Quadratic transformations: feasibility and convexity

B. Polyak
with P. Shcherbakov, E. Gryazina
Institute for Control Science and
SkolTech Center for Energy Systems, Moscow

Workshop "Optimization Without Borders",
February 7-12, 2016, Les Houches, France

Quadratic maps

Have $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of the form

$$
\begin{gathered}
f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)^{\top}, \quad f_{i}(x)=\left(A_{i} x, x\right)+2\left(b_{i}, x\right), \quad i=1, \ldots, m \leq n \\
A_{i}=A_{i}^{\top} \in \mathbb{R}^{n \times n}, \quad b_{i} \in \mathbb{R}^{n}
\end{gathered}
$$

or $f: \mathbb{C}^{n} \rightarrow \mathbb{R}^{m}$ of the form

$$
\begin{gathered}
f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)^{\top}, \quad f_{i}(x)=\left(A_{i} x, x\right)+\left(b_{i}^{*}, x\right)+\left(b_{i}, x^{*}\right), \quad i=1, \ldots, m \leq n \\
A_{i}=A_{i}^{*} \in \mathbb{C}^{n \times n}, \quad b_{i} \in \mathbb{C}^{n}
\end{gathered}
$$

Image sets in \mathbb{R}^{m} :

$$
F=\left\{f(x): x \in \mathbb{R}^{n}\right\}
$$

or

$$
F=\left\{f(x): x \in \mathbb{C}^{n}\right\}
$$

and

$$
F_{r}=\left\{f(x): x \in \mathbb{R}^{n},\|x\| \leq r\right\}
$$

Problems

Convexity/nonconvexity Is F (or F_{r}) convex or not?
If F is convex, all related optimization problems are "good".
Our approach: check convexity/nonconvexity for individual transformation.
Membership Oracle (= Feasibility problem). Given $y \in \mathbb{R}^{m}$, check if $y \in F$

- Solvability of system of quadratic equations.

Applications - Optimization

- General quadratic programming:

$$
\begin{gathered}
\min f_{0}(x) \\
\text { s.t. } \\
f_{i}(x) \leq 0, i \in I, \quad f_{i}(x)=0, i \in J
\end{gathered}
$$

If F is convex + regularity conditions \Longrightarrow duality theory holds. FradkovYakubovich, Vestnik LGU, 1973; Fradkov, Siberian Math. J., 1973

- Boolean programming

$$
x_{i}=\{-1,+1\} \Longleftrightarrow x_{i}^{2}=1
$$

- Convex relaxation for F can be easily written: When is it tight? Shor 1986, Nesterov, Beck, Teboulle ...
- Pareto optimization: objective functions are linear/quadratic.

Applications - Control

- S-theorem: When do the two quadratic inequalities imply the third one?

Originally - absolute stability. Lurie-Postnikov, 1944, Aizerman-Gantmacher, 1963; solution - Yakubovich 1971
Now S-theorem plays significant role in LMI techniques, in robustness analysis, in quadratically constrained linear-quadratic theory.

- Structured singular value (μ-analysis and synthesis.) Doyle, 1982, PackardDoyle, Automatica, 1993. Complex μ, real μ - different properties due to convexity/nonconvexity of quadratic images.

Applications - Physics

- Quantum systems. Detectability depends on convexity properties of quadratic images.
- Power flow (PF) — feasibility of the desired regime; Optimal power flow (OPF): Power network with n buses connected to loads or generators.

Variables: Active and reactive powers generated at buses and complex voltages Constraints: Active and reactive loads

Cost functions: Quadratic functions of variables
Result: Zero duality gap under some conditions (J. Lavaei, S.H. Low, 2012)

Convexity vs Nonconvexity

- Simplest example:

$$
\min (A x, x) \quad \text { s.t. } \quad\|x\|=1
$$

This problem is nonconvex! However the closed-form solution is straightforward:

$$
x^{*}=e_{1}
$$

where e_{1} is the eigenvector associated with the minimal eigenvalue of A

- Titles of papers:
- Hidden convexity in some nonconvex quadratically constrained quadratic programming [Ben-Tal, Teboulle, 1996]
- Permanently going back and forth between the "quadratic world" and the "convexity world" in optimization [J.-B. Hiriart-Urruty, M. Tork, 2002]
- When the images of quadratic maps are convex?

Simple Illustrations

Figure 1: $n=m=2$: Image of unit circle (red) and of unit disk (blue), Pareto boundary (green)

Known Facts (Homogeneous forms)

Complex case - [Toeplitz, 1918; Hausdorff, 1919]: F_{1} is convex for $m=2$ (numerical range); [Au-Yeng, Tsing 1983] same for $m=3$.

Real case:

- $m=2, \quad \Longrightarrow \quad F$ is convex [Dines, 1941]
- $m=2, n \geq 3, \quad \Longrightarrow \quad F_{1}$ is convex [Brickman, 1961]
- $m=3, n \geq 3 ; \sum c_{i} A_{i} \succ 0 \Longrightarrow F$ is convex [Calabi, 1982; Polyak, 1998]
- m is arbitrary, A_{i} commute $\Longrightarrow F$ is convex [Fradkov, 1973].

Known Facts (Nonhomogeneous functions)

Complex case - F is convex for $m=2$.

Real case:

- $m=2, c_{1} A_{1}+c_{2} A_{2} \succ 0 \Longrightarrow F$ is convex [Polyak, 1998]
- m is arbitrary, A_{i} have nonpositive off-diagonal entries, $b_{i} \leq 0 \Longrightarrow$ Pareto set of F is convex ($F+\mathbb{R}_{+}^{m}$ is convex) [Zhang, Kim-Kojima, Jeyakumar a.o.]
- m is arbitrary, b_{i} are linearly independent $\Longrightarrow F_{r}$ is convex for r small enough [Polyak, 2001] - "Small ball" theorem.

Convex Hull (i)

The idea of convex relaxations for quadratic problems goes back to [Shor, 1986];
also see [Nesterov 1998], [Zhang 2000], [Beck and Teboulle, 2005].
Recent survey:
Luo, Ma, So, Ye, Zhang, Semidefinite relaxation of quadratic optimization problems, IEEE Sig. Proc. Magazine, 2010.

Two typical results:

Lemma 1. For $b_{i}=0$ have

$$
\operatorname{Conv}\left(F_{r}\right)=\left\{\mathcal{A}(X): X \succcurlyeq 0, \operatorname{Tr} X \leq r^{2}\right\},
$$

where $X=X^{\top} \in \mathbb{R}^{n \times n}, \mathcal{A}(X)=\left(\left\langle A_{1}, X\right\rangle, \ldots,\left\langle A_{m}, X\right\rangle\right)^{\top}$, and $\langle A, X\rangle=\operatorname{Tr} A X$.

Convex Hull (ii)

Lemma 2. In the general case $\left(b_{i} \neq 0\right)$ have

$$
G=\operatorname{Conv}(F)=\left\{\mathcal{H}(X): X \succcurlyeq 0, \quad X_{n+1, n+1}=1\right\}
$$

where $X=X^{\top} \in \mathbb{R}^{(n+1) \times(n+1)}, \quad \mathcal{H}(X)=\left(\left\langle H_{1}, X\right\rangle, \ldots,\left\langle H_{m}, X\right\rangle\right)^{\top}$,
and $H_{i}=\left[\begin{array}{cc}A_{i} & b_{i} \\ b_{i}^{T} & 0\end{array}\right]$.

Idea of proof: $\left(A_{i} x, x\right)=\left\langle A_{i}, x x^{\top}\right\rangle=\left\langle A_{i}, X\right\rangle, X \succcurlyeq 0, \operatorname{rank} X=1, \quad \operatorname{Tr} X=\|x\|^{2}$.
For $z=(x ; t) \in \mathbb{R}^{n+1}$ have $\left(H_{i} z, z\right)=\left(A_{i} x, x\right)+2\left(b_{i}, x\right) t=f_{i}(x)$ if $t=1$.

Convexity/nonconvexity certificates

We focus on real nonhomogeneous case. Our goal is to provide convexity/nonconvexity certificates for image of the individual quadratic map and feasibility/infeasibility certificate for the map and the point y. Notation:

$$
\begin{gathered}
c \in \mathbb{R}^{m}, y \in \mathbb{R}^{m}, A(c)=\sum c_{i} A_{i}, b(c)=\sum c_{i} b_{i}, y(c)=\sum c_{i} y_{i} \\
H_{i}=\left[\begin{array}{cc}
A_{i} & b_{i} \\
b_{i}^{T} & 0
\end{array}\right], \quad H(c)=\left[\begin{array}{cc}
A(c) & b(c) \\
b(c)^{T} & 0
\end{array}\right]
\end{gathered}
$$

Separating F and y

Strict separation is possible if $\min _{f \in F}(c, f)=\min _{x}[(A(c) x, x)+2(b(c), x)]>(y, c)$ for some c. This is equivalent to LMI $\left[\begin{array}{cc}A(c) & b(c) \\ b(c)^{T} & -1-(y, c)\end{array}\right] \succcurlyeq 0$.

Nonconvexity Certificate NC1

If LMI

$$
A(c) \succcurlyeq 0
$$

has no solutions in $c \neq 0$ and $F \neq \mathbb{R}^{m}$, then F is nonconvex.
Indeed a convex set either has a supporting hyperplane or coincides with the entire space.

Example. $\operatorname{tr} A_{i}=0, A_{i}$ are linearly independent. Then either $F=\mathbb{R}^{m}$, or F is nonconvex.

Infeasibility Certificate NF1

If LMI in c

$$
\left[\begin{array}{cc}
A(c) & b(c) \\
b(c)^{\top} & -1-y(c)
\end{array}\right] \succcurlyeq 0
$$

is solvable, then equation $f(x)=y$ has no solution.
Remark. If F is convex, this is necessary and sufficient condition.

Nonconvexity Certificate NC1

Let $m \geq 3, n \geq 3$, and let for some c, the matrix $A(c)$ has simple zero eigenvalue and eigenvector e such that $A(c) e=0,(b(c), e)=0$. Denote $d=-A(c)^{+} b(c)$, $x_{\alpha}=\alpha e+d, f^{\alpha}=f\left(x^{\alpha}\right)=f^{0}+f^{1} \alpha+f^{2} \alpha^{2}$. If $\left|\left(f^{1}, f^{2}\right)\right|<\left\|f^{1}\right\| \cdot\left\|f^{2}\right\|$, then F is nonconvex.

Proof: $\operatorname{Arg} \min _{f \in F}(c, f)=f\left(x^{\alpha}\right)$, where $f\left(x^{\alpha}\right)$ is 2-D parabola, which is nondegenerate due to the assumptions. Hence, the intersection of F and the supporting hyperplane $(c, f)=$ Const is nonconvex

How to find such c ?

Given $y^{0} \in F$ and direction d, to find boundary oracle for $y^{0}+t d \in \operatorname{Conv}(F)$ solve

$$
\begin{gathered}
\min \left(t+\left(c, y^{0}\right)\right) \\
{\left[\begin{array}{cc}
\sum A(c) & \sum b(c) \\
\sum b(c)^{T} & t
\end{array}\right] \succeq 0,(c, d)=-1 .}
\end{gathered}
$$

For d^{k} random find "flat" part of the boundary w.p.1.

Feasibility Certificate F1

Suppose $y \in \operatorname{Conv}(F)$. Solve $S D P$ in $c, \lambda \geq 0$ with parameter r^{2}

$$
\min (c, y)
$$

$$
\left[\begin{array}{cc}
A(c)+\lambda I & b(c) \\
b(c)^{\top} & (c, y)-\lambda r^{2}
\end{array}\right] \succeq 0
$$

Assume that the minimal eigenvalue of the matrix $A\left(c^{*}\right)+\lambda^{*} I$ is positive. Calculate $p(r)=\left\|\left(A\left(c^{*}\right)+\lambda^{*} I\right)^{-1} b\left(c^{*}\right)\right\|$ and find minimal root of $p(r)=r$. If it exists, $y \in F$.

Indeed, for this $r>0$ the point $y \in \partial \operatorname{Conv}\left(F_{r}\right)$ and it is the unique minimizer of (c, f) on this set.

Hence, the supporting hyperplane has the unique intersection point both with F_{r} and its convex hull.

Convexity certificate

Suppose matrix B with columns $b_{i}, i=1, \ldots, m$ is full-rank and its smallest singular value is $\sigma>0$. Denote $L=\sqrt{\sum_{i}\left\|A_{i}\right\|^{2}}, R=\sigma /(2 L)$. Then F_{r} is strictly convex for any $0<r<R$.

This is "small ball" theorem, [Polyak 2001]. There are better estimates for R [Dymarsky, 2016], [Xia, 2014].

If for some r in the previous test $p(r)<r$ and $r<R$, then $y \in F$.

Possible extensions

- Some of functions are linear

$$
F=\{f(x): C x=d\}
$$

- Complex case (important for power systems).
- Homogenous case (e.g. nonconvexity certificate for F_{r} can be specified - intersection of supporting hyperplane and F_{r} is 2-D ellipse).

3 buses (slack, PV, PQ), $n=m=4$, borrowed from literature

Nonconvexity detected!

Other examples

Intensive numerical testing for checking convexity. For all examples were images were known to be nonconvex, nonconvexity has been detected. For random data nonconvexity is typical.

Future Work

- From images to optimization
- Algorithms for high dimensions
- Feasibility problems more deeply
- "The best" inner convex approximation of F
- Cutting off "convex parts" of F.

