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Introduction

Sampling distribution over high-dimensional state-space has recently
attracted a lot of research efforts in computational statistics and
machine learning...

Applications (non-exhaustive)

1 Bayesian inference for high-dimensional models (
2 Bayesian non parametrics
3 Aggregation of estimators and experts
4 Bayesian linear inverse problems (typically function space problems

converted to high-dimensional problem by Galerkin method)

Most of the sampling techniques known so far do not scale to
high-dimension... Challenges are numerous in this area...

A. Durmus et al. OWB Workshop-2016
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Logistic regression

Likelihood: Binary regression set-up in which the binary observations
(responses) (Y1, . . . , Yn) are conditionally independent Bernoulli
random variables with success probability F (βββTXi), where

1 Xi is a d dimensional vector of known covariates,
2 βββ is a d dimensional vector of unknown regression coefficient
3 F is a distribution function.

logistic regression: F is the standard logistic distribution function,

F (t) = et/(1 + et)

.

Problem: the number of predictor variables d is large (104 and up).

A. Durmus et al. OWB Workshop-2016
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Bayes 101

Bayesian analysis requires a prior distribution for the unknown
regression parameter

π(βββ) ∝ exp

(
−1

2
βββ′Σ−1

βββ βββ

)
or π(βββ) = exp

(
−

d∑
i=1

αi|βi|

)
.

The posterior of βββ is up to a proportionality constant given by

π(βββ|(Y,X)) ∝
n∏
i=1

FYi(β′Xi)(1− F (β′Xi))
1−Yiπ(βββ)

A. Durmus et al. OWB Workshop-2016
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Data Augmentation

The most popular algorithms for Bayesian inference in binary
regression models are based on data augmentation:

- logistic link: Polya-Gamma sampler, Polsson and Scott (2012)

Data Augmentation algorithm has been shown to be uniformly
geometrically ergodic, BUT

- The geometric rate of convergence is exponentially small with the
dimension,

- do not allow to construct honest confidence intervals, credible regions

The algorithms are very demanding in terms of computational
ressources...

- applicable only when is d small 10 to moderate 100 but certainly not
when d is large (104 or more).

- convergence time prohibitive as soon as d ≥ 102.

A. Durmus et al. OWB Workshop-2016
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A daunting problem ?

The posterior density distribution of βββ is given by Bayes’ rule, up to
a proportionality constant by

π(βββ|(Y,X)) ∝ exp(−U(βββ)) .

where the potential U(βββ) is given by

U(βββ) = −
p∑
i=1

{Yi log
F (βββTXi)

1− F (βββTXi)
+ log(1−F (βββTXi))}+ ‖Bβββ‖1,2

Classical composite objective function... The prior plays the role of
regularization penalty.

A. Durmus et al. OWB Workshop-2016
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Framework

Denote by π a target density w.r.t. the Lebesgue measure on Rd,
known up to a normalisation factor

x 7→ e−U(x)/

∫
Rd

e−U(y)dy ,

Implicitly, d� 1.

Assumption: U is L-smooth : twice continuously differentiable and
there exists a constant L such that for all x, y ∈ Rd,

‖∇U(x)−∇U(y)‖ ≤ L‖x− y‖ .

A. Durmus et al. OWB Workshop-2016



Motivation
Smooth case

Langevin diffusions and Euler discretization
Ergodicity of the time-inhomogeneous Euler discretization

Non-smooth potentials
Numerical illustrations

Conclusion

Langevin diffusion

Langevin SDE:

dYt = −∇U(Yt)dt+
√

2dBt ,

where (Bt)t≥0 is a d-dimensional Brownian Motion.

π ∝ e−U is reversible ; the unique invariant probability measure.

The convergence to the stationary distribution takes place at
geometrical rate.

Precise estimates of the convergence rate (TV, relative entropy) can
be obtained using:

Functional inequalities: Poincaré or Log-Sobolev inequalities
Coupling techniques: synchronous or reflection coupling, depending
upon the assumptions (Eberle, 2015)

A. Durmus et al. OWB Workshop-2016
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Discretized Langevin diffusion

Idea: Sample the diffusion paths, using for example the
Euler-Maruyama (EM) scheme:

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1

where

- (Zk)k≥1 is i.i.d. N (0, Id)
- (γk)k≥1 is a sequence of stepsizes, which can either be held constant

or be chosen to decrease to 0 at a certain rate.

Euler discretization = gradient algorithm + noise.

A. Durmus et al. OWB Workshop-2016
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Discretized Langevin diffusion: constant stepzize

When γk = γ, then (Xk)k≥1 is an homogeneous Markov chain with
Markov kernel Rγ with density

rγ(x, y) = (4πγ)−d/2 exp
(
−(4γ)−1 ‖y − x+ γ∇U(x)‖2

)
.

Under some appropriate conditions (a bit of positive curvature at
infinity), this Markov chain is irreducible, positive recurrent ;

unique invariant distribution πγ .

Problem: πγ 6= π.

A. Durmus et al. OWB Workshop-2016
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Metropolis-Adjusted Langevin Algorithm

To correct the target distribution, a Metropolis-Hastings step can be
included ; Metropolis Adjusted Langevin Agorithm (MALA).

- Key references Roberts and Tweedie, 1996

Algorithm:

1 Propose Yk+1 ∼ Xk − γ∇U(Xk) +
√

2γZk+1, Zk+1 ∼ N (0, Id)
2 Compute the acceptance ratio αγ(Xk, Yk+1) where

αγ(x, y) = 1 ∧ π(y)rγ(y, x)

π(x)rγ(x, y)
, rγ(x, y) ∝ e−‖y−x−γ∇U(x)‖2/(4γ)

3 Accept the move with probability αγ(Xk, Yk+1) / Reject the move
and stay where you are.

A. Durmus et al. OWB Workshop-2016
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MALA: pros and cons

Require to evaluate two times the objective function.

Geometric convergence is established under the condition that in the
tail the acceptance region is inwards in q,

lim
‖x‖→∞

∫
Aγ(x)∆I(x)

rγ(x, y)dy = 0 .

where I(x) = {y, ‖y‖ ≤ ‖x‖} and Aγ(x) is the acceptance region

Aγ(x) = {y, π(x)rγ(x, y) ≤ π(y)rγ(y, x)}

Optimal stepsize: scaling analysis - do not discussed here - suggests
to choose the stepsize to achieve 50% of acceptance.

A. Durmus et al. OWB Workshop-2016
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Foster-Lyapunov condition

A function V ∈ C2(Rd) is a Lyapunov function if V ≥ 1 and if there
exists θ > 0, b ≥ 0 and R > 0 such that,

A V ≤ −θV + b1B(0,R) ,

where A f = −〈∇U,∇f〉+ ∆f is the generator of the diffusion

Example: If there exist α > 1, ρ > 0 and Mρ ≥ 0 such that for all
y ∈ Rd, ‖y‖ ≥Mρ:

〈∇U(y), y〉 ≥ ρ ‖y‖α .

then V (x) = exp(U(x)/2) is a Lyapunov function.

A. Durmus et al. OWB Workshop-2016
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Geometric convergence of the Langevin diffusion

If there exists a Lyapunov function for the generator of the diffusion
then there exists κ ∈ [0, 1) such that for any initial distribution µ0

and t > 0,
‖µ0Pt − π‖TV ≤ C(µ0)κt ,

for some explicit function of the initial probability C(µ0).

Explicit expressions of the constant (the way dimension impacts
theses constants) critically depends on

- the assumptions on the potential U
- the technique of proofs (functional inequalities, coupling

constructions, etc...)

A. Durmus et al. OWB Workshop-2016
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Geometric convergence of the Euler discretization

Let (γk)k≥1 be a sequence of positive and non-increasing step sizes

Euler discretization:

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1 ,

where (Zk)k≥1 is i.i.d. N (0, Id), independent of X0.

Markov kernel Rγ and x ∈ Rd by

Rγ(x,A) =

∫
A

1

(4πγ)d/2
exp

(
−(4γ)−1 ‖y − x+ γ∇U(x)‖2

)
dy .

The sequence (Xn)n≥0 is a (possibly) time-nonhomogeneous
Markov chain whose distribution is specified by the Markov kernels
(Rγn)n≥1.

A. Durmus et al. OWB Workshop-2016
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Level-0 results

The Markov kernel Rγ is strongly Feller, irreducible, and hence all
the compact sets are therefore small.

Typically, the Rγ satisfies a Foster-Lyapunov drift condition of a
particular form, i.e. there exists κ ∈ [0, 1), b > 0 such that for all
γ > 0

RγV ≤ κγV + γb .

Rγ admits a unique stationary distribution πγ and is V -uniformly
geometrically ergodic, in the sense that, for some constant C <∞
and κ ∈ [0, 1), such that for all x ∈ Rd,∥∥Rkγ(x, ·)− πγ

∥∥
V
≤ C(γ)κγkV (x) .

A. Durmus et al. OWB Workshop-2016
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Example: A drift condition for Rγ

Theorem

Assume U is L-smooth and there exist ρ > 0, α > 1 and Mρ ≥ 0 such
that :

〈∇U(y), y〉 ≥ ρ ‖y‖α , for all y ∈ Rd, ‖y‖ ≥Mρ

Then for all γ̄ ∈
(
0, L−1

)
, there exists b ≥ 0 and s > 0 such that

RγV (x) ≤ κγV (x) + γb , for all γ ∈ (0, γ̄] and x ∈ Rd,

where
V (x) = exp(U(x)/2).

A. Durmus et al. OWB Workshop-2016
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Control of moments

By a straightforward induction, we get for all n ≥ 0 and x ∈ Rd,

QnγV ≤ κΓ1,nV + b

n∑
i=1

γiκ
Γi+1,n .

Note that for all n ≥ 1, we have

n∑
i=1

γiκ
Γi+1,n ≤ γ1(1− κΓ1,n)/(1− κγ1) .

A. Durmus et al. OWB Workshop-2016
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Error decomposition

For n ≤ p set Qn,pγ = Rγn · · ·Rγp ,

Error decomposition

‖µ0Q
p
γ − π‖TV ≤ ‖µ0Q

n
γQ

n+1,p
γ − µ0Q

n
γPΓn+1,p

‖TV

+ ‖µ0Q
n
γPΓn+1,p − π‖TV .

where

Γn,p
def
=

p∑
k=n

γk , Γn = Γ1,n .

- Second term on the RHS: contraction of the markov semi-group.
- Problem: Find a way to compare the total variation distance between

the diffusion and its discretization started at time Γn from the same
distribution.

A. Durmus et al. OWB Workshop-2016
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Coupling

For all x ∈ Rd, denote by µxn,p and µ̄xn,p the laws on C([Γn,Γp] ,Rd)
of the Langevin diffusion (Yt)Γn≤t≤Γp and of the Euler discretisation
(Ȳt)Γn≤t≤Γp both started at x at time Γn.

For any ζ0 ∈ P2(Rd × Rd), consider the diffusion (Yt, Y t)t≥0 with
initial distribution equals to ζ0, and defined for t ≥ 0 by{

dYt = −∇U(Yt)dt+
√

2dBt

dȲt = −∇U(Ȳt, t)dt+
√

2dBt

and

∇U(y, t) =

∞∑
k=0

∇U(yΓk)1[Γk,Γk+1)(t)

A. Durmus et al. OWB Workshop-2016
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Change of measure

The Girsanov theorem shows that µxn,p ∼ µ̄xn,p with density

dµxn,p
dµ̄xn,p

= exp
(1

2

∫ Γp

Γn

〈
∇U(Ȳs)−∇U(Ȳs), s,dȲs

〉
− 1

4

∫ Γp

Γn

{∥∥∇U(Ȳs)
∥∥2 −

∥∥∇U(Ȳs, s)
∥∥2
}

ds
)
.

The Pinsker inequality implies that for all x ∈ Rd

‖δxQn+1,p
γ − δxPΓn+1,p‖TV ≤ 2−1

(
Entµ̄xn,p

(
dµxn,p
dµ̄xn,p

))1/2

≤ 4−1

(∫ Γp

Γn

Ex
[∥∥∇U(Ȳs)−∇U(Ȳs, s)

∥∥2
]

ds

)1/2

.

A. Durmus et al. OWB Workshop-2016
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Change of measure

Pinsker inequality: for all x ∈ Rd

‖δxQn+1,p
γ − δxPΓn+1,p‖TV

≤ 4−1

(∫ Γp

Γn

Ex
[∥∥∇U(Ȳs)−∇U(Ȳs, s)

∥∥2
]

ds

)1/2

.

If U is L-smooth,

‖δxQn+1,p
γ − δxPΓn+1,p

‖TV

≤ 4−1L

(
p∑

k=n+1

{
(γ3
k/3)Ex

[
‖∇U(Xk)‖2

]
+ dγ2

k

})1/2

.

A. Durmus et al. OWB Workshop-2016
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Back to the decomposition of the error

‖µ0Q
p
γ − π‖TV ≤ ‖µ0Q

p
γ − µ0Q

n
γPΓn+1,p

‖TV + ‖µ0Q
n
γPΓn+1,p

− π‖TV .

Main result: For all n, p ≥ 1, n ≤ p, and x ∈ Rd

‖µ0Q
p
γ − π‖TV ≤ C(µ0Q

n
γ )λΓn+1,p +

(
D(d, γ, µ0)

p∑
k=n+1

γ2
k

)1/2

If
∑
k γk =∞, then

‖µ0Q
p
γ − π‖TV → 0 , p→∞ .

A. Durmus et al. OWB Workshop-2016
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Controlling πγ

How far πγ is from π ?

Under the stated conditions, there exists an explicit constant C(d)
such that for all γ ∈ [0, γ̄),

‖π − πγ‖V ≤ C(d)γ1/2 .

A. Durmus et al. OWB Workshop-2016
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Non-smooth potentials

The target distribution has a density π with respect to the Lebesgue
measure on Rd of the form x 7→ e−U(x)/

∫
Rd e−U(y)dy where U = f + g,

with f : Rd → R and g : Rd → (−∞,+∞] are two lower bounded,
convex functions satisfying:

1 f is continuously differentiable and gradient Lipschitz with Lipschitz
constant Lf , i.e. for all x, y ∈ Rd

‖∇f(x)−∇f(y)‖ ≤ Lf ‖x− y‖ .

2 g is lower semi-continuous and
∫
Rd e−g(y)dy ∈ (0,+∞).

A. Durmus et al. OWB Workshop-2016
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Moreau-Yosida regularization

Let h : Rd → (−∞,+∞] be a l.s.c convex function and λ > 0. The
λ-Moreau-Yosida envelope hλ : Rd → R and the proximal operator
proxλh : Rd → Rd associated with h are defined for all x ∈ Rd by

hλ(x) = inf
y∈Rd

{
h(y) + (2λ)−1 ‖x− y‖2

}
≤ h(x) .

For every x ∈ Rd, the minimum is achieved at a unique point,
proxλh(x), which is characterized by the inclusion

x− proxλh(x) ∈ γ∂h(proxλh(x)) .

The Moreau-Yosida envelope is a regularized version of g, which
approximates g from below.

A. Durmus et al. OWB Workshop-2016
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Properties of proximal operators

As λ ↓ 0, converges hλ converges pointwise h, i.e. for all x ∈ Rd,

hλ(x) ↑ h(x) , as λ ↓ 0 .

The function hλ is convex and continuously differentiable

∇hλ(x) = λ−1(x− proxλh(x)) .

The proximal operator is a monotone operator, for all x, y ∈ Rd,〈
proxλh(x)− proxλh(y), x− y

〉
≥ 0 ,

which implies that the Moreau-Yosida envelope is L-smooth:∥∥∇hλ(x)−∇hλ(y)
∥∥ ≤ λ−1 ‖x− y‖, for all x, y ∈ Rd.

A. Durmus et al. OWB Workshop-2016
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MY regularized potential

If g is not differentiable, but the proximal operator associated with g
is available, its λ-Moreau Yosida envelope gλ can be considered.

This leads to the approximation of the potential Uλ : Rd → R
defined for all x ∈ Rd by

Uλ(x) = f(x) + gλ(x) .

Theorem

Under (H), for all λ > 0, 0 <
∫
Rd e−U

λ(y)dy < +∞.

A. Durmus et al. OWB Workshop-2016
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Some approximation results

Theorem

Assume (H).

1 Then, limλ→0 ‖πλ − π‖TV = 0.

2 Assume in addition that g is Lipschitz. Then for all λ > 0,

‖πλ − π‖TV ≤ λ ‖g‖2Lip .

3 If g = ιK where K is a convex body of Rd. Then for all λ > 0 we
have

‖πλ − π‖TV ≤ 2 (1 + D(K, λ))
−1

,

where D(K, λ) is explicit in the proof, and is of order O(λ−1) as λ
goes to 0.

A. Durmus et al. OWB Workshop-2016
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The MYULA algorithm-I

Given a regularization parameter λ > 0 and a sequence of stepsizes
{γk, k ∈ N∗}, the algorithm produces the Markov chain {XM

k , k ∈ N}:
for all k ≥ 0,

XM
k+1 = XM

k −γk+1

{
∇f(XM

k ) + λ−1(XM
k − proxλg (XM

k ))
}

+
√

2γk+1Zk+1 ,

where {Zk, k ∈ N∗} is a sequence of i.i.d. d-dimensional standard
Gaussian random variables.

A. Durmus et al. OWB Workshop-2016
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The MYULA algorithm-II

The ULA target the smoothed distribution πλ.

To compute the expectation of a function h : Rd → R under π from
{XM

k ; 0 ≤ k ≤ n}, an importance sampling step is used to correct
the regularization.

This step amounts to approximate
∫
Rd h(x)π(x)dx by the weighted

sum

Shn =

n∑
k=0

ωNk,nh(Xk) , with ωNk,n =

{
n∑
k=0

γkeḡ
λ(XM

k )

}−1

γkeḡ
λ(XM

k ) ,

where for all x ∈ Rd

ḡλ(x) = gλ(x)−g(x) = g(proxλg (x))−g(x)+(2λ)−1
∥∥x− proxλg (x)

∥∥2
.

A. Durmus et al. OWB Workshop-2016
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Image deconvolution

Objective recover an original image x ∈ Rn from a blurred and noisy
observed image y ∈ Rn related to x by the linear observation model
y = Hx + w, where H is a linear operator representing the blur
point spread function and w ∼ N(0, σ2In).

This inverse problem is usually ill-posed or ill-conditioned: exploits
prior knowledge about x.

One of the most widely used image prior for deconvolution problems
is the improper total-variation norm prior, π(x) ∝ exp (−α‖∇dx‖1),
where ∇d denotes the discrete gradient operator that computes the
vertical and horizontal differences between neighbour pixels.

π(x|y) ∝ exp
[
−‖y −Hx‖2/2σ2 − α‖∇dx‖1

]
.
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(a) (b) (c)

Figure: (a) Original Boat image (256× 256 pixels), (b) Blurred image, (c)
MAP estimate.
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Credibility intervals

(a) (b) (c)

Figure: (a) Pixel-wise 90% credibility intervals computed with proximal MALA
(computing time 35 hours), (b) Approximate intervals estimated with MYULA
using λ = 0.01 (computing time 3.5 hours), (c) Approximate intervals
estimated with MYULA using λ = 0.1 (computing time 20 minutes).
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What’s next ?

A simple algorithm which scale easily in the dimension of the
problem

Computable bounds for convergence in TV, MSE, and deviation
inequalities with constants which make sense !

Future works

- partial updates (coordinate descent)
- detailed comparison with MALA
- bias reduction (”exact estimation” à la Glynn and Rhee ?)
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