Extreme copositive matrices and periodic dynamical systems

Roland Hildebrand

Weierstrass Institute (WIAS), Berlin

Optimization without borders Dedicated to Yuri Nesterovs 60th birthday February 11, 2016

< ロ > < 同 > < 回 > < 回 > < 回 >

Copositive matrices Periodic dynamical systems and extreme matrices

Outline

Copositive matrices

- Definition and general properties
- Zeros and zero patterns

2 Periodic dynamical systems and extreme matrices

- Periodic systems
- Vector sets with circulant supports

Copositive cone

Definition

A real symmetric $n \times n$ matrix A such that $x^T A x \ge 0$ for all $x \in \mathbb{R}^n_+$ is called copositive.

the set of all such matrices is a regular convex cone, the copositive cone C_n

related cones

- completely positive cone $C_n^* = \operatorname{conv}\{xx^T \mid x \ge 0\}$
- sum N_n + S⁺_n of nonnegative and positive semi-definite cone
- doubly nonnegative cone $\mathcal{N}_n \cap \mathcal{S}_n^+$

$$\mathcal{C}_n^* \subset \mathcal{N}_n \cap \mathcal{S}_n^+ \subset \mathcal{N}_n + \mathcal{S}_n^+ \subset \mathcal{C}_n$$

ヘロト 人間 ト イヨト イヨト

NP-hardness

Theorem (Murty, Kabadi 1987)

Checking whether an $n \times n$ integer matrix is not copositive is **NP-complete**.

Theorem (Burer 2009)

Any mixed binary-continuous optimization problem with linear constraints and (non-convex) quadratic objective function can be written as a copositive program

$$\min_{\boldsymbol{x}\in\mathcal{C}_n}\langle \boldsymbol{c},\boldsymbol{x}\rangle:\qquad \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Description in low dimensions

Theorem (Diananda 1962)

Let $n \leq 4$. Then the copositive cone C_n equals the sum of the nonnegative cone \mathcal{N}_n and the positive semi-definite cone \mathcal{S}_n^+ .

the Horn form (discovered by Alfred Horn)

$$H = \begin{pmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1 \end{pmatrix}$$

is an example of a matrix in $\mathcal{C}_5 \setminus (\mathcal{N}_5 + \mathcal{S}_5^+)$

matrices in $C_n \setminus (N_n + S_n^+)$ are called exceptional

Dimension 5

Theorem (Dickinson, Dür, Gijben, H. 2013)

The linear affine section $D_{5,1} = \{A \in C_5 \mid \text{diag}(A) = 1\}$ possesses a semi-definite description: $A \in D_{5,1}$ if and only if the 6-th order polynomial on \mathbb{R}^5 given by

$$\mathcal{P}_{\mathcal{A}}(x) = \left(\sum_{i,j=1}^{5} A_{ij} x_i^2 x_j^2\right) \cdot \left(\sum_{k=1}^{5} x_k^2\right)$$

is a sum of squares.

- every copositive matrix A with diag A > 0 can be diagonally scaled to a copositive matrix A' = DAD with diag A' = 1
- for every matrix A ∈ C₅ \ (N₅ + S₅⁺) there exists a positive definite diagonal matrix D such that p_{DAD} is not SOS

Extreme rays

Definition

Let $K \subset \mathbb{R}^n$ be a regular convex cone. An nonzero element $u \in K$ is called extreme if it cannot be decomposed into a non-trivial sum of linearly independent elements of K.

in [Hall, Newman 63] the extreme rays of C_n belonging to $N_n + S_n^+$ have been described:

- the extreme rays of \mathcal{N}_n , generated by E_{ii} and $E_{ij} + E_{ji}$
- rank 1 matrices $A = xx^T$ with x having both positive and negative elements

in [Hoffman, Pereira 1973] the extreme elements of C_n with elements in $\{-1, 0, +1\}$ have been described

▶ ▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Dimension 5

Theorem (H. 2012)

The extreme elements $A \in C_5 \setminus (N_5 + S_5^+)$ of C_5 are exactly the matrices $DPMP^TD$, where D is a diagonal positive definite matrix, P is a permutation matrix, and M is either the Horn form H or is given by a matrix

$$T = \begin{pmatrix} 1 & -\cos\psi_4 & \cos(\psi_4 + \psi_5) & \cos(\psi_2 + \psi_3) & -\cos\psi_3 \\ -\cos\psi_4 & 1 & -\cos\psi_5 & \cos(\psi_5 + \psi_1) & \cos(\psi_3 + \psi_4) \\ \cos(\psi_4 + \psi_5) & -\cos\psi_5 & 1 & -\cos\psi_1 & \cos(\psi_1 + \psi_2) \\ \cos(\psi_2 + \psi_3) & \cos(\psi_5 + \psi_1) & -\cos\psi_1 & 1 & -\cos\psi_2 \\ -\cos\psi_3 & \cos(\psi_3 + \psi_4) & \cos(\psi_1 + \psi_2) & -\cos\psi_2 & 1 \end{pmatrix},$$

where $\psi_k > 0$ for k = 1, ..., 5 and $\sum_{k=1}^{5} \psi_k < \pi$.

(日)

Definition (Baumert 1965)

let $A \in C_n$ be a copositive matrix

- a non-zero vector $x \ge 0$ is called a zero of A if $x^T A x = 0$
- the set supp $x = \{i \mid x_i > 0\}$ is called the support of x
- the set V_A = {supp x | x is a zero of A} is called the zero pattern of A

Example: Horn form

$$H = \begin{pmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1 \end{pmatrix} : \qquad x = \begin{pmatrix} a \\ a+b \\ b \\ 0 \\ 0 \end{pmatrix}, \quad \begin{array}{c} a, b \ge 0, \\ a+b > 0 \\ 0 \end{pmatrix}$$

and cyclically permuted vectors \mathcal{V}_H consists of $\{1,2\},\{1,2,3\}$ and cyclically permuted sets ,

Definition and general properties Zeros and zero patterns

Example: T-matrix

$$T = \begin{pmatrix} 1 & -\cos\psi_4 & \cos(\psi_4 + \psi_5) & \cos(\psi_2 + \psi_3) & -\cos\psi_3 \\ -\cos\psi_4 & 1 & -\cos\psi_5 & \cos(\psi_5 + \psi_1) & \cos(\psi_3 + \psi_4) \\ \cos(\psi_4 + \psi_5) & -\cos\psi_5 & 1 & -\cos\psi_1 & \cos(\psi_1 + \psi_2) \\ \cos(\psi_2 + \psi_3) & \cos(\psi_5 + \psi_1) & -\cos\psi_1 & 1 & -\cos\psi_2 \\ -\cos\psi_3 & \cos(\psi_3 + \psi_4) & \cos(\psi_1 + \psi_2) & -\cos\psi_2 & 1 \end{pmatrix}$$

has zeros given by the columns of the matrix

and homothetic images the zero pattern is {{1,2,3},{2,3,4},{3,4,5},{4,5,1},{5,1,2}}, _____,

Properties

Theorem (Diananda 1962)

Let $A \in C_n$ be a copositive matrix, let x be a zero of A, and let I = supp x. Then the principal submatrix $A_{I,I}$ is positive semi-definite.

Theorem (Baumert 1966)

Let A be a copositive matrix and let x be a zero of A. Then $Ax \ge 0$.

- if A, B ∈ C_n and x is a zero of A + B, then x is a zero of A and B
- (Baumert 1965) if x is a zero of A ∈ C_n and | supp x| ≥ n − 1, then A ∈ N_n + S⁺_n

Outline

- Definition and general properties
- Zeros and zero patterns

2 Periodic dynamical systems and extreme matrices

- Periodic systems
- Vector sets with circulant supports

.

Framework

scalar discrete-time time-variant dynamical system

$$x_{t+d} + \sum_{i=0}^{d-1} c_{t,i} x_{t+i} = 0, \qquad t \ge 0$$

coefficients *n*-periodic, $c_{t+n,i} = c_{t,i}$

- solution space \mathcal{L} is *d*-dimensional, n > d
- \mathcal{L} can be parameterized by initial values x_0, \ldots, x_{d-1}
- if $c_{t,0} \neq 0$ for all *t*, then the system is reversible

< 日 > < 同 > < 回 > < 回 > < □ > <

3

Monodromy

let $x = (x_t)_{t \ge 0}$ be a solution

then $y = (x_{t+n})_{t \ge 0}$ is also a solution

Definition

The linear map $\mathfrak{M} : \mathcal{L} \to \mathcal{L}$ taking *x* to *y* is called the monodromy of the periodic system. Its eigenvalues are called Floquet multipliers.

• x is periodic if and only if it is an eigenvector of \mathfrak{M} with eigenvalue 1

• det
$$\mathfrak{M} = (-1)^{nd} \prod_{t=0}^{n-1} c_{t,0}$$

(日)

Evaluation functionals

let $x = (x_t)_{t \ge 0}$ be a solution

for every *t*, define a linear map \mathbf{e}_t by $\mathbf{e}_t(x) = x_t$

• \mathbf{e}_t belongs to the dual space \mathcal{L}^*

•
$$\mathbf{e}_{t+n} = \mathfrak{M}^* \mathbf{e}_t$$

•
$$\mathbf{e}_0, \ldots, \mathbf{e}_{d-1}$$
 span \mathcal{L}^*

et evolves according to

$$\mathbf{e}_{t+d} + \sum_{i=0}^{d-1} c_{t,i} \mathbf{e}_{t+i} = 0$$

ヘロト 人間 ト イヨト イヨト

3

Shift-invariant forms

Definition

A symmetric bilinear form B on \mathcal{L}^* is called shift-invariant if

$$B(\mathbf{e}_{t+n},\mathbf{e}_{s+n}) = B(\mathbf{e}_t,\mathbf{e}_s) \quad \forall t,s \ge 0$$

- B is shift-invariant if and only if B(w, w') = B(𝔐^{*}w, 𝔐^{*}w') for all w, w' ∈ L^{*}
- $B = x \otimes x$ for x periodic are shift-invariant
- a positive semi-definite form *B* is shift-invariant if and only if 𝔅[(ker *B*)[⊥]] = (ker *B*)[⊥] and the restriction of 𝔅 to (ker *B*)[⊥] is similar to a unitary operator

in particular, $n - \dim \ker B$ eigenvalues of \mathfrak{M} lie on the unit circle

(日)

Vector sets with circulant supports

let
$$n \ge 5$$
 and let $\mathbf{u} = \{u^1, \dots, u^n\} \subset \mathbb{R}^n_+$ with

supp
$$u^1 = \{1, 2, ..., n-2\} =: l_1$$

supp $u^2 = \{2, 3, ..., n-1\} =: l_2$
:

supp
$$u^n = \{n, 1, ..., n-3\} =: I_n$$

- supports form an orbit under circular shift
- a copositive matrix having such zeros might not exist

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Associated dynamical system

to a collection **u** of nonnegative vectors u^1, \ldots, u^n with supp $u^k = I_k$ associate an *n*-periodic dynamical system

$$\sum_{i=0}^d c_{t,i} x_{t+i} = 0$$

with
$$c_t = (u^t)_{I_t}, t = 1, ..., n$$

- order d = n 3
- system is reversible
- all coefficients are positive

• det
$$\mathfrak{M} = \prod_{j=1}^{n} u_j^j / \prod_{j=1}^{n} u_{j+d}^j > 0$$

Periodic systems Vector sets with circulant supports

Periodic solutions

let \mathcal{L}_{per} be the subspace of periodic solutions

Lemma

An n-periodic infinite sequence $x = (x_0, x_1, ...)$ is a solution if and only if the vector $(x_1, ..., x_n)^T \in \mathbb{R}^n$ is orthogonal to all zeros u^i , j = 1, ..., n. In particular, dim \mathcal{L}_{per} equals the corank of the matrix U composed of $u^1, ..., u^n$.

corank of U = multiplicity of Floquet multiplier 1

ヘロト 人間 ト イヨト イヨト

Example: zeros of *T*-matrix

$$n = 5$$
, $d = 2$, **u** given by columns of

linearly independent solutions of the associated dynamical system are given by

$$\begin{aligned} x^{1} &= (1, -\cos\psi_{4}, \cos(\psi_{4} + \psi_{5}), -\cos(\psi_{4} + \psi_{5} + \psi_{1}), \cos(\psi_{4} + \psi_{5} + \psi_{1} + \psi_{2}), \dots) \\ x^{2} &= (0, \sin\psi_{4}, -\sin(\psi_{4} + \psi_{5}), \sin(\psi_{4} + \psi_{5} + \psi_{1}), -\sin(\psi_{4} + \psi_{5} + \psi_{1} + \psi_{2}), \dots) \end{aligned}$$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Main correspondence

let $A_u \subset S_n$ be the linear subspace of symmetric $n \times n$ matrices A satisfying $(Au^k)_{I_k} = 0$

to every $A \in \mathcal{A}_u$ associate a symmetric bilinear form B on the dual solution space \mathcal{L}^* by

$$B(\mathbf{e}_t, \mathbf{e}_s) = A_{ts}, \qquad t, s = 1, \dots, d$$

let $\Lambda : A \mapsto B$ be the corresponding linear map

- for A being copositive $Au^k \ge 0$ is a necessary condition
- A maps quadratic forms on \mathbb{R}^n to quadratic forms on \mathbb{R}^d

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Image of Λ

Lemma

The linear map \land is *injective* and its image consists of those shift-invariant symmetric bilinear forms B which satisfy

$$B(\mathbf{e}_t, \mathbf{e}_s) = B(\mathbf{e}_{t+n}, \mathbf{e}_s) \quad \forall t, s \ge 0: \ 3 \le s - t \le n - 3$$

• the image of Λ may be {0}

• effectively finite number of linear conditions

< ロ > < 同 > < 回 > < 回 >

Copositive matrices with zeros u

Theorem

Let \mathcal{F}_u be the set of positive semi-definite shift-invariant symmetric bilinear forms B on \mathcal{L}^*_u satisfying the linear equality relations

 $B(\mathbf{e}_t, \mathbf{e}_s) = B(\mathbf{e}_{t+n}, \mathbf{e}_s), \qquad 0 \le t < s < n: \ 3 \le s - t \le n - 3$

and the linear inequalities

 $B(\mathbf{e}_{t}, \mathbf{e}_{t+2}) \geq B(\mathbf{e}_{t+n}, \mathbf{e}_{t+2}), \qquad t = 0, \dots, n-1.$

Then the face of C^n defined by the zeros u^j , j = 1, ..., n, is given by $F_u = \Lambda^{-1}[\mathcal{F}_u]$.

イロト イポト イヨト イヨト 三日

Consequences

the face of C_n defined by **u** is given by linear equality and inequality constraints and a semi-definite constraint

Corollary

Given a vector set $\mathbf{u} = \{u^1, \ldots, u^n\} \subset \mathbb{R}^n_+$, we can compute the face $F_{\mathbf{u}}$ of the copositive cone \mathcal{C}_n which consists of matrices having u^1, \ldots, u^n as zeros by a semi-definite program.

- matrices in Fu might have also other zeros
- a generic vector set will yield only the trivial solution set {0}

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Periodic solutions

Lemma

Let x be an n-periodic solution, then the form $B = x \otimes x$ is contained in the image of Λ and $A = \Lambda^{-1}(B)$ is positive semi-definite and given by $A = (B(\mathbf{e}_t, \mathbf{e}_s))_{t,s=1,...,n}$.

let \mathcal{P}_u be the convex hull of all forms $x \otimes x$, x an n-periodic solution

- the subset P_u ⊂ F_u of positive semi-definite matrices equals Λ⁻¹[P_u]
- the maximal rank achieved by positive semi-definite matrices in F_u equals the geometric multiplicity of the Floquet multiplier 1

< ロ > < 同 > < 回 > < 回 > < 回 > <

Maximal rank of bilinear forms

Theorem

- if the maximal rank r_{max} of the bilinear forms in the feasible set F_u does not exceed d − 2, then F_u = P_u ~ S<sup>r_{max}
 </sup>
- if r_{max} = d − 1, then either F_u = P_u ~ S<sup>r_{max}₊, or dim F_u = 1 and F_u is an exceptional extreme ray
 </sup>
- if r_{max} = d, then F_u = P_u ∼ S<sup>r_{max} if and only if M = Id if and only if u¹,..., uⁿ span a 3-dimensional space
 </sup>

the exceptional extreme matrices in the case $r_{max} = d - 1$ are generalizations of the Horn form

(日)

Periodic systems Vector sets with circulant supports

Full rank, even n

Theorem

Let n be even, suppose the face F_u contains an exceptional copositive matrix and the feasible set \mathcal{F}_u contains a positive definite form. Then $F_u \simeq \mathbb{R}^2_+$, one boundary ray is generated by a rank 1 positive semi-definite matrix, and the other boundary ray is generated by an extreme exceptional copositive matrix.

examples of this kind appear for $n \ge 6$

< ロ > < 同 > < 回 > < 回 > < □ > <

Full rank, n odd

Theorem

Let n be odd, suppose the face F_u contains an exceptional matrix and the feasible set \mathcal{F}_u contains a positive definite form. Then F_u does not contain non-zero positive semi-definite matrices.

If F_u is 1-dimensional, then it is generated by an extreme exceptional copositive matrix. This matrix has no zeros other than the multiples of u^1, \ldots, u^n .

If dim $F_u > 1$, then the monodromy \mathfrak{M} possesses the eigenvalue -1, and all boundary rays of F_u are generated by extreme exceptional copositive matrices.

the case dim $F_u = 1$ generalizes the T-matrices

(日)

Existence of submanifolds of extreme rays

Theorem

- For arbitrary n ≥ 5 there exists a submanifold M_{2n} ⊂ C_n of codimension 2n, consisting of exceptional extreme matrices A each of which has zeros u¹,..., uⁿ with supports I₁,..., I_n, and such that the submatrices A<sub>I_k,I_k have rank n − 4.
 </sub>
- Let n ≥ 5 be odd. Then there exists a submanifold M_n ⊂ C_n of codimension n, consisting of exceptional extreme matrices A each of which has zeros u¹,..., uⁿ with supports I₁,..., I_n, and such that the submatrices A<sub>I_k,I_k have rank n − 3.
 </sub>

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Thank you!

(日)

э