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Quadratic maps

Have f : Rn → Rm of the form

f(x) =
(
f1(x), . . . , fm(x)

)>
, fi(x) = (Aix, x) + 2(bi, x), i = 1, . . . ,m ≤ n

Ai = A>i ∈ Rn×n, bi ∈ Rn,

or f : Cn → Rm of the form

f(x) =
(
f1(x), . . . , fm(x)

)>
, fi(x) = (Aix, x)+(b∗i , x)+(bi, x

∗), i = 1, . . . ,m ≤ n

Ai = A∗i ∈ Cn×n, bi ∈ Cn.

Image sets in Rm:

F = {f(x) : x ∈ Rn}

or

F = {f(x) : x ∈ Cn}

and

Fr = {f(x) : x ∈ Rn, ‖x‖ ≤ r}
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Problems

Convexity/nonconvexity Is F (or Fr) convex or not?

If F is convex, all related optimization problems are “good”.

Our approach: check convexity/nonconvexity for individual transformation.

Membership Oracle (= Feasibility problem). Given y ∈ Rm, check if y ∈ F

— Solvability of system of quadratic equations.
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Applications — Optimization

• General quadratic programming:

min f0(x)

s.t. fi(x) ≤ 0, i ∈ I, fi(x) = 0, i ∈ J

If F is convex + regularity conditions =⇒ duality theory holds. Fradkov-

Yakubovich, Vestnik LGU, 1973; Fradkov, Siberian Math. J., 1973

• Boolean programming

xi = {−1,+1} ⇐⇒ x2i = 1

• Convex relaxation for F can be easily written: When is it tight? Shor 1986,

Nesterov, Beck, Teboulle ...

• Pareto optimization: objective functions are linear/quadratic.
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Applications — Control

• S-theorem: When do the two quadratic inequalities imply the third one?

Originally — absolute stability. Lurie-Postnikov, 1944, Aizerman-Gantmacher,

1963; solution — Yakubovich 1971

Now S-theorem plays significant role in LMI techniques, in robustness analysis,

in quadratically constrained linear-quadratic theory.

• Structured singular value (µ-analysis and synthesis.) Doyle, 1982, Packard-

Doyle, Automatica, 1993. Complex µ, real µ — different properties due to

convexity/nonconvexity of quadratic images.
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Applications — Physics

• Quantum systems. Detectability depends on convexity properties of quadratic

images.

• Power flow (PF) — feasibility of the desired regime; Optimal power flow (OPF):

Power network with n buses connected to loads or generators.

Variables: Active and reactive powers generated at buses and complex voltages

Constraints: Active and reactive loads

Cost functions: Quadratic functions of variables

Result: Zero duality gap under some conditions (J. Lavaei, S.H. Low, 2012)
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Convexity vs Nonconvexity

• Simplest example:

min(Ax, x) s.t. ‖x‖ = 1

This problem is nonconvex! However the closed-form solution is straightforward:

x∗ = e1,

where e1 is the eigenvector associated with the minimal eigenvalue of A

• Titles of papers:

— Hidden convexity in some nonconvex quadratically constrained quadratic pro-

gramming [Ben-Tal, Teboulle, 1996]

— Permanently going back and forth between the “quadratic world” and the

“convexity world” in optimization [J.-B. Hiriart-Urruty, M. Tork, 2002]

• When the images of quadratic maps are convex?
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Simple Illustrations
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Figure 1: n = m = 2: Image of unit circle (red) and of unit disk (blue), Pareto

boundary (green)
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Known Facts (Homogeneous forms)

Complex case — [Toeplitz, 1918; Hausdorff, 1919]: F1 is convex for m = 2 (numerical

range); [Au-Yeng, Tsing 1983] same for m = 3.

Real case:

• m = 2, =⇒ F is convex [Dines, 1941]

• m = 2, n ≥ 3, =⇒ F1 is convex [Brickman, 1961]

• m = 3, n ≥ 3;
∑
ciAi � 0 =⇒ F is convex [Calabi, 1982; Polyak, 1998]

• m is arbitrary, Ai commute =⇒ F is convex [Fradkov, 1973].
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Known Facts (Nonhomogeneous functions)

Complex case — F is convex for m = 2.

Real case:

• m = 2, c1A1 + c2A2 � 0 =⇒ F is convex [Polyak, 1998]

• m is arbitrary, Ai have nonpositive off-diagonal entries, bi ≤ 0 =⇒ Pareto set

of F is convex (F + Rm+ is convex) [Zhang, Kim-Kojima, Jeyakumar a.o.]

• m is arbitrary, bi are linearly independent =⇒ Fr is convex for r small

enough [Polyak, 2001] — “Small ball” theorem.
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Convex Hull (i)

The idea of convex relaxations for quadratic problems goes back to [Shor, 1986];

also see [Nesterov 1998], [Zhang 2000], [Beck and Teboulle, 2005].

Recent survey:

Luo, Ma, So, Ye, Zhang, Semidefinite relaxation of quadratic optimization problems,

IEEE Sig. Proc. Magazine, 2010.

Two typical results:

Lemma 1. For bi = 0 have

Conv(Fr) = {A(X) : X < 0, T rX ≤ r2},

where X = X> ∈ Rn×n, A(X) =
(
〈A1, X〉, . . . , 〈Am, X〉

)>
, and 〈A,X〉 = TrAX.
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Convex Hull (ii)

Lemma 2. In the general case (bi 6= 0) have

G = Conv(F ) = {H(X) : X < 0, Xn+1,n+1 = 1}

where X = X> ∈ R(n+1)×(n+1), H(X) =
(
〈H1, X〉, . . . , 〈Hm, X〉

)>
,

and Hi =

Ai bi

bTi 0

.

Idea of proof: (Aix, x) = 〈Ai, xx>〉 = 〈Ai, X〉, X < 0, rankX = 1, TrX = ‖x‖2.

For z = (x; t) ∈ Rn+1 have (Hiz, z) = (Aix, x) + 2(bi, x)t = fi(x) if t = 1.

12/24



Convexity/nonconvexity certificates

We focus on real nonhomogeneous case. Our goal is to provide convexity/nonconvexity

certificates for image of the individual quadratic map and feasibility/infeasibility cer-

tificate for the map and the point y. Notation:

c ∈ Rm, y ∈ Rm, A(c) =
∑

ciAi, b(c) =
∑

cibi, y(c) =
∑

ciyi

Hi =

Ai bi

bTi 0

 , H(c) =

A(c) b(c)

b(c)T 0

 .
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Separating F and y

F

c

y0

Strict separation is possible if minf∈F (c, f) = minx[(A(c)x, x) + 2(b(c), x)] > (y, c)

for some c. This is equivalent to LMI

A(c) b(c)

b(c)T −1− (y, c)

 < 0.
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Nonconvexity Certificate NC1

If LMI

A(c) < 0

has no solutions in c 6= 0 and F 6= Rm, then F is nonconvex.

Indeed a convex set either has a supporting hyperplane or coincides with the entire

space.

Example. trAi = 0, Ai are linearly independent. Then either F = Rm, or F is

nonconvex.
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Infeasibility Certificate NF1

If LMI in c

A(c) b(c)

b(c)> −1− y(c)

 < 0

is solvable, then equation f(x) = y has no solution.

Remark. If F is convex, this is necessary and sufficient condition.
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Nonconvexity Certificate NC1

Let m ≥ 3, n ≥ 3, and let for some c, the matrix A(c) has simple zero eigenvalue

and eigenvector e such that A(c)e = 0, (b(c), e) = 0. Denote d = −A(c)+b(c),

xα = αe+ d, fα = f(xα) = f0 + f1α + f2α2. If |(f1, f2)| < ‖f1‖ · ‖f2‖, then F is

nonconvex.

Proof : Arg min
f∈F

(c, f) = f(xα), where f(xα) is 2-D parabola, which is nondegenerate

due to the assumptions. Hence, the intersection of F and the supporting hyperplane

(c, f) = Const is nonconvex
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How to find such c?

F

G

d

c

d

c

y0

Given y0 ∈ F and direction d, to find boundary oracle for y0 + td ∈ Conv(F ) solve

min(t+ (c, y0))∑A(c)
∑
b(c)∑

b(c)T t

 � 0, (c, d) = −1.

For dk random find “flat” part of the boundary w.p.1.
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Feasibility Certificate F1

Suppose y ∈ Conv(F ). Solve SDP in c, λ ≥ 0 with parameter r2

min(c, y)A(c) + λI b(c)

b(c)> (c, y)− λr2

 � 0

Assume that the minimal eigenvalue of the matrix A(c∗)+λ∗I is positive. Calculate

p(r) = ||(A(c∗)+λ∗I)−1b(c∗)|| and find minimal root of p(r) = r. If it exists, y ∈ F .

Indeed, for this r > 0 the point y ∈ ∂Conv(Fr) and it is the unique minimizer of

(c, f) on this set.

Hence, the supporting hyperplane has the unique intersection point both with Fr

and its convex hull.
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Convexity certificate

Suppose matrix B with columns bi, i = 1, . . . ,m is full-rank and its smallest singular

value is σ > 0. Denote L =
√∑

i ||Ai||2, R = σ/(2L). Then Fr is strictly convex for

any 0 < r < R.

This is “small ball” theorem, [Polyak 2001]. There are better estimates for R —

[Dymarsky, 2016], [Xia, 2014].

If for some r in the previous test p(r) < r and r < R, then y ∈ F .
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Possible extensions

• Some of functions are linear

F = {f(x) : Cx = d}.

• Complex case (important for power systems).

• Homogenous case (e.g. nonconvexity certificate for Fr can be specified — inter-

section of supporting hyperplane and Fr is 2-D ellipse).
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Example
3 buses (slack, PV, PQ), n = m = 4, borrowed from literature

Nonconvexity detected!
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Other examples

Intensive numerical testing for checking convexity. For all examples were images

were known to be nonconvex, nonconvexity has been detected. For random data

nonconvexity is typical.
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Future Work

• From images to optimization

• Algorithms for high dimensions

• Feasibility problems more deeply

• “The best” inner convex approximation of F

• Cutting off “convex parts” of F .
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