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Happy Birthday Yuri

The single paper that made the largest impact on my PhD thesis.

Primal-dual subgradient methods for convex problems. (2005,
Technical report, 2009 Math. Prog.).

Connections between optimization and machine learning:

Online learning and first order methods

Sample complexity and oracle complexity

Covering numbers and convergence of sub-gradient descent

Strong convexity, stability, and generalization

PAC learning and stochastic optimization
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PAC Learning as Stochastic Optimization

Goal (informal): Learn an accurate mapping h : X → Y based on
examples ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n

Parametrized learning:

Each mapping h : X → Y is parameterized by a weight vector
w ∈ Rd, so our goal is to learn the vector w

The quality of w on example (x, y) is assessed by `(w, (x, y))

PAC Learning is Stochastic Optimization:

Given distribution D over X × Y the goal is to approximately solve

argmin
w∈Rd

E
(x,y)∼D

[`(w, (x, y))]

We can only obtain i.i.d. samples from D
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How to Solve Stochastic Optimization

Our goal: minimize over w the risk LD(w) = E(x,y)∼D[`(w, (x, y))]

Goal: minw LD(w)

minw
1
n

∑n
i=1 `(w, (xi, yi))

ERM
(Vapnik-

Chervonenkis
1971)

w ← w − ηv where
E[v] = ∇LD(w)

SGD
(Robins-Monro 1951)
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Stochastic Gradient Descent for Direct Risk Minimization

Start with some initial w

For t = 1, 2, . . . , T

Sample (x, y) ∼ D
Update w = w − η∇`(w, (x, y))

Theorem

Assume that ` is convex and ρ-Lipschitz w.r.t. w. Fix some w∗. Then, if

T ≥ Ω
(
ρ2‖w∗‖2

ε2

)
we have that the average w satisfies (with constant

probability)
LD(w) ≤ LD(w∗) + ε .
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Optimality of SGD

A learner can be written as A :
⋃
n(X × Y)n → Rd

Sample complexity: What should be n s.t. exists A s.t. for any D
and W ⊂ Rd we have LD(A(Sn)) ≤ minw∈W LD(w) + ε

Claim: For D = {w : ‖w‖ ≤ B} we must have n ≥ Ω
(
ρ2B2

ε2

)
Conclusion: SGD is optimal (one pass over the data)
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Worst case doesn’t tell the whole story

Probability of small circles is ε, margin is γ

Claim: SGD (with every η) requires Ω
(

1
γε

)
iterations

Claim: Sample complexity of ERM is O
(
1
ε

)
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What is the true objective ?
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What is the true objective ?

PAC learning with train/test mismatch:

Consider two distributions D1,D2

Goal: be good on both of them

Our training set is sampled i.i.d. from D = λ1D1 + λ2D2, λ1 � λ2
What is the sample complexity of ERM ?

Naive analysis: VC(H)/(λ2ε)
Refined analysis in the next slides

How many SGD iterations are required ?
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Typical vs. Rare distributions
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Refined Sample Complexity Analysis

Naive analysis: We need VC(H)/ε from D2 and the averaged number
of examples from D2 is λ2n. Therefore, we need n ≥ VC(H)/(λ2ε)

How to improve:

Use examples from D1 to decrease the term VC(H)
The 1/ε term in the lower bound comes from a peculiar distribution.
Can it be eliminated ?
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Refined Sample Complexity Analysis

Theorem

Define

H1,ε = {h ∈ H : LD1(h) ≤ ε}
c = max{c′ ∈ [ε, 1) : ∀h ∈ H1,ε, LD2(h) ≤ c′ ⇒ LD2(h) ≤ ε}.

Then, sample complexity is order of

VC(H)

ε
+

VC(H1,ε)

c λ2

Proof idea:

Think about ERM as two steps: (1) find H1,ε based on examples
from D1 (2) find a hypothesis within H1,ε that is good on the
examples from D2

“Shell analysis” (Haussler-Kearns-Seung-Tishby 1996) for the second
step
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The ERM problem

min
w∈Rd

P (w) :=
1

n

n∑
i=1

φi(w)
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Why SGD is slow at the end?
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Rare mistakes: Suppose all but 1% of the examples are correctly
classified. SGD will now waste 99% of its time on examples that are
already correct by the model

High variance, even close to the optimum
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Solving ERM for Classification Problems

min
w∈Rd

P (w) :=
1

n

n∑
i=1

φi(w)

φi(w) = 1[hw(xi) 6= yi] (non-convex, non-continuos).

Assumption: There exists an online learner for w with a mistake
bound C
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The Mistake Bound Model (Littlestone 1988)

The Online Game: At each round t, learner picks wt, adversary
responds with it, and learner pays φit(wt) = 1[hwt(xit) 6= yit ]

Mistake Bound: The learner enjoys a mistake bound C if for any T
and any sequence i1, . . . , iT , it makes at most T mistakes

Example: The Perceptron (Rosenblatt 1958):

hw(x) = sign(〈w, x〉), y ∈ {±1}
The Perceptron rule: wt+1 = wt + φit(wt)xit/‖xit‖
Theorem (Agmon 1954, Minsky, Papert 1969):
If exists w∗ s.t. for every i, yi〈w∗, xi〉/‖xi‖ ≥ 1, then Perceptron’s
mistake bound is C = ‖w∗‖2
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Solving ERM for Classification Problems

min
w∈Rd

P (w) :=
1

n

n∑
i=1

φi(w)

Naive approach I:

Apply the online learner with random examples from [n]

Analysis: error decreases as C
T

Runtime for zero error: Need C/T < 1/n so T > nC d

Naive approach II:

Apply the online learner while feeding it with the worst example

Runtime for zero error: Need C iterations, each cost dn, so
T > nC d

Our approach: runtime is (n+ C) d
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Our Approach: Focused Online Learning

Min-max problem:

min
w

max
p∈Sn

n∑
i=1

piφi(w)

Zero-sum game between w player and p player

Use the online learner for the w player

Use a variant of EXP3 (Auer, Cesa-Bianchi, Freund, Schapire, 2002)
for the p player

Our variant explores w.p. 1/2, this leads to low-variance, and crucial
for the analysis
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Our Approach: Focused Online Learning

Initialize: q = (1/n, . . . , 1/n)

For t = 1, 2, . . . , T

Sample it according to p = 0.5 q + 0.5 (1/n, . . . , 1/n)
Feed it to the online learner
Update qit = qit exp(φit(wt) /(2npit)) and normalize

Observe: Using tree data-structure, each iteration costs O(log(n)) plus
the online learner time

Theorem

If T ≥ Ω̃ (n+ C), and k = Ω(log(n)), and if t1, . . . , tk are sampled at
random from [T ], then with high probability

∀i, φi (Majority(wt1 , . . . , wtk)) = 0
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Proof Sketch

The vector zt =
φit (wt)

pit
eit is an unbiased estimate of the gradient

(φ1(wt), . . . , φn(wt))

The update of q is Mirror Descent w.r.t. Entropic regularization with
zt

A certain generalized definition of variance of zt is bounded by 2n
because of the strong exploration

A Bernstein’s type inequality for Martingales enables to obtain strong
concentration

Union bound over every i enables to conclude the proof
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Related Work

Auer et al 2002: The main idea is there, but EXP3.P.1 costs Ω(n) per
iteration

Hazan, Clarckson, Woodruff 2012, Hazan, Koren, Srebro 2011: Only
for linear classifiers, rate of (n+ d)C.

AdaBoost (Freund & Schapire 1995): Only for binary classification,
batch nature, similar rate.
In practice: AdaBoost’s predictor is ensemble but ours is a single
classifier
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Why SGD is slow at the end?
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Rare mistakes: Suppose all but 1% of the examples are correctly
classified. SGD will now waste 99% of its time on examples that are
already correct by the model

High variance, even close to the optimum
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Solving ERM for Strongly-convex and Smooth Problems

min
w∈Rd

P (w) :=
1

n

n∑
i=1

φi(w) +
λ

2
‖w‖2

Now assume that φi is convex and O(1)-smooth
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Can we improve SGD ?

Theorem

Any algorithm for solving ERM that only accesses the objective using
oracle that returns a gradient of a random example and has log(1/ε) rate
must perform Ω̃(n2) iterations

Proof idea:

Consider two objectives (in both, λ = 1): for i ∈ {±1}

Pi(w) =
1

2n

(
n− 1

2
(w − i)2 +

n+ 1

2
(w + i)2

)
A stochastic gradient oracle returns w ± i w.p. 1

2 ±
1
2n

Easy to see that w∗i = −i/n, Pi(0) = 1/2, Pi(w
∗
i ) = 1/2− 1/(2n2)

Therefore, solving to accuracy ε < 1/(2n2) amounts to determining
the bias of the coin
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Can we improve SGD ?

A stronger oracle:

The negative result assumes we only see a gradient of a randomly
chosen example

A slightly stronger oracle: we also see the index of the chosen example

With the stronger oracle, SDCA (and SAG, SVRG, ...) convergence rate is

(n+ C) log(1/ε)

where C = 1/λ (a reasonable measure of capacity).
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SDCA = Stochastic Dual Coordinate Ascent

Maintain “dual” vectors α1, . . . , αn

At iteration t, sample i ∼ [n] and update

α
(t)
i = α

(t−1)
i − ηλn

(
∇φi(w(t−1)) + α

(t−1)
i

)
w(t) = w(t−1) − η

(
∇φi(w(t−1)) + α

(t−1)
i

)
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Intuition: Why SDCA is better than SGD

The update step of both SGD and SDCA is w(t) = w(t−1) − ηv(t)
where

v(t) =

{
∇φi(w(t−1)) + λw(t−1) for SGD

∇φi(w(t−1)) + α
(t−1)
i for SDCA

In both cases E[v(t)|w(t−1)] = ∇P (w(t))

What about the variance?

For SGD, even if w(t−1) = w∗, the variance of v(t) is still constant

For SDCA, the variance of v(t) goes to zero as w(t−1) → w∗
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SDCA vs. DCA — Randomization is crucial

On CCAT dataset, λ = 10−4, smoothed hinge-loss
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SDCA
DCA−Cyclic

SDCA−Perm
Bound

In particular, the bound of Luo and Tseng (1992) holds for cyclic
order, hence must be inferior to our bound
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Summary

SGD is worst-case optimal, but in many cases can be inferior to ERM

SGD converges quickly to an o.k. solution, but then slows down:
1 Wastes time on already solved cases
2 High variance even at w∗

We provide methods with bounds of the from (n+ C)

Future and Ongoing Work:

Beyond convexity ...
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