Extreme copositive matrices and periodic dynamical systems

Roland Hildebrand

Weierstrass Institute (WIAS), Berlin
Optimization without borders
Dedicated to Yuri Nesterovs 60th birthday
February 11, 2016

Outline

(1) Copositive matrices

- Definition and general properties
- Zeros and zero patterns
(2) Periodic dynamical systems and extreme matrices
- Periodic systems
- Vector sets with circulant supports

Copositive cone

Definition

A real symmetric $n \times n$ matrix A such that $x^{\top} A x \geq 0$ for all $x \in \mathbb{R}_{+}^{n}$ is called copositive.
the set of all such matrices is a regular convex cone, the copositive cone \mathcal{C}_{n}

related cones

- completely positive cone $\mathcal{C}_{n}^{*}=\operatorname{conv}\left\{x x^{\top} \mid x \geq 0\right\}$
- $\operatorname{sum} \mathcal{N}_{n}+\mathcal{S}_{n}^{+}$of nonnegative and positive semi-definite cone
- doubly nonnegative cone $\mathcal{N}_{n} \cap \mathcal{S}_{n}^{+}$

$$
\mathcal{C}_{n}^{*} \subset \mathcal{N}_{n} \cap \mathcal{S}_{n}^{+} \subset \mathcal{N}_{n}+\mathcal{S}_{n}^{+} \subset \mathcal{C}_{n}
$$

NP-hardness

Theorem (Murty, Kabadi 1987)

Checking whether an $n \times n$ integer matrix is not copositive is NP-complete.

Theorem (Burer 2009)

Any mixed binary-continuous optimization problem with linear constraints and (non-convex) quadratic objective function can be written as a copositive program

$$
\min _{x \in \mathcal{C}_{n}}\langle c, x\rangle: \quad A x=b
$$

Description in low dimensions

Theorem (Diananda 1962)

Let $n \leq 4$. Then the copositive cone \mathcal{C}_{n} equals the sum of the nonnegative cone \mathcal{N}_{n} and the positive semi-definite cone \mathcal{S}_{n}^{+}.
the Horn form (discovered by Alfred Horn)

$$
H=\left(\begin{array}{rrrrr}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right)
$$

is an example of a matrix in $\mathcal{C}_{5} \backslash\left(\mathcal{N}_{5}+\mathcal{S}_{5}^{+}\right)$
matrices in $\mathcal{C}_{n} \backslash\left(\mathcal{N}_{n}+\mathcal{S}_{n}^{+}\right)$are called exceptional

Dimension 5

Theorem (Dickinson, Dür, Gijben, H. 2013)

The linear affine section $D_{5,1}=\left\{A \in \mathcal{C}_{5} \mid \operatorname{diag}(A)=\mathbf{1}\right\}$ possesses a semi-definite description:
$A \in D_{5,1}$ if and only if the 6 -th order polynomial on \mathbb{R}^{5} given by

$$
p_{A}(x)=\left(\sum_{i, j=1}^{5} A_{i j} x_{i}^{2} x_{j}^{2}\right) \cdot\left(\sum_{k=1}^{5} x_{k}^{2}\right)
$$

is a sum of squares.

- every copositive matrix A with diag $A>0$ can be diagonally scaled to a copositive matrix $A^{\prime}=D A D$ with diag $A^{\prime}=1$
- for every matrix $A \in \mathcal{C}_{5} \backslash\left(\mathcal{N}_{5}+\mathcal{S}_{5}^{+}\right)$there exists a positive definite diagonal matrix D such that $p_{D A D}$ is not SOS

Extreme rays

Definition

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. An nonzero element $u \in K$ is called extreme if it cannot be decomposed into a non-trivial sum of linearly independent elements of K.
in [Hall, Newman 63] the extreme rays of \mathcal{C}_{n} belonging to $\mathcal{N}_{n}+\mathcal{S}_{n}^{+}$have been described:

- the extreme rays of \mathcal{N}_{n}, generated by $E_{i i}$ and $E_{i j}+E_{j i}$
- rank 1 matrices $A=x x^{T}$ with x having both positive and negative elements
in [Hoffman, Pereira 1973] the extreme elements of \mathcal{C}_{n} with elements in $\{-1,0,+1\}$ have been described

Dimension 5

Theorem (H. 2012)

The extreme elements $A \in \mathcal{C}_{5} \backslash\left(\mathcal{N}_{5}+\mathcal{S}_{5}^{+}\right)$of \mathcal{C}_{5} are exactly the matrices $D P M P^{T} D$, where D is a diagonal positive definite matrix, P is a permutation matrix, and M is either the Horn form H or is given by a matrix
$T=\left(\begin{array}{ccccc}1 & -\cos \psi_{4} & \cos \left(\psi_{4}+\psi_{5}\right) & \cos \left(\psi_{2}+\psi_{3}\right) & -\cos \psi_{3} \\ -\cos \psi_{4} & 1 & -\cos \psi_{5} & \cos \left(\psi_{5}+\psi_{1}\right) & \cos \left(\psi_{3}+\psi_{4}\right) \\ \cos \left(\psi_{4}+\psi_{5}\right) & -\cos \psi_{5} & 1 & -\cos \psi_{1} & \cos \left(\psi_{1}+\psi_{2}\right) \\ \cos \left(\psi_{2}+\psi_{3}\right) & \cos \left(\psi_{5}+\psi_{1}\right) & -\cos \psi_{1} & 1 & -\cos \psi_{2} \\ -\cos \psi_{3} & \cos \left(\psi_{3}+\psi_{4}\right) & \cos \left(\psi_{1}+\psi_{2}\right) & -\cos \psi_{2} & 1\end{array}\right)$,
where $\psi_{k}>0$ for $k=1, \ldots, 5$ and $\sum_{k=1}^{5} \psi_{k}<\pi$.

Definition (Baumert 1965)

let $A \in \mathcal{C}_{n}$ be a copositive matrix

- a non-zero vector $x \geq 0$ is called a zero of A if $x^{T} A x=0$
- the set $\operatorname{supp} x=\left\{i \mid x_{i}>0\right\}$ is called the support of x
- the set $\mathcal{V}_{A}=\{\operatorname{supp} x \mid x$ is a zero of $A\}$ is called the zero pattern of A

Example: Horn form
$H=\left(\begin{array}{rrrrr}1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1\end{array}\right): \quad x=\left(\begin{array}{c}a \\ a+b \\ b \\ 0 \\ 0\end{array}\right), \begin{aligned} & a, b \geq 0 \\ & a+b>0\end{aligned}$
and cyclically permuted vectors
\mathcal{V}_{H} consists of $\{1,2\},\{1,2,3\}$ and cyclically permuted sets

Example: T-matrix

$$
\boldsymbol{T}=\left(\begin{array}{ccccc}
1 & -\cos \psi_{4} & \cos \left(\psi_{4}+\psi_{5}\right) & \cos \left(\psi_{2}+\psi_{3}\right) & -\cos \psi_{3} \\
-\cos \psi_{4} & 1 & -\cos \psi_{5} & \cos \left(\psi_{5}+\psi_{1}\right) & \cos \left(\psi_{3}+\psi_{4}\right) \\
\cos \left(\psi_{4}+\psi_{5}\right) & -\cos \psi_{5} & 1 & -\cos \psi_{1} & \cos \left(\psi_{1}+\psi_{2}\right) \\
\cos \left(\psi_{2}+\psi_{3}\right) & \cos \left(\psi_{5}+\psi_{1}\right) & -\cos \psi_{1} & 1 & -\cos \psi_{2} \\
-\cos \psi_{3} & \cos \left(\psi_{3}+\psi_{4}\right) & \cos \left(\psi_{1}+\psi_{2}\right) & -\cos \psi_{2} & 1
\end{array}\right)
$$

has zeros given by the columns of the matrix
$\left(\begin{array}{ccccc}\sin \psi_{5} & 0 & 0 & \sin \psi_{2} & \sin \left(\psi_{3}+\psi_{4}\right) \\ \sin \left(\psi_{4}+\psi_{5}\right) & \sin \psi_{1} & 0 & 0 & \sin \psi_{3} \\ \sin \psi_{4} & \sin \left(\psi_{1}+\psi_{5}\right) & \sin \psi_{2} & 0 & 0 \\ 0 & \sin \psi_{5} & \sin \left(\psi_{1}+\psi_{2}\right) & \sin \psi_{3} & 0 \\ 0 & 0 & \sin \psi_{1} & \sin \left(\psi_{2}+\psi_{3}\right) & \sin \psi_{4}\end{array}\right)$
and homothetic images
the zero pattern is $\{\{1,2,3\},\{2,3,4\},\{3,4,5\},\{4,5,1\},\{5,1,2\}\}$

Properties

Theorem (Diananda 1962)

Let $A \in \mathcal{C}_{n}$ be a copositive matrix, let x be a zero of A, and let $I=\operatorname{supp} x$. Then the principal submatrix $A_{l, l}$ is positive semi-definite.

Theorem (Baumert 1966)

Let A be a copositive matrix and let x be a zero of A. Then $A x \geq 0$.

- if $A, B \in \mathcal{C}_{n}$ and x is a zero of $A+B$, then x is a zero of A and B
- (Baumert 1965) if x is a zero of $A \in \mathcal{C}_{n}$ and \mid supp $x \mid \geq n-1$, then $A \in \mathcal{N}_{n}+\mathcal{S}_{n}^{+}$

Outline

(1) Copositive matrices

- Definition and general properties
- Zeros and zero patterns
(2) Periodic dynamical systems and extreme matrices
- Periodic systems
- Vector sets with circulant supports

Framework

scalar discrete-time time-variant dynamical system

$$
x_{t+d}+\sum_{i=0}^{d-1} c_{t, i} x_{t+i}=0, \quad t \geq 0
$$

coefficients n-periodic, $c_{t+n, i}=c_{t, i}$

- solution space \mathcal{L} is d-dimensional, $n>d$
- \mathcal{L} can be parameterized by initial values x_{0}, \ldots, x_{d-1}
- if $c_{t, 0} \neq 0$ for all t, then the system is reversible

Monodromy

let $x=\left(x_{t}\right)_{t \geq 0}$ be a solution
then $y=\left(x_{t+n}\right)_{t \geq 0}$ is also a solution

Definition

The linear map $\mathfrak{M}: \mathcal{L} \rightarrow \mathcal{L}$ taking x to y is called the monodromy of the periodic system. Its eigenvalues are called Floquet multipliers.

- x is periodic if and only if it is an eigenvector of \mathfrak{M} with eigenvalue 1
- $\operatorname{det} \mathfrak{M}=(-1)^{n d} \prod_{t=0}^{n-1} c_{t, 0}$

Evaluation functionals

let $x=\left(x_{t}\right)_{t \geq 0}$ be a solution
for every t, define a linear map \mathbf{e}_{t} by $\mathbf{e}_{t}(x)=x_{t}$

- \mathbf{e}_{t} belongs to the dual space \mathcal{L}^{*}
- $\mathbf{e}_{t+n}=\mathfrak{M}^{*} \mathbf{e}_{t}$
- $\mathbf{e}_{0}, \ldots, \mathbf{e}_{d-1} \operatorname{span} \mathcal{L}^{*}$
\mathbf{e}_{t} evolves according to

$$
\mathbf{e}_{t+d}+\sum_{i=0}^{d-1} c_{t, i} \mathbf{e}_{t+i}=0
$$

Shift-invariant forms

Definition

A symmetric bilinear form B on \mathcal{L}^{*} is called shift-invariant if

$$
B\left(\mathbf{e}_{t+n}, \mathbf{e}_{s+n}\right)=B\left(\mathbf{e}_{t}, \mathbf{e}_{s}\right) \quad \forall t, s \geq 0
$$

- B is shift-invariant if and only if $B\left(w, w^{\prime}\right)=B\left(\mathfrak{M}^{*} w, \mathfrak{M}^{*} w^{\prime}\right)$ for all $w, w^{\prime} \in \mathcal{L}^{*}$
- $B=x \otimes x$ for x periodic are shift-invariant
- a positive semi-definite form B is shift-invariant if and only if $\mathfrak{M}\left[(\operatorname{ker} B)^{\perp}\right]=(\operatorname{ker} B)^{\perp}$ and the restriction of \mathfrak{M} to $(\operatorname{ker} B)^{\perp}$ is similar to a unitary operator
in particular, n-dim ker B eigenvalues of \mathfrak{M} lie on the unit circle

Vector sets with circulant supports

let $n \geq 5$ and let $\mathbf{u}=\left\{u^{1}, \ldots, u^{n}\right\} \subset \mathbb{R}_{+}^{n}$ with

$$
\begin{aligned}
\operatorname{supp} u^{1} & =\{1,2, \ldots, n-2\}=: I_{1} \\
\operatorname{supp} u^{2} & =\{2,3, \ldots, n-1\}=: I_{2} \\
\vdots & \\
\operatorname{supp} u^{n} & =\{n, 1, \ldots, n-3\}=: I_{n}
\end{aligned}
$$

- supports form an orbit under circular shift
- a copositive matrix having such zeros might not exist

Associated dynamical system

to a collection \mathbf{u} of nonnegative vectors u^{1}, \ldots, u^{n} with $\operatorname{supp} u^{k}=I_{k}$ associate an n-periodic dynamical system

$$
\sum_{i=0}^{d} c_{t, i} x_{t+i}=0
$$

with $c_{t}=\left(u^{t}\right)_{t}, t=1, \ldots, n$

- order $d=n-3$
- system is reversible
- all coefficients are positive
- $\operatorname{det} \mathfrak{M}=\prod_{j=1}^{n} u_{j}^{j} / \prod_{j=1}^{n} u_{j+d}^{j}>0$

Periodic solutions

let $\mathcal{L}_{\text {per }}$ be the subspace of periodic solutions

Lemma

An n-periodic infinite sequence $x=\left(x_{0}, x_{1}, \ldots\right)$ is a solution if and only if the vector $\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$ is orthogonal to all zeros $u^{j}, j=1, \ldots, n$.
In particular, $\operatorname{dim} \mathcal{L}_{\text {per }}$ equals the corank of the matrix U composed of u^{1}, \ldots, u^{n}.
corank of $U=$ multiplicity of Floquet multiplier 1

Example: zeros of T-matrix

$n=5, d=2$, u given by columns of

$$
\left(\begin{array}{ccccc}
\sin \psi_{5} & 0 & 0 & \sin \psi_{2} & \sin \left(\psi_{3}+\psi_{4}\right) \\
\sin \left(\psi_{4}+\psi_{5}\right) & \sin \psi_{1} & 0 & 0 & \sin \psi_{3} \\
\sin \psi_{4} & \sin \left(\psi_{1}+\psi_{5}\right) & \sin \psi_{2} & 0 & 0 \\
0 & \sin \psi_{5} & \sin \left(\psi_{1}+\psi_{2}\right) & \sin \psi_{3} & 0 \\
0 & 0 & \sin \psi_{1} & \sin \left(\psi_{2}+\psi_{3}\right) & \sin \psi_{4}
\end{array}\right)
$$

linearly independent solutions of the associated dynamical system are given by

$$
\begin{aligned}
& x^{1}=\left(1,-\cos \psi_{4}, \cos \left(\psi_{4}+\psi_{5}\right),-\cos \left(\psi_{4}+\psi_{5}+\psi_{1}\right), \cos \left(\psi_{4}+\psi_{5}+\psi_{1}+\psi_{2}\right), \ldots\right) \\
& x^{2}=\left(0, \sin \psi_{4},-\sin \left(\psi_{4}+\psi_{5}\right), \sin \left(\psi_{4}+\psi_{5}+\psi_{1}\right),-\sin \left(\psi_{4}+\psi_{5}+\psi_{1}+\psi_{2}\right), \ldots\right)
\end{aligned}
$$

Main correspondence

let $\mathcal{A}_{\mathbf{u}} \subset \mathcal{S}_{n}$ be the linear subspace of symmetric $n \times n$ matrices A satisfying $\left(A u^{k}\right)_{l_{k}}=0$
to every $A \in \mathcal{A}_{\mathbf{u}}$ associate a symmetric bilinear form B on the dual solution space \mathcal{L}^{*} by

$$
B\left(\mathbf{e}_{t}, \mathbf{e}_{s}\right)=A_{t s}, \quad t, s=1, \ldots, d
$$

let $\Lambda: A \mapsto B$ be the corresponding linear map

- for A being copositive $A u^{k} \geq 0$ is a necessary condition
- Λ maps quadratic forms on \mathbb{R}^{n} to quadratic forms on \mathbb{R}^{d}

Image of Λ

Lemma

The linear map \wedge is injective and its image consists of those shift-invariant symmetric bilinear forms B which satisfy

$$
B\left(\mathbf{e}_{t}, \mathbf{e}_{s}\right)=B\left(\mathbf{e}_{t+n}, \mathbf{e}_{s}\right) \quad \forall t, s \geq 0: 3 \leq s-t \leq n-3
$$

- the image of \wedge may be $\{0\}$
- effectively finite number of linear conditions

Copositive matrices with zeros u

Theorem

Let $\mathcal{F}_{\mathbf{u}}$ be the set of positive semi-definite shift-invariant symmetric bilinear forms B on $\mathcal{L}_{\mathbf{u}}^{*}$ satisfying the linear equality relations

$$
B\left(\mathbf{e}_{t}, \mathbf{e}_{s}\right)=B\left(\mathbf{e}_{t+n}, \mathbf{e}_{s}\right), \quad 0 \leq t<s<n: 3 \leq s-t \leq n-3
$$

and the linear inequalities

$$
B\left(\mathbf{e}_{t}, \mathbf{e}_{t+2}\right) \geq B\left(\mathbf{e}_{t+n}, \mathbf{e}_{t+2}\right), \quad t=0, \ldots, n-1
$$

Then the face of \mathcal{C}^{n} defined by the zeros $u^{j}, j=1, \ldots, n$, is given by $F_{\mathbf{u}}=\Lambda^{-1}\left[\mathcal{F}_{\mathbf{u}}\right]$.

Consequences

the face of \mathcal{C}_{n} defined by \mathbf{u} is given by linear equality and inequality constraints and a semi-definite constraint

Corollary

Given a vector set $\mathbf{u}=\left\{u^{1}, \ldots, u^{n}\right\} \subset \mathbb{R}_{+}^{n}$, we can compute the face F_{u} of the copositive cone \mathcal{C}_{n} which consists of matrices having u^{1}, \ldots, u^{n} as zeros by a semi-definite program.

- matrices in F_{u} might have also other zeros
- a generic vector set will yield only the trivial solution set $\{0\}$

Periodic solutions

Lemma

Let x be an n-periodic solution, then the form $B=x \otimes x$ is contained in the image of Λ and $A=\Lambda^{-1}(B)$ is positive semi-definite and given by $A=\left(B\left(\mathbf{e}_{t}, \mathbf{e}_{s}\right)\right)_{t, s=1, \ldots, n}$.
let $\mathcal{P}_{\mathbf{u}}$ be the convex hull of all forms $x \otimes x, x$ an n-periodic solution

- the subset $P_{\mathbf{u}} \subset F_{\mathbf{u}}$ of positive semi-definite matrices equals $\Lambda^{-1}\left[\mathcal{P}_{\mathbf{u}}\right]$
- the maximal rank achieved by positive semi-definite matrices in $F_{\mathbf{u}}$ equals the geometric multiplicity of the Floquet multiplier 1

Maximal rank of bilinear forms

Theorem

- if the maximal rank $r_{\text {max }}$ of the bilinear forms in the feasible set $\mathcal{F}_{\mathbf{u}}$ does not exceed $d-2$, then $F_{\mathbf{u}}=P_{\mathbf{u}} \sim \mathcal{S}_{+}^{r_{\text {max }}}$
- if $r_{\text {max }}=d-1$, then either $F_{\mathbf{u}}=P_{\mathbf{u}} \sim \mathcal{S}_{+}^{r_{\text {max }}}$, or $\operatorname{dim} F_{\mathbf{u}}=1$ and F_{u} is an exceptional extreme ray
- if $r_{\max }=d$, then $F_{\mathbf{u}}=P_{\mathbf{u}} \sim \mathcal{S}_{+}^{r_{\text {max }}}$ if and only if $\mathfrak{M}=I d$ if and only if u^{1}, \ldots, u^{n} span a 3-dimensional space
the exceptional extreme matrices in the case $r_{\max }=d-1$ are generalizations of the Horn form

Full rank, even n

Theorem

Let n be even, suppose the face F_{u} contains an exceptional copositive matrix and the feasible set $\mathcal{F}_{\mathbf{u}}$ contains a positive definite form.
Then $F_{\mathbf{u}} \simeq \mathbb{R}_{+}^{2}$, one boundary ray is generated by a rank 1 positive semi-definite matrix, and the other boundary ray is generated by an extreme exceptional copositive matrix.
examples of this kind appear for $n \geq 6$

Full rank, n odd

Theorem

Let n be odd, suppose the face F_{u} contains an exceptional matrix and the feasible set $\mathcal{F}_{\mathbf{u}}$ contains a positive definite form.
Then $F_{\mathbf{u}}$ does not contain non-zero positive semi-definite matrices.
If F_{u} is 1-dimensional, then it is generated by an extreme exceptional copositive matrix. This matrix has no zeros other than the multiples of u^{1}, \ldots, u^{n}.
If $\operatorname{dim} F_{\mathbf{u}}>1$, then the monodromy \mathfrak{M} possesses the eigenvalue -1 , and all boundary rays of $F_{\mathbf{u}}$ are generated by extreme exceptional copositive matrices.
the case $\operatorname{dim} F_{\mathbf{u}}=1$ generalizes the T-matrices

Existence of submanifolds of extreme rays

Theorem

- For arbitrary $n \geq 5$ there exists a submanifold $M_{2 n} \subset \mathcal{C}_{n}$ of codimension $2 n$, consisting of exceptional extreme matrices A each of which has zeros u^{1}, \ldots, u^{n} with supports I_{1}, \ldots, I_{n}, and such that the submatrices $A_{I_{k}, I_{k}}$ have rank $n-4$.
- Let $n \geq 5$ be odd. Then there exists a submanifold $M_{n} \subset \mathcal{C}_{n}$ of codimension n, consisting of exceptional extreme matrices A each of which has zeros u^{1}, \ldots, u^{n} with supports I_{1}, \ldots, I_{n}, and such that the submatrices $A_{l_{k}, I_{k}}$ have rank $n-3$.

Thank you!

