish to minimize

f(X) = log

N/2∏

i=1

λi(A ◦X)

where A ∈ SN is fixed and ◦ is the Hadamard (componentwise)
matrix product, subject to the constraints that X is positive
semidefinite and has diagonal entries equal to 1.

If we replace
∏

by
∑

we would have a semidefinite program.
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Let SN denote the space of real symmetric N ×N matrices, and

λ1(X) ≥ λ2(X) ≥ · · ·λN (X)

denote the eigenvalues of X ∈ SN . We wish to minimize

f(X) = log

N/2∏

i=1

λi(A ◦X)

where A ∈ SN is fixed and ◦ is the Hadamard (componentwise)
matrix product, subject to the constraints that X is positive
semidefinite and has diagonal entries equal to 1.

If we replace
∏

by
∑

we would have a semidefinite program.

Since f is not convex, may as well replace X by Y Y T where
Y ∈ R

N×N : eliminates psd constraint, and then also easy to
eliminate diagonal constraint.
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Let SN denote the space of real symmetric N ×N matrices, and

λ1(X) ≥ λ2(X) ≥ · · ·λN (X)

denote the eigenvalues of X ∈ SN . We wish to minimize

f(X) = log

N/2∏

i=1

λi(A ◦X)

where A ∈ SN is fixed and ◦ is the Hadamard (componentwise)
matrix product, subject to the constraints that X is positive
semidefinite and has diagonal entries equal to 1.

If we replace
∏

by
∑

we would have a semidefinite program.

Since f is not convex, may as well replace X by Y Y T where
Y ∈ R

N×N : eliminates psd constraint, and then also easy to
eliminate diagonal constraint.

Application: entropy minimization in an environmental
application (K.M. Anstreicher and J. Lee, 2004)



BFGS from 10 Randomly Generated Starting Points

Yurii Nesterov

Introduction

Some Nonsmooth
Analysis

Nesterov’s
Chebyshev-
Rosenbrock
Functions

Other Examples of
Behavior of BFGS
on Nonsmooth
Functions
Minimizing a
Product of
Eigenvalues

BFGS from 10
Randomly Generated
Starting Points

Evolution of
Eigenvalues of
A ◦ X
Evolution of
Eigenvalues of H

Why Did 44
Eigenvalues of H
Converge to Zero?

Variation of f from
Minimizer, along
EigVecs of H

Minimizing the
Spectral Radius

Nonsmooth Analysis
of the Spectral

34 / 48

0 200 400 600 800 1000 1200 1400
10

−15

10
−10

10
−5

10
0

10
5

iteration

f −
 f op

t (
di

ffe
re

nt
 s

ta
rt

in
g 

po
in

ts
)

Log eigenvalue product, N=20, n=400, f
opt

=  −4.37938e+000

f − fopt, where fopt is least value of f found over all runs



Evolution of Eigenvalues of A ◦X

Yurii Nesterov

Introduction

Some Nonsmooth
Analysis

Nesterov’s
Chebyshev-
Rosenbrock
Functions

Other Examples of
Behavior of BFGS
on Nonsmooth
Functions
Minimizing a
Product of
Eigenvalues

BFGS from 10
Randomly Generated
Starting Points

Evolution of
Eigenvalues of
A ◦ X
Evolution of
Eigenvalues of H

Why Did 44
Eigenvalues of H
Converge to Zero?

Variation of f from
Minimizer, along
EigVecs of H

Minimizing the
Spectral Radius

Nonsmooth Analysis
of the Spectral

35 / 48

0 200 400 600 800 1000 1200 1400
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Log eigenvalue product, N=20, n=400, f
opt

=  −4.37938e+000

iteration

ei
ge

nv
al

ue
s 

of
 A

 o
 X



Evolution of Eigenvalues of A ◦X

Yurii Nesterov

Introduction

Some Nonsmooth
Analysis

Nesterov’s
Chebyshev-
Rosenbrock
Functions

Other Examples of
Behavior of BFGS
on Nonsmooth
Functions
Minimizing a
Product of
Eigenvalues

BFGS from 10
Randomly Generated
Starting Points

Evolution of
Eigenvalues of
A ◦ X
Evolution of
Eigenvalues of H

Why Did 44
Eigenvalues of H
Converge to Zero?

Variation of f from
Minimizer, along
EigVecs of H

Minimizing the
Spectral Radius

Nonsmooth Analysis
of the Spectral

35 / 48

0 200 400 600 800 1000 1200 1400
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Log eigenvalue product, N=20, n=400, f
opt

=  −4.37938e+000

iteration

ei
ge

nv
al

ue
s 

of
 A

 o
 X

Note that λ6(X), . . . , λ14(X) coalesce
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44 eigenvalues of H converge to zero...why???
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The eigenvalue product is partly smooth with respect to the
manifold of matrices with an eigenvalue with given multiplicity.
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The eigenvalue product is partly smooth with respect to the
manifold of matrices with an eigenvalue with given multiplicity.

Recall that at the computed minimizer,

λ6(A ◦X) ≈ . . . ≈ λ14(A ◦X).

Matrix theory says that imposing multiplicity m on an eigenvalue
a matrix ∈ SN is m(m+1)

2 − 1 conditions, or 44 when m = 9, so
the dimension of the V -space at this minimizer is 44.
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The eigenvalue product is partly smooth with respect to the
manifold of matrices with an eigenvalue with given multiplicity.

Recall that at the computed minimizer,

λ6(A ◦X) ≈ . . . ≈ λ14(A ◦X).

Matrix theory says that imposing multiplicity m on an eigenvalue
a matrix ∈ SN is m(m+1)

2 − 1 conditions, or 44 when m = 9, so
the dimension of the V -space at this minimizer is 44.

And tiny eigenvalues of the BFGS matrix H approximating the
“inverse Hessian” correspond to “infinite curvature”:
nonsmoothness in the V-space
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The eigenvalue product is partly smooth with respect to the
manifold of matrices with an eigenvalue with given multiplicity.

Recall that at the computed minimizer,

λ6(A ◦X) ≈ . . . ≈ λ14(A ◦X).

Matrix theory says that imposing multiplicity m on an eigenvalue
a matrix ∈ SN is m(m+1)

2 − 1 conditions, or 44 when m = 9, so
the dimension of the V -space at this minimizer is 44.

And tiny eigenvalues of the BFGS matrix H approximating the
“inverse Hessian” correspond to “infinite curvature”:
nonsmoothness in the V-space

Thus BFGS automatically detected the U and V space
partitioning without knowing anything about the mathematical
structure of f !
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w is eigvector for eigvalue 10 of final H
w is eigvector for eigvalue 20 of final H
w is eigvector for eigvalue 30 of final H
w is eigvector for eigvalue 40 of final H
w is eigvector for eigvalue 50 of final H
w is eigvector for eigvalue 60 of final H

Eigenvalues of H numbered smallest to largest
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Given the discrete-time dynamical system with control input and
measured output

z(k+1) = Fz(k) +Gu(k), y(k) = Hz(k)

where F ∈ R
n×n, G ∈ R

n×p, H ∈ R
m×n, the static output

feedback problem is to find a controller X ∈ R
p×m so that,

setting u(k) = Xy(k), all solutions of

z(k+1) = (F +GXH)z(k)

converge to zero, that is all eigenvalues of F +GXH are inside
the unit disk (Schur stable), or prove that this is not possible.
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Given the discrete-time dynamical system with control input and
measured output

z(k+1) = Fz(k) +Gu(k), y(k) = Hz(k)

where F ∈ R
n×n, G ∈ R

n×p, H ∈ R
m×n, the static output

feedback problem is to find a controller X ∈ R
p×m so that,

setting u(k) = Xy(k), all solutions of

z(k+1) = (F +GXH)z(k)

converge to zero, that is all eigenvalues of F +GXH are inside
the unit disk (Schur stable), or prove that this is not possible.
Pose as optimization problem:

min
X∈Rp×m

ρ(F +GXH)

where ρ is spectral radius.
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Given the discrete-time dynamical system with control input and
measured output

z(k+1) = Fz(k) +Gu(k), y(k) = Hz(k)

where F ∈ R
n×n, G ∈ R

n×p, H ∈ R
m×n, the static output

feedback problem is to find a controller X ∈ R
p×m so that,

setting u(k) = Xy(k), all solutions of

z(k+1) = (F +GXH)z(k)

converge to zero, that is all eigenvalues of F +GXH are inside
the unit disk (Schur stable), or prove that this is not possible.
Pose as optimization problem:

min
X∈Rp×m

ρ(F +GXH)

where ρ is spectral radius.
NP-hard if add bounds on entries of X
(V. Blondel and J. Tsitsiklis, 1996).
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The spectral radius ρ is not locally Lipschitz at matrices with
multiple active eigenvalues (those attaining the maximal
modulus).
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The spectral radius ρ is not locally Lipschitz at matrices with
multiple active eigenvalues (those attaining the maximal
modulus).

Nonsmooth analysis of ρ in this case, deriving ∂Mρ, was given by
J.V. Burke and M.L.O. (2001), J.V. Burke, A.S. Lewis and
M.L.O. (2005), etc.
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The spectral radius ρ is not locally Lipschitz at matrices with
multiple active eigenvalues (those attaining the maximal
modulus).

Nonsmooth analysis of ρ in this case, deriving ∂Mρ, was given by
J.V. Burke and M.L.O. (2001), J.V. Burke, A.S. Lewis and
M.L.O. (2005), etc.

But to apply BFGS, we assume that everywhere we evaluate ρ at
A(X) = F +GXH, there is just one active real eigenvalue or
active conjugate pair with multiplicity one, and break any “ties”
arbitrarily.
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Gradient of the spectral radius in real matrix space:

∇ρ(Ã) = Re
µ

|µ|

1

v∗u
vu∗

where v and u are right and left eigenvectors for the relevant
active eigenvalue µ of Ã, which is assumed to be simple and
have nonnegative imaginary part.
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Gradient of the spectral radius in real matrix space:

∇ρ(Ã) = Re
µ

|µ|

1

v∗u
vu∗

where v and u are right and left eigenvectors for the relevant
active eigenvalue µ of Ã, which is assumed to be simple and
have nonnegative imaginary part.

Gradients may be arbitrarily large for µ nearly a multiple
eigenvalue: spectral functions are not locally Lipschitz at an
active multiple eigenvalue.
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Gradient of the spectral radius in real matrix space:

∇ρ(Ã) = Re
µ

|µ|

1

v∗u
vu∗

where v and u are right and left eigenvectors for the relevant
active eigenvalue µ of Ã, which is assumed to be simple and
have nonnegative imaginary part.

Gradients may be arbitrarily large for µ nearly a multiple
eigenvalue: spectral functions are not locally Lipschitz at an
active multiple eigenvalue.

Break ties for active eigenvalue arbitrarily.
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Gradient of the spectral radius in real matrix space:

∇ρ(Ã) = Re
µ

|µ|

1

v∗u
vu∗

where v and u are right and left eigenvectors for the relevant
active eigenvalue µ of Ã, which is assumed to be simple and
have nonnegative imaginary part.

Gradients may be arbitrarily large for µ nearly a multiple
eigenvalue: spectral functions are not locally Lipschitz at an
active multiple eigenvalue.

Break ties for active eigenvalue arbitrarily.

Since Ã is real, take Im µ ≥ 0 wlog.
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Gradient of the spectral radius in real matrix space:

∇ρ(Ã) = Re
µ

|µ|

1

v∗u
vu∗

where v and u are right and left eigenvectors for the relevant
active eigenvalue µ of Ã, which is assumed to be simple and
have nonnegative imaginary part.

Gradients may be arbitrarily large for µ nearly a multiple
eigenvalue: spectral functions are not locally Lipschitz at an
active multiple eigenvalue.

Break ties for active eigenvalue arbitrarily.

Since Ã is real, take Im µ ≥ 0 wlog.

Defining A(X) = F +GXH, use ordinary chain rule to obtain
gradients of ρ(A(X)) in the X space.
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Let F be an n× n Toeplitz matrix whose nonzeros are 0.5 on
the main diagonal and first three superdiagonals and and the
number −0.5 on the first subdiagonal. Not Schur stable.
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Let F be an n× n Toeplitz matrix whose nonzeros are 0.5 on
the main diagonal and first three superdiagonals and and the
number −0.5 on the first subdiagonal. Not Schur stable.

First set of experiments: set n = 8 and optimize over X ∈ R
p×m

with p = 1 (setting G = [1, . . . , 1]T ), and consider m ranging
from 0 to 8 (setting H to the matrix whose rows are the first m
rows of the identity matrix).
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Let F be an n× n Toeplitz matrix whose nonzeros are 0.5 on
the main diagonal and first three superdiagonals and and the
number −0.5 on the first subdiagonal. Not Schur stable.

First set of experiments: set n = 8 and optimize over X ∈ R
p×m

with p = 1 (setting G = [1, . . . , 1]T ), and consider m ranging
from 0 to 8 (setting H to the matrix whose rows are the first m
rows of the identity matrix).

For each m, run BFGS from 100 randomly generated starting
points to search for local minimizers of ρ(F +GXH) over X
and plot eigenvalues of F +GXH for the best X found.
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Let F be an n× n Toeplitz matrix whose nonzeros are 0.5 on
the main diagonal and first three superdiagonals and and the
number −0.5 on the first subdiagonal. Not Schur stable.

First set of experiments: set n = 8 and optimize over X ∈ R
p×m

with p = 1 (setting G = [1, . . . , 1]T ), and consider m ranging
from 0 to 8 (setting H to the matrix whose rows are the first m
rows of the identity matrix).

For each m, run BFGS from 100 randomly generated starting
points to search for local minimizers of ρ(F +GXH) over X
and plot eigenvalues of F +GXH for the best X found.

Second set of experiments: n = 15, p = 2, with G having a
second column [1,−1, 1,−1, ..., 1]T .
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’*’ : known optimal value for m = 7 and m = 8
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)

Prove or disprove that the following hold with probability one:
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence {x} with f

differentiable at all iterates
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence {x} with f

differentiable at all iterates
2. Any cluster point x̄ is Clarke stationary
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence {x} with f

differentiable at all iterates
2. Any cluster point x̄ is Clarke stationary
3. The sequence of function values generated (including all of

the line search iterates) converges to f(x̄) R-linearly
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence {x} with f

differentiable at all iterates
2. Any cluster point x̄ is Clarke stationary
3. The sequence of function values generated (including all of

the line search iterates) converges to f(x̄) R-linearly
4. If {x} converges to x̄ where f is “partly smooth” w.r.t. a

manifold M then the subspace defined by the eigenvectors
corresponding to eigenvalues of H converging to zero
converges to the “V-space” of f w.r.t. M at x̄

A.S. Lewis and M.L.O., Math Programming, 2013.
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Happy Birthday Yurii!
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