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Copositive cone

Definition

A real symmetric n × n matrix A such that xT Ax ≥ 0 for all
x ∈ R

n
+ is called copositive.

the set of all such matrices is a regular convex cone, the
copositive cone Cn

related cones

completely positive cone C∗
n = conv{xxT | x ≥ 0}

sum Nn + S+
n of nonnegative and positive semi-definite

cone

doubly nonnegative cone Nn ∩ S+
n

C∗
n ⊂ Nn ∩ S+

n ⊂ Nn + S+
n ⊂ Cn
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NP-hardness

Theorem (Murty, Kabadi 1987)

Checking whether an n × n integer matrix is not copositive is
NP-complete.

Theorem (Burer 2009)

Any mixed binary-continuous optimization problem with linear
constraints and (non-convex) quadratic objective function can
be written as a copositive program

min
x∈Cn

〈c, x〉 : Ax = b

Roland Hildebrand Copositive matrices and periodic dynamical systems



Copositive matrices
Periodic dynamical systems and extreme matrices

Definition and general properties
Zeros and zero patterns

Description in low dimensions

Theorem (Diananda 1962)

Let n ≤ 4. Then the copositive cone Cn equals the sum of the
nonnegative cone Nn and the positive semi-definite cone S+

n .

the Horn form (discovered by Alfred Horn)

H =













1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1













is an example of a matrix in C5 \ (N5 + S+
5 )

matrices in Cn \ (Nn + S+
n ) are called exceptional

Roland Hildebrand Copositive matrices and periodic dynamical systems



Copositive matrices
Periodic dynamical systems and extreme matrices

Definition and general properties
Zeros and zero patterns

Dimension 5

Theorem (Dickinson, Dür, Gijben, H. 2013)

The linear affine section D5,1 = {A ∈ C5 | diag(A) = 1}
possesses a semi-definite description:
A ∈ D5,1 if and only if the 6-th order polynomial on R

5 given by

pA(x) =





5
∑

i ,j=1

Aijx
2
i x2

j



 ·

(

5
∑

k=1

x2
k

)

is a sum of squares.

every copositive matrix A with diag A > 0 can be diagonally
scaled to a copositive matrix A′ = DAD with diag A′ = 1
for every matrix A ∈ C5 \ (N5 + S+

5 ) there exists a positive
definite diagonal matrix D such that pDAD is not SOS
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Extreme rays

Definition

Let K ⊂ R
n be a regular convex cone. An nonzero element

u ∈ K is called extreme if it cannot be decomposed into a
non-trivial sum of linearly independent elements of K .

in [Hall, Newman 63] the extreme rays of Cn belonging to
Nn + S+

n have been described:

the extreme rays of Nn, generated by Eii and Eij + Eji

rank 1 matrices A = xxT with x having both positive and
negative elements

in [Hoffman, Pereira 1973] the extreme elements of Cn with
elements in {−1,0,+1} have been described
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Dimension 5

Theorem (H. 2012)

The extreme elements A ∈ C5 \ (N5 + S+
5 ) of C5 are exactly the

matrices DPMPT D, where D is a diagonal positive definite
matrix, P is a permutation matrix, and M is either the Horn form
H or is given by a matrix

T =













1 − cosψ4 cos(ψ4+ψ5) cos(ψ2+ψ3) − cosψ3

− cosψ4 1 − cosψ5 cos(ψ5+ψ1) cos(ψ3+ψ4)

cos(ψ4+ψ5) − cosψ5 1 − cosψ1 cos(ψ1+ψ2)

cos(ψ2+ψ3) cos(ψ5+ψ1) − cosψ1 1 − cosψ2

− cosψ3 cos(ψ3+ψ4) cos(ψ1+ψ2) − cosψ2 1













,

where ψk > 0 for k = 1, . . . ,5 and
∑5

k=1 ψk < π.
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Definition (Baumert 1965)

let A ∈ Cn be a copositive matrix

a non-zero vector x ≥ 0 is called a zero of A if xT Ax = 0
the set supp x = {i | xi > 0} is called the support of x
the set VA = {supp x | x is a zero of A} is called the zero
pattern of A

Example: Horn form

H =













1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1













: x =













a
a + b

b
0
0













,
a,b ≥ 0,
a + b > 0

and cyclically permuted vectors
VH consists of {1,2}, {1,2,3} and cyclically permuted sets
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Example: T-matrix

T =













1 − cosψ4 cos(ψ4+ψ5) cos(ψ2+ψ3) − cosψ3

− cosψ4 1 − cosψ5 cos(ψ5+ψ1) cos(ψ3+ψ4)

cos(ψ4+ψ5) − cosψ5 1 − cosψ1 cos(ψ1+ψ2)

cos(ψ2+ψ3) cos(ψ5+ψ1) − cosψ1 1 − cosψ2

− cosψ3 cos(ψ3+ψ4) cos(ψ1+ψ2) − cosψ2 1













has zeros given by the columns of the matrix












sinψ5 0 0 sinψ2 sin(ψ3+ψ4)

sin(ψ4+ψ5) sinψ1 0 0 sinψ3

sinψ4 sin(ψ1+ψ5) sinψ2 0 0

0 sinψ5 sin(ψ1+ψ2) sinψ3 0

0 0 sinψ1 sin(ψ2+ψ3) sinψ4













and homothetic images
the zero pattern is {{1,2,3},{2,3,4},{3,4,5},{4,5,1},{5,1,2}}
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Properties

Theorem (Diananda 1962)

Let A ∈ Cn be a copositive matrix, let x be a zero of A, and let
I = supp x. Then the principal submatrix AI,I is positive
semi-definite.

Theorem (Baumert 1966)

Let A be a copositive matrix and let x be a zero of A. Then
Ax ≥ 0.

if A,B ∈ Cn and x is a zero of A + B, then x is a zero of A
and B

(Baumert 1965) if x is a zero of A ∈ Cn and
| supp x | ≥ n − 1, then A ∈ Nn + S+

n

Roland Hildebrand Copositive matrices and periodic dynamical systems



Copositive matrices
Periodic dynamical systems and extreme matrices

Periodic systems
Vector sets with circulant supports

Outline

1 Copositive matrices
Definition and general properties
Zeros and zero patterns

2 Periodic dynamical systems and extreme matrices
Periodic systems
Vector sets with circulant supports

Roland Hildebrand Copositive matrices and periodic dynamical systems



Copositive matrices
Periodic dynamical systems and extreme matrices

Periodic systems
Vector sets with circulant supports

Framework

scalar discrete-time time-variant dynamical system

xt+d +

d−1
∑

i=0

ct,ixt+i = 0, t ≥ 0

coefficients n-periodic, ct+n,i = ct,i

solution space L is d -dimensional, n > d

L can be parameterized by initial values x0, . . . , xd−1

if ct,0 6= 0 for all t , then the system is reversible
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Monodromy

let x = (xt)t≥0 be a solution

then y = (xt+n)t≥0 is also a solution

Definition

The linear map M : L → L taking x to y is called the
monodromy of the periodic system.
Its eigenvalues are called Floquet multipliers.

x is periodic if and only if it is an eigenvector of M with
eigenvalue 1

detM = (−1)nd ∏n−1
t=0 ct,0
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Evaluation functionals

let x = (xt)t≥0 be a solution

for every t , define a linear map et by et(x) = xt

et belongs to the dual space L∗

et+n = M
∗et

e0, . . . ,ed−1 span L∗

et evolves according to

et+d +

d−1
∑

i=0

ct,iet+i = 0
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Shift-invariant forms

Definition

A symmetric bilinear form B on L∗ is called shift-invariant if

B(et+n,es+n) = B(et ,es) ∀ t , s ≥ 0

B is shift-invariant if and only if B(w ,w ′) = B(M∗w ,M∗w ′)
for all w ,w ′ ∈ L∗

B = x ⊗ x for x periodic are shift-invariant

a positive semi-definite form B is shift-invariant if and only
if M[(ker B)⊥] = (ker B)⊥ and the restriction of M to
(ker B)⊥ is similar to a unitary operator

in particular, n−dim ker B eigenvalues of M lie on the unit circle
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Vector sets with circulant supports

let n ≥ 5 and let u = {u1, . . . ,un} ⊂ R
n
+ with

supp u1 = {1,2, . . . ,n − 2} =: I1

supp u2 = {2,3, . . . ,n − 1} =: I2
...

supp un = {n,1, . . . ,n − 3} =: In

supports form an orbit under circular shift

a copositive matrix having such zeros might not exist
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Associated dynamical system

to a collection u of nonnegative vectors u1, . . . ,un with
supp uk = Ik associate an n-periodic dynamical system

d
∑

i=0

ct,i xt+i = 0

with ct = (ut)It , t = 1, . . . ,n

order d = n − 3

system is reversible

all coefficients are positive

detM =
∏n

j=1 u j
j/
∏n

j=1 u j
j+d > 0
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Periodic solutions

let Lper be the subspace of periodic solutions

Lemma

An n-periodic infinite sequence x = (x0, x1, . . . ) is a solution if
and only if the vector (x1, . . . , xn)

T ∈ R
n is orthogonal to all

zeros uj , j = 1, . . . ,n.
In particular, dimLper equals the corank of the matrix U
composed of u1, . . . ,un.

corank of U = multiplicity of Floquet multiplier 1
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Example: zeros of T -matrix

n = 5, d = 2, u given by columns of













sinψ5 0 0 sinψ2 sin(ψ3+ψ4)

sin(ψ4+ψ5) sinψ1 0 0 sinψ3

sinψ4 sin(ψ1+ψ5) sinψ2 0 0

0 sinψ5 sin(ψ1+ψ2) sinψ3 0

0 0 sinψ1 sin(ψ2+ψ3) sinψ4













linearly independent solutions of the associated dynamical
system are given by

x1 = (1,− cosψ4,cos(ψ4+ψ5),− cos(ψ4+ψ5+ψ1),cos(ψ4+ψ5+ψ1+ψ2),... )

x2 = (0,sinψ4,− sin(ψ4+ψ5),sin(ψ4+ψ5+ψ1),− sin(ψ4+ψ5+ψ1+ψ2),... )
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Main correspondence

let Au ⊂ Sn be the linear subspace of symmetric n × n matrices
A satisfying (Auk )Ik = 0

to every A ∈ Au associate a symmetric bilinear form B on the
dual solution space L∗ by

B(et ,es) = Ats, t , s = 1, . . . ,d

let Λ : A 7→ B be the corresponding linear map

for A being copositive Auk ≥ 0 is a necessary condition

Λ maps quadratic forms on R
n to quadratic forms on R

d
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Image of Λ

Lemma

The linear map Λ is injective and its image consists of those
shift-invariant symmetric bilinear forms B which satisfy

B(et ,es) = B(et+n,es) ∀ t , s ≥ 0 : 3 ≤ s − t ≤ n − 3

the image of Λ may be {0}

effectively finite number of linear conditions
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Copositive matrices with zeros u

Theorem

Let Fu be the set of positive semi-definite shift-invariant
symmetric bilinear forms B on L∗

u satisfying the linear equality
relations

B(et ,es) = B(et+n,es), 0 ≤ t < s < n : 3 ≤ s − t ≤ n − 3

and the linear inequalities

B(et ,et+2) ≥ B(et+n,et+2), t = 0, . . . ,n − 1.

Then the face of Cn defined by the zeros uj , j = 1, . . . ,n, is
given by Fu = Λ−1[Fu].
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Consequences

the face of Cn defined by u is given by linear equality and
inequality constraints and a semi-definite constraint

Corollary

Given a vector set u = {u1, . . . ,un} ⊂ R
n
+, we can compute the

face Fu of the copositive cone Cn which consists of matrices
having u1, . . . ,un as zeros by a semi-definite program.

matrices in Fu might have also other zeros

a generic vector set will yield only the trivial solution set {0}
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Periodic solutions

Lemma

Let x be an n-periodic solution, then the form B = x ⊗ x is
contained in the image of Λ and A = Λ−1(B) is positive
semi-definite and given by A = (B(et ,es))t,s=1,...,n.

let Pu be the convex hull of all forms x ⊗ x , x an n-periodic
solution

the subset Pu ⊂ Fu of positive semi-definite matrices
equals Λ−1[Pu]

the maximal rank achieved by positive semi-definite
matrices in Fu equals the geometric multiplicity of the
Floquet multiplier 1
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Maximal rank of bilinear forms

Theorem

if the maximal rank rmax of the bilinear forms in the feasible
set Fu does not exceed d − 2, then Fu = Pu ∼ S rmax

+

if rmax = d − 1, then either Fu = Pu ∼ S rmax
+ , or dim Fu = 1

and Fu is an exceptional extreme ray

if rmax = d, then Fu = Pu ∼ S rmax
+ if and only if M = Id if

and only if u1, . . . ,un span a 3-dimensional space

the exceptional extreme matrices in the case rmax = d − 1 are
generalizations of the Horn form
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Full rank, even n

Theorem

Let n be even, suppose the face Fu contains an exceptional
copositive matrix and the feasible set Fu contains a positive
definite form.
Then Fu ' R

2
+, one boundary ray is generated by a rank 1

positive semi-definite matrix, and the other boundary ray is
generated by an extreme exceptional copositive matrix.

examples of this kind appear for n ≥ 6
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Full rank, n odd

Theorem

Let n be odd, suppose the face Fu contains an exceptional
matrix and the feasible set Fu contains a positive definite form.
Then Fu does not contain non-zero positive semi-definite
matrices.
If Fu is 1-dimensional, then it is generated by an extreme
exceptional copositive matrix. This matrix has no zeros other
than the multiples of u1, . . . ,un.
If dim Fu > 1, then the monodromy M possesses the
eigenvalue −1, and all boundary rays of Fu are generated by
extreme exceptional copositive matrices.

the case dim Fu = 1 generalizes the T -matrices
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Existence of submanifolds of extreme rays

Theorem

For arbitrary n ≥ 5 there exists a submanifold M2n ⊂ Cn of
codimension 2n, consisting of exceptional extreme
matrices A each of which has zeros u1, . . . ,un with
supports I1, . . . , In, and such that the submatrices AIk ,Ik
have rank n − 4.

Let n ≥ 5 be odd. Then there exists a submanifold Mn ⊂ Cn

of codimension n, consisting of exceptional extreme
matrices A each of which has zeros u1, . . . ,un with
supports I1, . . . , In, and such that the submatrices AIk ,Ik
have rank n − 3.
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Thank you!
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