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Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

min
x∈Rp

{

F (x)
△

=
1

n

n
∑

i=1

fi(x) + ψ(x)

}

,

where each fi is smooth and convex and ψ is a convex but not
necessarily differentiable penalty.

Goal of this work

Design accelerated methods for minimizing large finite sums.

Give a generic acceleration scheme which can apply to previously
un-accelerated algorithms.
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Why do large finite sums matter?

Empirical risk minimization

min
x∈Rp

{

F (x)
△

=
1

n

n
∑

i=1

fi(x) + ψ(x)

}

,

Typically, x represents model parameters.

Each function fi measures the fidelity of x to a data point.

ψ is a regularization function to prevent overfitting.

For instance, given training data (yi , zi )i=1,...,n with features zi in R
p

and labels yi in {−1,+1}, we may want to predict yi by sign(〈zi , x〉).
Functions fi measures how far the prediction is from the true label.

This would be a classification problem with a linear model.
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Why large finite sums matter?

A few examples

Ridge regression: min
x∈Rp

1

n

n
∑

i=1

1

2
(yi − 〈x , zi 〉)2 +

λ

2
‖x‖22.

Linear SVM: min
x∈Rp

1

n

n
∑

i=1

max(0, 1 − yi〈x , zi 〉) +
λ

2
‖x‖22.

Logistic regression: min
x∈Rp

1

n

n
∑

i=1

log
(

1 + e−yi 〈x ,zi 〉
)

+
λ

2
‖x‖22.
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Why does the composite problem matter?

A few examples

Ridge regression: min
x∈Rp

1

n

n
∑

i=1

1

2
(yi − 〈x , zi 〉)2 +

λ

2
‖x‖22.

Linear SVM: min
x∈Rp

1

n

n
∑

i=1

max(0, 1 − yi〈x , zi 〉))2 +
λ

2
‖x‖22.

Logistic regression: min
x∈Rp

1

n

n
∑

i=1

log
(

1 + e−yi 〈x ,zi 〉
)

+
λ

2
‖x‖22.

The squared ℓ2-norm penalizes large entries in x .
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Why does the composite problem matter?

A few examples

Ridge regression: min
x∈Rp

1

n

n
∑

i=1

1

2
(yi − 〈x , zi 〉)2 + λ‖x‖1.

Linear SVM: min
x∈Rp

1

n

n
∑

i=1

max(0, 1 − yi〈x , zi 〉)2 + λ‖x‖1.

Logistic regression: min
x∈Rp

1

n

n
∑

i=1

log
(

1 + e−yi 〈x ,zi 〉
)

+ λ‖x‖1.

When one knows in advance that x should be sparse, one should use a
sparsity-inducing regularization such as the ℓ1-norm.

[Chen et al., 1999, Tibshirani, 1996].
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How to minimize a large sum composite problem?

Two major challenges

Non-differentiable regularization penalty.

Exclude existing solver such as MOSEK, CPLEX, etc.

Large-scale and high-dimensionality

Exclude higher-order (Newton) methods.

This leads us to first-order gradient-based methods.
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Gradient descent methods

Let us consider the composite problem

min
x∈Rp

f (x) + ψ(x),

where f is convex, differentiable with L-Lipschitz continuous gradient
and ψ is convex, but not necessarily differentiable.

The classical forward-backward/ISTA algorithm

xk ← argmin
x∈Rp

1

2

∥

∥

∥

∥

x −
(

xk−1 −
1

L
∇f (xk−1)

)
∥

∥

∥

∥

2

2

+
1

L
ψ(x).

f (xk)− f ⋆ = O(1/k) for convex problems;

f (xk)− f ⋆ = O((1− µ/L)k) for µ-strongly convex problems;

[Nowak and Figueiredo, 2001, Daubechies et al., 2004, Combettes and Wajs,
2006, Beck and Teboulle, 2009, Wright et al., 2009, Nesterov, 2013]...
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Accelerated gradient descent methods

Nesterov introduced in 1983 an acceleration scheme for the gradient
descent algorithm. It was generalized later to the composite
setting [Nesterov, 1983, 2004, 2013].

FISTA [Beck and Teboulle, 2009]

xk ← argmin
x∈Rp

1

2

∥

∥

∥

∥

x −
(

yk−1 −
1

L
∇f (yk−1)

)
∥

∥

∥

∥

2

2

+
1

L
ψ(x);

Find αk > 0 s.t. α2
k = (1− αk)α

2
k−1 +

µ

L
αk ;

yk ← xk + βk(xk − xk−1) with βk =
αk−1(1− αk−1)

α2
k−1 + αk

.

f (xk)− f ⋆ = O(1/k2) for convex problems;

f (xk)− f ⋆ = O((1−
√

µ/L)k) for µ-strongly convex problems;

Acceleration works in many practical cases.

see also [Nesterov, 1983, 2004, 2013]
Zaid Harchaoui Catalyst 11/46



What do we mean by “acceleration”?

Complexity analysis for large finite sums

Since f is a sum of n functions, computing ∇f requires computing n
gradients ∇fi . The complexity to reach an ε−solution is given below

µ > 0 µ = 0

ISTA O
(

n L
µ
log
(

1
ε

)

)

O
(

nL
ε

)

FISTA O
(

n
√

L
µ
log
(

1
ε

)

)

O
(

nL√
ε

)

Remarks

ε-solution means here f (xk)− f ⋆ ≤ ε.
For n = 1, the rates of FISTA are optimal for a “first-order local
black box” [Nesterov, 2004].

For n > 1, the sum structure of f is not exploited.
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Can we do better for large finite sums?

Several randomized algorithms are designed with one ∇fi computed per
iteration, which yields a better expected computational complexity.

µ > 0

FISTA O
(

n
√

L
µ
log
(

1
ε

)

)

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L
µ

)

log
(

1
ε

)

)

SVRG, SAG, SAGA, SDCA, MISO, Finito improve upon FISTA when

max

(

n,
L

µ

)

≤ n

√

L

µ
⇔
√

L

µ
≤ n,

but they are not “accelerated” in the sense of Nesterov.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b,
Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]
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Can we do even better for large finite sums?

Without vs with acceleration

µ > 0

FISTA O
(

n
√

L
µ
log
(

1
ε

)

)

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L
µ

)

log
(

1
ε

)

)

Acc-SDCA Õ
(

max
(

n,
√

n L
µ

)

log
(

1
ε

)

)

Acc-SDCA is due to Shalev-Shwartz and Zhang [2014].

Acceleration occurs when n ≤ L
µ
.

see [Agarwal and Bottou, 2015] for discussions about optimality.

Challenge: can we accelerate these algorithms by a universal

scheme for both convex and strongly convex objectives ?
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Catalyst is coming
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Main idea

Catalyst, a meta-algorithm

Given an algorithmM that can solve a convex problem ”appropriately”.

At iteration k , rather than minimizing F , we useM to minimize a
function Gk , defined as follows,

Gk(x)
△

= F (x) +
κ

2
‖x − yk−1‖22,

up to accuracy εk , i.e., such that Gk(xk)− G ⋆

k ≤ εk .
Then compute the next prox-center yk using an extrapolation step

yk = xk + βk(xk − xk−1).

The choices of βk , ǫk , κ are driven by the theoretical analysis.
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Main idea

Catalyst, a meta-algorithm

Given an algorithmM that can solve a convex problem ”appropriately”.

At iteration k , rather than minimizing F , we useM to minimize a
function Gk , defined as follows,

Gk(x)
△

= F (x) +
κ

2
‖x − yk−1‖22,

up to accuracy εk , i.e., such that Gk(xk)− G ⋆

k ≤ εk .
Then compute the next prox-center yk using an extrapolation step

yk = xk + βk(xk − xk−1).

The choices of βk , ǫk , κ are driven by the theoretical analysis.

Catalyst is a wrapper ofM that yields an accelerated algorithm A.
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Sources of inspiration

In addition to accelerated proximal algorithms [Beck and Teboulle, 2009,
Nesterov, 2013], several works have inspired Catalyst.

The inexact accelerated proximal point algorithm of Güler [1992].

Catalyst is a variant of inexact accelerated PPA.

Complexity analysis for outer-loop only with non practical
inexactness criterium.

Accelerated SDCA of Shalev-Shwartz and Zhang [2014].

Accelerated SDCA is an instance of inexact accelerated PPA.

Complexity analysis limited to µ-strongly convex objectives.
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Sources of inspiration

In addition to accelerated proximal algorithms [Beck and Teboulle, 2009,
Nesterov, 2013], several works have inspired Catalyst.

The inexact accelerated proximal point algorithm of Güler [1992].

Catalyst is a variant of inexact accelerated PPA.

Complexity analysis for outer-loop only with non practical
inexactness criterium.

Accelerated SDCA of Shalev-Shwartz and Zhang [2014].

Accelerated SDCA is an instance of inexact accelerated PPA.

Complexity analysis limited to µ-strongly convex objectives.

Other related work

[Frostig et al., 2015, Schmidt et al., 2011, Salzo and Villa, 2012, He and
Yuan, 2012, Lan, 2015]. + Chambolle and Pock, 15.
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This work

Contributions

Generic acceleration scheme, which applies to previously
unaccelerated algorithms such as SVRG, SAG, SAGA, SDCA,
MISO, or Finito, and which is not taylored to finite sums.

Provides explicit support to non-strongly convex objectives.

Complexity analysis for µ-strongly convex objectives.

Complexity analysis for non-strongly convex objectives.

Example of application

Garber and Hazan [2015] have used Catalyst to accelerate new principal
component analysis algorithms based on convex optimization.
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AppropriateM = Linear convergence rate when µ > 0

Linear convergence rate

Consider a strongly convex minimization problem

min
z∈Rp

H(z).

We say that an algorithmM has a linear convergence rate ifM
generates a sequence of iterates (zt)t∈N such that there exists τM,H

in (0, 1) and a constant CM,H in R satisfying

H(zt)− H⋆ ≤ CM,H(1− τM,H)
t . (1)

τM,H depends usually on the condition number L/µ, e.g.,
τM,H = µ/L for ISTA and τM,H =

√

µ/L for FISTA.

CM,H depends usually on H(z0)− H∗.
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AppropriateM = Linear convergence rate when µ > 0

Linear convergence rate

Consider a strongly convex minimization problem

min
z∈Rp

H(z).

We say that an algorithmM has a linear convergence rate ifM
generates a sequence of iterates (zt)t∈N such that there exists τM,H

in (0, 1) and a constant CM,H in R satisfying

H(zt)− H⋆ ≤ CM,H(1− τM,H)
t . (1)

Important message: we do not make any assumption for non
strongly convex objectives. It is possible thatM is not even defined
for µ = 0.
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Catalyst action

Catalyst action

Gk(x)
△

= F (x) +
κ

2
‖x − yk−1‖22,

Gk is always strongly convex as long as F is convex.

When F is strongly convex, the condition number of Gk is better
than that of F since L+κ

µ+κ
< L

µ
.
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Catalyst action

Catalyst action

Gk(x)
△

= F (x) +
κ

2
‖x − yk−1‖22,

Gk is always strongly convex as long as F is convex.

When F is strongly convex, the condition number of Gk is better
than that of F since L+κ

µ+κ
< L

µ
.

Minimizing Gk is easier than minimizing F !
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Catalyst action

Catalyst action

Gk(x)
△

= F (x) +
κ

2
‖x − yk−1‖22,

Gk is always strongly convex as long as F is convex.

When F is strongly convex, the condition number of Gk is better
than that of F since L+κ

µ+κ
< L

µ
.

Minimizing Gk is easier than minimizing F !

If κ≫ 1, then minimizing Gk is easy;

If κ ≈ 0, then Gk is a good approximation of F .

We will choose κ to optimize the computational complexity.
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Convergence analysis

An analysis in two stages

Gk(x)
△

= F (x) +
κ

2
‖x − yk−1‖22,

xk is a approximate minimizer of Gk such that Gk(xk)− G ∗
k ≤ ǫk .

Outer loop: once we obtain the sequence (xk)k∈N, what can we say
about the convergence rate of F (xk)− F ∗?
⇒ Wisely choose (yk) and control the accumulation of errors.

Inner loop: how much effort do we need to obtain a xk with
accuracy ǫk?
⇒ Wisely choose the starting point.
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Choice of (yk)k∈N

Extrapolation

yk = xk + βk(xk − xk−1) with βk =
αk−1(1− αk−1)

α2
k−1 + αk

.

This update is identical to Nesterov’s accelerated gradient descent
or FISTA.

Unfortunately, the literature does not provide any simple geometric
explanation why it yields an acceleration...

The construction is purely theoretical by using a mechanism
introduced by Nesterov, called “estimate sequence”.
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How does “acceleration” work?

If f is µ-strongly convex and ∇f is L-Lipschitz continuous

x⋆

x

f (x)

b

b

b

b
xk−1

f (x) ≤ f (xk−1) +∇f (xk−1)
⊤(x − xk−1) +

L
2‖x − xk−1‖22;

f (x) ≥ f (xk−1) +∇f (xk−1)
⊤(x − xk−1) +

µ

2 ‖x − xk−1‖22;
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How does “acceleration” work?

If ∇f is L-Lipschitz continuous

x⋆

x

f (x)

b

b

b

bb

b

xk−1xk

f (x) ≤ f (xk−1) +∇f (xk−1)
⊤(x − xk−1) +

L
2‖x − xk−1‖22;

xk = xk−1 − 1
L
∇f (xk−1) (gradient descent step).

Zaid Harchaoui Catalyst 24/46



How does “acceleration” work?

Definition of estimate sequence [Nesterov].

A pair of sequences (ϕk)k≥0 and (λk)k≥0, with ϕk : Rp → R and
λk ≥ 0 , is called an estimate sequence of function F if

λk → 0;

ϕk(x) ≤ (1− λk)F (x) + λkϕ0(x), for any k , x ;

There exists a sequence (xk)k≥0 such that

F (xk) ≤ ϕ⋆

k
△

= min
x∈Rp

ϕk(x).

Remarks

ϕk is neither an upper-bound, nor a lower-bound;

Finding the right estimate sequence is often nontrivial.
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Convergence of outer-loop algorithm

Analysis for µ-strongly convex objective functions

Choose α0 =
√
q with q = µ/(µ + κ) and

ǫk =
2

9
(F (x0)− F ∗)(1− ρ)k with ρ <

√
q.

Then, the algorithm generates iterates (xk)k≥0 such that

F (xk)− F ∗ ≤ C (1− ρ)k+1(F (x0)− F ∗) with C =
8

(
√
q − ρ)2 .

In practice

Choice of ρ can safely be set to ρ = 0.9
√
q.

Choice of (εk)k≥0 typically follows from a duality gap at x0. When
F is non-negative, we can set εk = (2/9)F (x0)(1− ρ)k .
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Convergence of outer-loop algorithm

Analysis for non-strongly convex objective functions, µ = 0

Choose α0 = (
√
5− 1)/2 and

ǫk =
2(F (x0)− F ∗)
9(k + 2)4+η

with η > 0.

Then, the meta-algorithm generates iterates (xk)k≥0 such that

F (xk)− F ∗ ≤ 8

(k + 2)2

(

(

1 +
2

η

)2

(F (x0)− F ∗) +
κ

2
‖x0 − x∗‖2

)

.

(2)

In practice

Choice of η can be set to η = 0.1.
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How many iterates ofM do we need to obtain xk?

Control of inner-loop complexity

For minimizing Gk , consider a methodM generating iterates (zt)t≥0

with linear convergence rate

Gk(zt)− G ⋆

k ≤ A(1− τM)t(Gk(z0)− G ⋆

k ).

Then by choosing z0 = xk−1, the precision εk is reached with at most

A constant number of iterations TM when µ > 0;

A logarithmic increasing number of iterations TM log(k + 2)
when µ = 0.

where TM = Õ(1/τM) is independent of k .
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Global computational complexity

Analysis for µ-strongly convex objective functions

The global convergence rate of the accelerated algorithm A is

Fs − F ⋆ ≤ C

(

1− ρ

TM

)s

(F (x0)− F ∗). (3)

where Fs is the objective function value obtained after performing
s = kTM iterations of the methodM. As a result,

τA,F =
ρ

TM
= Õ(τM

√
µ/
√
µ+ κ),

where τM typically depends on κ (the greater, the faster).

κ will be chosen to maximize the ratio τM/
√
µ+ κ.
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Global computational complexity

Analysis for µ-strongly convex objective functions

The global convergence rate of the accelerated algorithm A is

Fs − F ⋆ ≤ C

(

1− ρ

TM

)s

(F (x0)− F ∗). (3)

where Fs is the objective function value obtained after performing
s = kTM iterations of the methodM. As a result,

τA,F =
ρ

TM
= Õ(τM

√
µ/
√
µ+ κ),

where τM typically depends on κ (the greater, the faster).

e.g., κ = L− 2µ when τM = µ+κ

L+κ
⇒ τA = Õ

(√

µ

L

)

.
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Global computational complexity

Analysis for non-strongly convex objective functions

The global convergence rate of the accelerated algorithm A is

Fs − F ∗ ≤ 8T 2
M log2(s)

s2

(

(

1 +
2

η

)2

(F (x0)− F ∗) +
κ

2
‖x0 − x∗‖2

)

.

IfM is a first-order method, this rate is near-optimal, up to a
logarithmic factor, when compared to the optimal rate O(1/s2), which
may be the price to pay for using a generic acceleration scheme.

κ will be chosen to maximize the ratio τM/
√
L+ κ
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Applications

Expected computational complexity in the regime n ≤ L/µ when µ > 0,

µ > 0 µ = 0 Catalyst µ > 0 Cat. µ = 0

FG O

(

n

(

L
µ

)

log
(

1
ε

)

)

O
(

n
L
ε

)

Õ

(

n

√

L
µ
log

(

1
ε

)

)

Õ

(

n
L√
ε

)

SAG

O

(

L
µ
log

(

1
ε

)

)

Õ

(√

nL
µ
log

(

1
ε

)

)SAGA

Finito/MISO

NASDCA

SVRG O

(

L′

µ
log

(

1
ε

)

)

Õ

(√

nL′

µ
log

(

1
ε

)

)

Acc-FG O

(

n

√

L
µ
log

(

1
ε

)

)

O

(

n
L√
ε

)

no acceleration
Acc-SDCA Õ

(√

nL
µ
log

(

1
ε

)

)

NA
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Experiments with MISO/SAG/SAGA

ℓ2-logistic regression formulation

Given some data (yi , zi ), with yi in {−1,+1} and zi in R
p, minimize

min
x∈Rp

1

n

n
∑

i=1

log(1 + e−yix
⊤zi ) +

µ

2
‖x‖22,

µ is the regularization parameter and the strong convexity modulus.

Datasets

name rcv1 real-sim covtype ocr alpha

n 781 265 72 309 581 012 2 500 000 250 000

p 47 152 20 958 54 1 155 500
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Experiments with MISO/SAG/SAGA

The complexity analysis is not just a theoretical exercise since it provides
the values of κ, εk , βk , which are required in concrete implementations.

Here, theoretical values match practical ones.

Restarting

The theory tells us to restartM with xk−1. For SDCA/Finito/MISO,
the theory tells us to use instead xk−1 +

κ

µ+κ
(yk−1 − yk−2). We also

tried this as a heuristic for SAG and SAGA.

One-pass heuristic

constrainM to always perform at most n iterations in inner loop; we
call this variant AMISO2 for MISO, whereas AMISO1 refers to the
regular “vanilla” accelerated variant; idem to accelerate SAG and SAGA.
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Experiments without strong convexity, µ = 0
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Figure: Objective function value for different number of passes on data.

Conclusions

SAG, SAGA are accelerated when they do not perform well already;

AMISO2 ≥ AMISO1 (vanilla), MISO does not apply.
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Experiments without strong convexity, µ = 10−1/n
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Figure: Relative duality gap (log-scale) for different number of passes on data.

Conclusions

SAG, SAGA are not always accelerated, but often.

AMISO2,AMISO1 ≫ MISO.
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Experiments without strong convexity, µ = 10−3/n
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Figure: Relative duality gap (log-scale) for different number of passes on data.

Conclusions

same conclusions as µ = 10−1/n;

µ is so small that (unaccelerated) MISO becomes numerically
unstable.
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General conclusions about Catalyst

Summary: lots of nice features

Simple acceleration scheme with broad application range.

Recover near-optimal rates for known algorithms.

Effortless implementation.

... but also lots of unsolved problems

Acceleration occurs when n ≤ L/µ; otherwise, the “unaccelerated”
complexity O(n log(1/ε)) seems unbeatable.

µ is an estimate of the true strong convexity parameter µ′ ≥ µ.
µ is the global strong convexity parameter, not a local one µ⋆ ≥ µ.
When n ≤ L/µ, but n ≥ L/(µ′ or µ⋆), a methodM that adapts to
the unknown strong convexity may be impossible to accelerate.

The optimal restart forM is not yet fully understood.
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Happy birthday!
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Catalyst, the algorithm
Algorithm 1 Catalyst

input initial estimate x0 ∈ R
p, parameters κ and α0, sequence (εk)k≥0,

optimization methodM; initialize q = µ/(µ + κ) and y0 = x0;
1: while the desired stopping criterion is not satisfied do

2: Find an approx. solution xk usingM s.t. Gk(xk)− G ⋆

k ≤ εk

xk ≈ argmin
x∈Rp

{

Gt(x)
△

= F (x) +
κ

2
‖x − yk−1‖2

}

3: Compute αk ∈ (0, 1) from equation α2
k = (1− αk)α

2
k−1 + qαk ;

4: Compute

yk = xk + βk(xk − xk−1) with βk =
αk−1(1− αk−1)

α2
k−1 + αk

.

5: end while

output xk (final estimate).
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Ideas of the proofs

Main theorem

Let us denote

λk =

k−1
∏

i=0

(1− αi), (4)

where the αi ’s are defined in Catalyst. Then, the sequence (xk)k≥0

satisfies

F (xk)− F ∗ ≤ λk
(

√

Sk + 2
k
∑

i=1

√

ǫi
λi

)2

, (5)

where F ⋆ is the minimum value of F and

Sk = F (x0)−F ∗+
γ0
2
‖x0−x∗‖2+

k
∑

i=1

ǫi
λi

where γ0 =
α0 ((κ+ µ)α0 − µ)

1− α0
,

(6)
where x⋆ is a minimizer of F .
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Ideas of the proofs

Then, the theorem will be used with the following lemma to control the
convergence rate of the sequence (λk)k≥0, whose definition follows the
classical use of estimate sequences. This will provide us convergence
rates both for the strongly convex and non-strongly convex cases.

Lemma 2.2.4 from Nesterov [2004]

If in the quantity γ0 defined in (6) satisfies γ0 ≥ µ, then the
sequence (λk)k≥0 from (4) satisfies

λk ≤ min











(1−√q)k , 4
(

2 + k
√

γ0

κ+µ

)2











, (7)

where q
△

= µ/(µ+ κ).
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Ideas of proofs

Step 1: build an approximate estimate sequence

Remember that in general, we build ϕk from ϕk−1 as follows

ϕk(x)
△

= (1− αk)ϕk−1(x) + αkdk(x),

where dk is a lower bound.

Here, a natural lower bound would be

F (x) ≥ dk(x)
△

= F (x∗k ) + 〈κ(yk−1 − x∗k ), x − x∗k 〉+
µ

2
‖x − x∗k‖2,

where x⋆k
△

= argminx∈Rp

{

Gk(x)
△

= F (x) + κ

2‖x − yk−1‖22
}

.

But x⋆k is unknown! Then, use instead d ′
k(x) defined as

d ′
k(x)

△

= F (xk) + 〈κ(yk−1 − xk), x − xk〉+
µ

2
‖x − xk‖2.

Zaid Harchaoui Catalyst 42/46



Ideas of proofs

Step 2: Relax the condition F (xk) ≤ ϕ⋆

k .

We can show that Catalyst generates iterates (xk)k≥0 such that

F (xk) ≤ φ∗k + ξk ,

where the sequence (ξk)k≥0 is defined by ξ0 = 0 and

ξk = (1− αk−1)(ξk−1 + εk − (κ+ µ)〈xk − x∗k , xk−1 − xk〉).

The sequences (αk)k≥0 and (yk)k≥0 are chosen in such a way that
all the terms involving yk−1 − xk are cancelled.

We will control later the quantity xk − x∗k by strong convexity of Gk :

κ+ µ

2
‖xk − x∗k‖22 ≤ Gk(xk)− G ⋆

k ≤ εk .
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Ideas of proofs

Step 3: Control how this errors sum up together.

Do cumbersome calculus.
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Catalyst in practice

General strategy and application to randomized algorithms

Calculating the iteration-complexity decomposes into three steps:

1 When F is µ-strongly convex, find κ that maximizes the ratio
τM,Gk

/
√
µ+ κ for algorithmM . When F is non-strongly convex,

maximize instead the ratio τM,Gk
/
√
L+ κ.

2 Compute the upper-bound of the number of outer iterations kout
using the theorems.

3 Compute the upper-bound of the expected number of inner
iterations

max
k=1,...,kout

E[TM,Gk
(εk)] ≤ kin,

Then, the expected iteration-complexity denoted Comp. is given by

Comp ≤ kin × kout .
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Applications

Deterministic and Randomized Incremental Gradient methods

Stochastic Average Gradient (SAG and SAGA) [Schmidt et al.,
2013, Defazio et al., 2014a];

Finito and MISO [Mairal, 2015, Defazio et al., 2014b];

Semi-Stochastic/Mixed Gradient [Konečnỳ et al., 2014, Zhang
et al., 2013];

Stochastic Dual coordinate Ascent [Shalev-Shwartz and Zhang,
2012];

Stochastic Variance Reduced Gradient [Xiao and Zhang, 2014].

But also, randomized coordinate descent methods, and more generally
first-order methods with linear convergence rates.
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Appendix on proximal MISO
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Original motivation

Given some data, learn some model parameters x in R
p by minimizing

min
x∈Rp

{

F (x)
△

=
1

n

n
∑

i=1

fi(x)

}

,

where each fi may be nonsmooth and nonconvex.

The original MISO algorithm is an incremental extension of the
majorization-minimization principle [Lange et al., 2000].

Paper

J. Mairal. Incremental Majorization-Minimization Optimization
with Application to Large-Scale Machine Learning. SIAM Journal
on Optimization. 2015.

J. Mairal. Optimization with First-Order Surrogate Functions.
ICML. 2013.
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Majorization-minimization principle

f (θ)g(θ)
b κ

Iteratively minimize locally tight upper bounds of the objective.

The objective monotonically decreases.

Under some assumptions, we get similar convergence rates as
gradient-based approaches for convex problems.
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Incremental optimization: MISO

Algorithm 2 Incremental scheme MISO

input x0 ∈ R
p; T (number of iterations).

1: Choose surrogates g0
i of fi near x0 for all i ;

2: for k = 1, . . . ,K do

3: Randomly pick up one index ı̂k and choose a surrogate gk
ı̂k

of fı̂k

near xk−1. Set g
k
i

△

= gk−1
i for i 6= ı̂k ;

4: Update the solution:

xk ∈ argmin
x∈Rp

1

n

n
∑

i=1

gk
i (x).

5: end for

output xK (final estimate);
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Incremental Optimization: MISO

Update rule with basic upper bounds

We want to minimize 1
n

∑n
i=1 fi(x), where the fi ’s are smooth.

xk ← argmin
x∈Rp

1

n

n
∑

i=1

fi(y
k
i ) +∇fi(yki )⊤(x − yki ) +

L

2
‖x − yki ‖22

=
1

n

n
∑

i=1

yki −
1

Ln

n
∑

i=1

∇fi(yki ).

At iteration k , randomly draw one index ı̂k , and update yk
ı̂k
← xk .

Remarks

replace (1/n)
∑n

i=1 y
k
i by xk−1 yields SAG [Schmidt et al., 2013].

replace (1/L) by (1/µ) for strongly convex problems is close to a
variant of SDCA [Shalev-Shwartz and Zhang, 2012].
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Incremental Optimization: MISOµ.

Update rule with lower bounds???

We want to minimize 1
n

∑n
i=1 fi(x), where the fi ’s are smooth.

xk = argmin
x∈Rp

1

n

n
∑

i=1

fi (y
k
i ) +∇fi(yki )⊤(x − yki ) +

µ

2
‖x − yki ‖22

=
1

n

n
∑

i=1

yki −
1

µn

n
∑

i=1

∇fi(yki ).

Remarks

Requires strong convexity.

Use a counter-intuitive minorization-minimization principle.

Close to a variant of SDCA [Shalev-Shwartz and Zhang, 2012].

Much faster than the basic MISO (faster rate).
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Incremental Optimization: MISOµ.

In the first part of this presentation, what we have called MISO is the
algorithm that uses 1/(µn) step-sizes (sorry for the confusion).

To minimize F (x)
△

= 1
n

∑n
i=1 fi(x), MISOµ has the following guarantees

Proposition [Mairal, 2015]

When the functions fi are µ-strongly convex, differentiable with
L-Lipschitz gradient, and non-negative, MISOµ satisfies

E[F (xk)− F ⋆] ≤
(

1− 1

3n

)k

nf ⋆,

under the condition n ≥ 2L/µ.

Remarks

When n ≤ 2L/µ, the algorithm may diverge;

When µ is very small, numerical stability is an issue.

The condition fi ≥ 0 does not really matter.
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Proximal MISO [Lin, Mairal, and Harchaoui, 2015]

Main goals

Remove the condition n ≤ 2L/µ;

Allow a composite term ψ:

min
x∈Rp

{

F (x)
△

=
1

n

n
∑

i=1

fi(x) + ψ(x)

}

,

Starting points

MISOµ is iteratively updating/minimizing a lower-bound of F

xk ← argmin
x∈Rp

{

Dk(x)
△

=
1

n

n
∑

i=1

dk
i (x)

}

,

[Lin, Mairal, and Harchaoui, 2015].
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Proximal MISO

Adding the proximal term

xt ← argmin
x∈Rp

{

Dk(x)
△

=
1

n

n
∑

i=1

dk
i (x) + ψ(x)

}

,

Remove the condition n ≥ 2L/µ

For i = ı̂k ,

dk
i (x)=(1−δ)dk−1

i (x)+δ
(

fi(xk−1)+〈∇fi (xk−1), x − xk−1〉+
µ

2
‖x − xk−1‖2

)

Remarks

the original MISOµ uses δ = 1. To get rid of the condition

n ≥ 2L/µ, proximal MISO uses instead δ = min
(

1, µn
2(L−µ)

)

.

variant “5” of SDCA [Shalev-Shwartz and Zhang, 2012] is identical
with another value δ = µn

L+µn
in (0, 1).
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Proximal MISO

Convergence of MISO-Prox

Let (xk)k≥0 be obtained by MISO-Prox, then

E[F (xk)]−F ∗ ≤ 1

τ
(1−τ)k+1 (F (x0)− D0(x0)) with τ ≥ min

{

µ

4L
,
1

2n

}

.

(8)
Furthermore, we also have fast convergence of the certificate

E[F (xk)− Dk(xk)] ≤
1

τ
(1− τ)k (F ∗ − D0(x0)) .

Differences with SDCA

The construction is primal. The proof of convergence and the
algorithm do not use duality, while SDCA is a dual ascent technique.

Dk(xk) is a lower-bound of F ⋆; it plays the same role as the dual in
SDCA, but is easier to evaluate.
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Conclusions

Relatively simple algorithm, with simple convergence proof, and
simple optimality certificate.

Catalyst not only accelerates it, but also stabilizes it numerically,
with the parameter δ = 1.

Close to SDCA, but without duality.
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