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Happy Birthday Yuri

The single paper that made the largest impact on my PhD thesis.

@ Primal-dual subgradient methods for convex problems. (2005,
Technical report, 2009 Math. Prog.).
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Happy Birthday Yuri

The single paper that made the largest impact on my PhD thesis.

@ Primal-dual subgradient methods for convex problems. (2005,
Technical report, 2009 Math. Prog.).

Connections between optimization and machine learning:
@ Online learning and first order methods

@ Sample complexity and oracle complexity

Covering numbers and convergence of sub-gradient descent
Strong convexity, stability, and generalization

°
@ PAC learning and stochastic optimization
°
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0 PAC Learning as/is Stochastic Optimization
© Optimality of SGD
9 The Curse of Optimality

@ Stochastic methods for solving ERM
@ Solving ERM for Classification Problems
@ Solving ERM for Strongly-convex and Smooth Problems
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PAC Learning as Stochastic Optimization

Goal (informal): Learn an accurate mapping h : X — ) based on
examples ((1‘17 yl)v cee ($na yn)) € (X X y)n
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PAC Learning as Stochastic Optimization

Goal (informal): Learn an accurate mapping h : X — ) based on
examples ((1‘17 yl)v cee ($n7 yn)) € (X X y)n

Parametrized learning:

@ Each mapping h: X — ) is parameterized by a weight vector
w € R4, so our goal is to learn the vector w

@ The quality of w on example (z,y) is assessed by ¢(w, (x,y))
PAC Learning is Stochastic Optimization:

@ Given distribution D over X x ) the goal is to approximately solve

argmin E [/(w,(x,
uin B (1, (7))

@ We can only obtain i.i.d. samples from D
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How to Solve Stochastic Optimization

@ Our goal: minimize over w the risk Lp(w) = E(, y)p[l(w, (z,y))]

Goal: min,, Lp(w)

ERM
(Vapnik- SGD
Chervonenkis (Robins-Monro 1951)

) - w < w — nv where
1Ly % Zi:l l(w, (zi,Yi)) E[v] = VLp(w)
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© Optimality of SGD
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Stochastic Gradient Descent for Direct Risk Minimization

@ Start with some initial w
@ Fort=1,2,...,T
e Sample (z,y) ~D
e Update w = w — nVl(w, (z,y))
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Stochastic Gradient Descent for Direct Risk Minimization

@ Start with some initial w
@ Fort=1,2,...,T
e Sample (z,y) ~D
e Update w = w — nVl(w, (z,y))

Assume that ¢ is convex and p-Lipschitz w.r.t. w. Fix some w*. Then, if
2 * |2 o -
T>Q (’JHGLQ”) we have that the average w satisfies (with constant

probability)
Lp(w) < Lp(w*)+e€.
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Optimality of SGD

o A learner can be written as A : |, (X x V)" — R?
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and W C R? we have Lp(A(S,)) < mingew Lp(w) + €
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Optimality of SGD

o A learner can be written as A : |, (X x V)" — R?

@ Sample complexity: What should be n s.t. exists A s.t. for any D
and W C R? we have Lp(A(S,)) < mingew Lp(w) + €

e Claim: For D = {w : ||w|| < B} we must have n > () (“’252)

e Conclusion: SGD is optimal (one pass over the data)
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9 The Curse of Optimality
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Worst case doesn't tell the whole story

@ Probability of small circles is ¢, margin is ~y
. i . . 1 . .
e Claim: SGD (with every n) requires §2 (%> iterations

e Claim: Sample complexity of ERM is O (1)
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What is the true objective ?
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- Distance 2
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What is the true objective ?

PAC learning with train/test mismatch:

o Consider two distributions D1, Do
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What is the true objective ?

PAC learning with train/test mismatch:

Consider two distributions Dy, D»

Goal: be good on both of them

Our training set is sampled i.i.d. from D = A\{Dy + AaD3, A1 > Ao
What is the sample complexity of ERM ?

o Naive analysis: VC(H)/(\z€)
o Refined analysis in the next slides

How many SGD iterations are required ?
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Typical vs. Rare distributions
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Refined Sample Complexity Analysis

o Naive analysis: We need VC(H)/e from D5 and the averaged number
of examples from Ds is Aon. Therefore, we need n > VC(H)/(Az€)
@ How to improve:

o Use examples from D; to decrease the term VC(H)
o The 1/e term in the lower bound comes from a peculiar distribution.
Can it be eliminated 7
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Refined Sample Complexity Analysis

Define

o Hic={heH:Lp,(h) <€}
o c=max{cd €[e1):Vh € Hi,, Lp,(h) < = Lp,(h) <€}

Then, sample complexity is order of

VC(H) VC(Hi,)
+
€ c Ay
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Refined Sample Complexity Analysis

Define

o Hic={heH:Lp,(h) <€}
o c=max{cd €[e1):Vh € Hi,, Lp,(h) < = Lp,(h) <€}

Then, sample complexity is order of

VC(H) VC(Hi,)
+
€ c Ay

Proof idea:

e Think about ERM as two steps: (1) find H; . based on examples

from Dy (2) find a hypothesis within #;  that is good on the
examples from Dy

@ “Shell analysis” (Haussler-Kearns-Seung-Tishby 1996) for the second
step
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@ Stochastic methods for solving ERM
@ Solving ERM for Classification Problems
@ Solving ERM for Strongly-convex and Smooth Problems
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The ERM problem

min P(w) := :LZ oi(w)

weR4
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Why SGD is slow at the end?

02 03 04 05 06 07 05 09 1 LI 12 13 14 15
# of gradients 10

@ Rare mistakes: Suppose all but 1% of the examples are correctly
classified. SGD will now waste 99% of its time on examples that are

already correct by the model

@ High variance, even close to the optimum
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Solving ERM for Classification Problems

min P(w) := :LZ oi(w)

weRd
o ¢i(w) = 1[hy(x;) # yi] (non-convex, non-continuos).

@ Assumption: There exists an online learner for w with a mistake
bound C
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The Mistake Bound Model (Littlestone 1988)

@ The Online Game: At each round ¢, learner picks w;, adversary
responds with i;, and learner pays ¢;, (w;) = 1[hw, (zi,) # Yi,]
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@ The Online Game: At each round ¢, learner picks w;, adversary
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The Mistake Bound Model (Littlestone 1988)

@ The Online Game: At each round ¢, learner picks w;, adversary
responds with i;, and learner pays ¢;, (w;) = 1[hw, (zi,) # Yi,]
@ Mistake Bound: The learner enjoys a mistake bound C' if for any T’
and any sequence iy, ..., %7, it makes at most T" mistakes
e Example: The Perceptron (Rosenblatt 1958):
o hy(z) = sign((w,z)), y € {£1}
o The Perceptron rule: wyy1 = wy + ¢y, (we) @, /|| 24, |
o Theorem (Agmon 1954, Minsky, Papert 1969):

If exists w* s.t. for every 4, y;(w*, z;)/||x;|| > 1, then Perceptron’s
mistake bound is C' = |lw*||?
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Solving ERM for Classification Problems

min P(w) := %Z oi(w)
i=1

wERY
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Solving ERM for Classification Problems

min P(w) := %Z oi(w)
i=1

wERY

Naive approach I:

@ Apply the online learner with random examples from [n]

@ Analysis: error decreases as %

@ Runtime for zero error: Need C/T < 1/nsoT >nCd
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Solving ERM for Classification Problems

1 n
in P = — i(w
min P(w) =~ ;@( )
Naive approach I:

@ Apply the online learner with random examples from [n]

@ Analysis: error decreases as %

@ Runtime for zero error: Need C/T < 1/nsoT >nCd
Naive approach Il:
@ Apply the online learner while feeding it with the worst example
@ Runtime for zero error: Need C iterations, each cost dn, so
T>nCd
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Solving ERM for Classification Problems

1 n
min P(w) := — i(w
min P(w) i= 23 di(w)
Naive approach I:

@ Apply the online learner with random examples from [n]

@ Analysis: error decreases as %

@ Runtime for zero error: Need C/T < 1/nsoT >nCd
Naive approach Il:
@ Apply the online learner while feeding it with the worst example
@ Runtime for zero error: Need C iterations, each cost dn, so
T>nCd

Our approach: runtime is (n+ C)d
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Our Approach: Focused Online Learning

Min-max problem:

@ Zero-sum game between w player and p player
@ Use the online learner for the w player

@ Use a variant of EXP3 (Auer, Cesa-Bianchi, Freund, Schapire, 2002)
for the p player

@ Our variant explores w.p. 1/2, this leads to low-variance, and crucial
for the analysis
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Our Approach: Focused Online Learning

e Initialize: ¢ = (1/n,...,1/n)

e Fort=1,2,...,T
o Sample i; accordingto p=0.5¢+0.5(1/n,...,1/n)
o Feed i; to the online learner
o Update ¢;, = ¢, exp(¢s, (w:) /(2np;,)) and normalize
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Observe: Using tree data-structure, each iteration costs O(log(n)) plus
the online learner time
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Our Approach: Focused Online Learning

e Initialize: ¢ = (1/n,...,1/n)

e Fort=1,2,...,T
o Sample i; accordingto p=0.5¢+0.5(1/n,...,1/n)
o Feed i; to the online learner
o Update ¢;, = ¢, exp(¢s, (w:) /(2np;,)) and normalize

Observe: Using tree data-structure, each iteration costs O(log(n)) plus
the online learner time

IfT > Q(n+C), and k = Q(log(n)), and ifty, ...t are sampled at
random from [T'], then with high probability

Vi, ¢; (Majority (wy,,...,we,)) =0
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Proof Sketch

@ The vector z; = ¢i;(_wt)
iy

(1(wi), ..., dn(wr))

e;, is an unbiased estimate of the gradient
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Proof Sket

(m;(wt)eit is an unbiased estimate of the gradient

@ The vector z; = _
K2

(1(wi), ..., dn(wr))

@ The update of ¢ is Mirror Descent w.r.t. Entropic regularization with
2t
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Proof Sket

(m;(wt)eit is an unbiased estimate of the gradient

@ The vector z; = _
K2

(P1(wr), -, dn(wr))

@ The update of ¢ is Mirror Descent w.r.t. Entropic regularization with
2t

@ A certain generalized definition of variance of z; is bounded by 2n
because of the strong exploration
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Proof Sket

(m;(wt)eit is an unbiased estimate of the gradient

The vector z; = _
K2

(1(wi), ..., dn(wr))

The update of ¢ is Mirror Descent w.r.t. Entropic regularization with
2t

A certain generalized definition of variance of z; is bounded by 2n
because of the strong exploration

@ A Bernstein's type inequality for Martingales enables to obtain strong
concentration
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Proof Sket

(m;(wt)eit is an unbiased estimate of the gradient

The vector z; = _
K2

(1(wi), ..., dn(wr))

The update of ¢ is Mirror Descent w.r.t. Entropic regularization with
2t

A certain generalized definition of variance of z; is bounded by 2n
because of the strong exploration

@ A Bernstein's type inequality for Martingales enables to obtain strong
concentration

@ Union bound over every i enables to conclude the proof
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Related Work

@ Auer et al 2002: The main idea is there, but EXP3.P.1 costs 2(n) per
iteration

@ Hazan, Clarckson, Woodruff 2012, Hazan, Koren, Srebro 2011: Only
for linear classifiers, rate of (n + d)C.

@ AdaBoost (Freund & Schapire 1995): Only for binary classification,
batch nature, similar rate.

In practice: AdaBoost's predictor is ensemble but ours is a single
classifier
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0 PAC Learning as/is Stochastic Optimization
© Optimality of SGD
9 The Curse of Optimality

@ Stochastic methods for solving ERM

@ Solving ERM for Strongly-convex and Smooth Problems

Shalev-Shwartz (HU) SO for ML Nesterov'2016 30/ 38



Why SGD is slow at the end?

02 03 04 05 06 07 05 09 1 LI 12 13 14 15
# of gradients 10

@ Rare mistakes: Suppose all but 1% of the examples are correctly
classified. SGD will now waste 99% of its time on examples that are

already correct by the model

@ High variance, even close to the optimum
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Solving ERM for Strongly-convex and Smooth Problems

A
min P(w quz §||w||2

weERC

@ Now assume that ¢; is convex and O(1)-smooth
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Can we improve SGD 7

Any algorithm for solving ERM that only accesses the objective using
oracle that returns a gradient of a random example and has log(1/¢) rate
must perform Q(n?) iterations
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Can we improve SGD 7

Any algorithm for solving ERM that only accesses the objective using
oracle that returns a gradient of a random example and has log(1/¢) rate
must perform Q(n?) iterations

Proof idea:

o Consider two objectives (in both, A = 1): for i € {£1}

R = 5 (M5t w2+ i o 0?)

@ A stochastic gradient oracle returns w + 7 w.p. % + %

e Easy to see that w} = —i/n, P;(0) = 1/2, Pi(w}) =1/2 — 1/(2n?)

@ Therefore, solving to accuracy € < 1/(2n?) amounts to determining
the bias of the coin
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Can we improve SGD 7

A stronger oracle:

@ The negative result assumes we only see a gradient of a randomly
chosen example

@ A slightly stronger oracle: we also see the index of the chosen example
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Can we improve SGD 7

A stronger oracle:

@ The negative result assumes we only see a gradient of a randomly
chosen example

@ A slightly stronger oracle: we also see the index of the chosen example

With the stronger oracle, SDCA (and SAG, SVRG, ...) convergence rate is
(n+ C)log(1/e)

where C' =1/ (a reasonable measure of capacity).
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SDCA = Stochastic Dual Coordinate Ascent

@ Maintain “dual” vectors aq, ..., a,

@ At iteration ¢, sample i ~ [n] and update

ot = agt_l) —n\n (V@(w(t_l)) + agt_l))

)

w® = =1 _ (ng (w1 + ay-n)
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Intuition: Why SDCA is better than SGD

The update step of both SGD and SDCA is w(® = w1 — yu(®)
where
@ _ ) Voi(wl=D) 4 2w for SGD
v {wi(w(t—l)) +ol™  for SDCA
@ In both cases E[v®|w(~D] = VP (w®)
@ What about the variance?
@ For SGD, even if w1 = w*, the variance of v s still constant
°

For SDCA, the variance of v goes to zero as w1 5 *
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SDCA vs. DCA — Randomization is crucial

@ On CCAT dataset, A = 10~%, smoothed hinge-loss

0 SDCA

N —— DCA-Cyclic
107k N —+—SDCA-Perm|]
o . - - -Bound

e In particular, the bound of Luo and Tseng (1992) holds for cyclic
order, hence must be inferior to our bound
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@ SGD is worst-case optimal, but in many cases can be inferior to ERM
@ SGD converges quickly to an o.k. solution, but then slows down:

@ Wastes time on already solved cases
@ High variance even at w*

@ We provide methods with bounds of the from (n + C)

Future and Ongoing Work:

@ Beyond convexity ...
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