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Copositive cone

Definition

A real symmetric n x n matrix A such that x" Ax > 0 for all
x € RY is called copositive.

the set of all such matrices is a regular convex cone, the
copositive cone Cy

related cones

@ completely positive cone C; = conv{xx" |x > 0}

@ sum N, + Si of nonnegative and positive semi-definite
cone

@ doubly nonnegative cone N, N Sy
CiCNaNST C Ny +87F CCq
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NP-hardness

Theorem (Murty, Kabadi 1987)

Checking whether an n x n integer matrix is not copositive is
NP-complete.

Theorem (Burer 2009)

Any mixed binary-continuous optimization problem with linear
constraints and (non-convex) quadratic objective function can
be written as a copositive program

min{c,X) : Ax =D
XECh
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Description in low dimensions

Theorem (Diananda 1962)

Let n < 4. Then the copositive cone C, equals the sum of the
nonnegative cone A, and the positive semi-definite cone S;f.

the Horn form (discovered by Alfred Horn)

1 -1 1 1 -1

-1 1 -1 1 1

H= 1 -1 1 -1 1
1 1 -1 1 -1

-1 1 1 -1 1

is an example of a matrix in Cs \ (Vs + S5)

matrices in Cn \ (Nh + Si) are called exceptional
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Dimension 5

Theorem (Dickinson, Dur, Gijben, H. 2013)

The linear affine section Ds 1 = {A € Cs5 | diag(A) = 1}
possesses a semi-definite description:
A € Ds, if and only if the 6-th order polynomial on R® given by

5 5
pax) = | > Apxx? | - (Z Xk2>
k=1

ij=1

is a sum of squares.

'

@ every copositive matrix A with diag A > 0 can be diagonally
scaled to a copositive matrix A’ = DAD with diagA’ = 1

@ for every matrix A € Cs \ (N5 + Sg) there exists a positive
definite diagonal matrix D such that ppap is not SOS
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Extreme rays

Definition
Let K C R" be a regular convex cone. An nonzero element

u € K is called extreme if it cannot be decomposed into a
non-trivial sum of linearly independent elements of K.

in [Hall, Newman 63] the extreme rays of C,, belonging to
M, + S have been described:
@ the extreme rays of NV, generated by E; and Ej; + E;j;

@ rank 1 matrices A = xx' with x having both positive and
negative elements

in [Hoffman, Pereira 1973] the extreme elements of C, with
elementsin {—1,0,+1} have been described
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Dimension 5

Theorem (H. 2012)

The extreme elements A € Cs \ (N5 + SgL) of Cs are exactly the
matrices DPMP D, where D is a diagonal positive definite
matrix, P is a permutation matrix, and M is either the Horn form
H or is given by a matrix

1 —COSvy  COS(Ya+iPs) cos(ip+ihs)  —cOSYs3
—COS Yy 1 —costs  cos(ys+i1)  CoS(YPz+iha)
T = | cos(yatvs)  —cosys 1 —cosyy  cos(¢rtir) |
cos(yo+y3) cos(¢s+iP1)  —cosyy 1 —cos
—COoS 3 CoS(¥3+1Pa)  COS(YP1+1b2) —COS 1y 1

where ¢y >0fork =1,...,5and Sp_; ¢y < 7.
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Definition (Baumert 1965)

let A € C, be a copositive matrix
@ a non-zero vector x > O is called a zero of Aif xTAx =0
@ the set suppx = {i |x; > 0} is called the support of x

@ the set V4 = {suppx |x is a zero of A} is called the zero
pattern of A

Example: Horn form

1 -1 1 1 -1 a
101 -1 1 1 ath

H=| 1 -1 1 -1 1|: x=| b [, Z’Jt:bzf’o
1 1 -1 1 -1 0
10101 -1 1 0

and cyclically permuted vectors
Vu consists of {1,2},{1,2,3} and cyclically permuted sets
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Example: T-matrix

1 —COS 4 cos(y4+y5)  cOS(12+13) —COS 93
— COS 1y 1 —cosys  cos(¢s+ip1)  COS(h3+eha)
T = | cos(ya+vys)  —cosys 1 —costyy  cos(y )
cos(y2+yp3) cos(ys+ip1)  —COSY 1 —cos 1,
—costy  cos(ya+ipg) COS(Y1+yp)  —COSYy 1

has zeros given by the columns of the matrix

sin s 0 0 sin, sin(yz+14)
sin(Y4+1s) sinq 0 0 sinag
sin ), sin(y1+s) sin, 0 0
0 sin s sin(y1+7) sin s 0
0 0 sin, sin(y2+13) sin,

and homothetic images
the zero pattern is {{1,2,3},{2,3,4},{3,4,5},{4,5,1},{5,1,2}}
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Properties

Theorem (Diananda 1962)

Let A € C, be a copositive matrix, let x be a zero of A, and let
| = supp x. Then the principal submatrix A is positive
semi-definite.

Theorem (Baumert 1966)

Let A be a copositive matrix and let x be a zero of A. Then
Ax > 0.

@ if A/B € C, and x is a zero of A + B, then x is a zero of A
and B

@ (Baumert 1965) if x is a zero of A € C,, and
|suppx| >n—1,then Ac N, +S;
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Framework

scalar discrete-time time-variant dynamical system

d-1

Xt+d + Z CtiXt4i =0, t>0
i=0

coefficients n-periodic, Ci4nj = Ct
@ solution space £ is d-dimensional, n > d

@ L can be parameterized by initial values Xg, ..., Xq4_1
@ if ¢ o # O for all t, then the system is reversible
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Monodromy

let x = (X¢)i>o be a solution

theny = (Xt4n)t>0 iS also a solution

Definition

The linear map 9t : £ — L taking x to y is called the
monodromy of the periodic system.
Its eigenvalues are called Floquet multipliers.

@ X is periodic if and only if it is an eigenvector of 9t with
eigenvalue 1

o detdM = (—1)™ []"=4 cro
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Evaluation functionals

let x = (Xt)i>0 be a solution
for every t, define a linear map e; by e{(x) = x;

@ e; belongs to the dual space L£*
@ ern=Mey
® eq,...,64_1 Span L*

e; evolves according to

d-1

€td + Z Cri€yi =0
i=0
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Shift-invariant forms

Definition
A symmetric bilinear form B on £* is called shift-invariant if

B(et+n,€s+n) = B(et,€es) Vt,s>0

@ B is shift-invariant if and only if B(w,w’) = B(9t*w, t*w’)
forallw,w’ € £*
@ B = x ® x for x periodic are shift-invariant

@ a positive semi-definite form B is shift-invariant if and only
if M[(ker B)*] = (ker B)* and the restriction of 91 to
(ker B)+ is similar to a unitary operator

in particular, n — dim ker B eigenvalues of 9t lie on the unit circle
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Vector sets with circulant supports

letn >5andletu = {ul,...,u"} C R} with

suppul ={1,2,....n—2} =13
suppu?=1{2,3,....,n—1} = I,

suppu”" ={n,1,...,n -3} =1,

@ supports form an orbit under circular shift
@ a copositive matrix having such zeros might not exist
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Associated dynamical system

to a collection u of nonnegative vectors u?, ... u" with
supp uk = I, associate an n-periodic dynamical system

d
D ciXii =0
i—0

with ¢y = (u'),, t=1,...,n

@ orderd =n—3
@ system is reversible
@ all coefficients are positive
B o (I no i
o detd = [[i_, uj/I[j=1 Y4 >0
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Periodic solutions

let Lper be the subspace of periodic solutions

An n-periodic infinite sequence x = (Xg, Xy, . .. ) is a solution if
and only if the vector (x1,...,xn)" € R" is orthogonal to all
zerosul,j=1,...,n.

In particular, dim Lper equals the corank of the matrix U
composed of ut, ... u".

corank of U = multiplicity of Floquet multiplier 1
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Example: zeros of T-matrix

n=>5,d = 2, u given by columns of

sins 0 0 sin, sin(y3+1s)
sin(Y4+1s) sin iy 0 0 sins
siny sin(yy1+s) sin, 0 0
0 sin 5 sin(y1+2) sin i3 0
0 0 sin, sin(y+13) Siny

linearly independent solutions of the associated dynamical
system are given by

x1 = (1,— cos t4,c08(ths+15),— COS(¢a+1ps+1h1),c08(Yha+1Ps+iby +12),... )
x2 = (0,5in 4, — sin(a+1s5),5iN(Ya+1P5+11 ), — SiN(Ya+Ps+1b1+12),...)
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Main correspondence

let A, C Sp be the linear subspace of symmetric n x n matrices
A satisfying (Auk), =0

to every A € A, associate a symmetric bilinear form B on the
dual solution space L£* by

B(et,es) = A, t,s=1,...,d
let A : A — B be the corresponding linear map

@ for A being copositive Auk > 0 is a necessary condition
@ A maps quadratic forms on R" to quadratic forms on R¢
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Image of A

The linear map A is injective and its image consists of those
shift-invariant symmetric bilinear forms B which satisfy

B(et,es) = B(€t4n,€s) Vt,s>0: 3<s—-t<n-3

@ the image of A may be {0}
o effectively finite number of linear conditions
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Copositive matrices with zeros u

Theorem

Let F, be the set of positive semi-definite shift-invariant
symmetric bilinear forms B on £, satisfying the linear equality
relations

B(et,es) = B(etyn,€s), 0<t<s<n:3<s—-t<n-3
and the linear inequalities
B(et, et2) > B(€tin, €142), t=0,...,n—-1

Then the face of C" defined by the zeros ul, j =1,...,n, is
given by F, = A=1[F,].
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Consequences

the face of C,, defined by u is given by linear equality and
inequality constraints and a semi-definite constraint

Given a vector set u = {u!,... u"} c R", we can compute the
face F, of the copositive cone C, which consists of matrices
having ul,...,u" as zeros by a semi-definite program.

@ matrices in F, might have also other zeros
@ a generic vector set will yield only the trivial solution set {0}
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Periodic solutions

Let x be an n-periodic solution, then the form B = x ® x is
contained in the image of A and A = A=%(B) is positive
semi-definite and given by A = (B(et, €s))t,s=1,...n-

let P, be the convex hull of all forms x ® x, x an n-periodic
solution

@ the subset P, C F of positive semi-definite matrices
equals A~1[Py]

@ the maximal rank achieved by positive semi-definite
matrices in F, equals the geometric multiplicity of the
Floguet multiplier 1
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Maximal rank of bilinear forms

@ if the maximal rank ryax of the bilinear forms in the feasible
set F, does not exceed d — 2, then F, = P, ~ Sﬂ;“ax

@ if rmax = d — 1, then either F, = P, ~ S™, ordimF, =1
and F, is an exceptional extreme ray

@ ifrmax =d, thenFy, =Py ~ S_rp“ax if and only if 9t = Id if
and only if ul, ... u" span a 3-dimensional space

the exceptional extreme matrices in the case rmax =d — 1 are
generalizations of the Horn form
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Full rank, even n

Theorem

Let n be even, suppose the face F, contains an exceptional
copositive matrix and the feasible set F, contains a positive
definite form.

Then F, ~ RZ, one boundary ray is generated by a rank 1
positive semi-definite matrix, and the other boundary ray is
generated by an extreme exceptional copositive matrix.

examples of this kind appear forn > 6
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Full rank, n odd

Theorem

Let n be odd, suppose the face F, contains an exceptional
matrix and the feasible set F, contains a positive definite form.
Then F, does not contain non-zero positive semi-definite
matrices.

If Fy is 1-dimensional, then it is generated by an extreme
exceptional copositive matrix. This matrix has no zeros other
than the multiples of ut, ... u".

If dimF, > 1, then the monodromy 9t possesses the
eigenvalue —1, and all boundary rays of F, are generated by
extreme exceptional copositive matrices.

the case dimF, = 1 generalizes the T -matrices
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Existence of submanifolds of extreme rays

@ For arbitrary n > 5 there exists a submanifold Mo, C C, of
codimension 2n, consisting of exceptional extreme
matrices A each of which has zeros ul, ..., u" with
supports Iy, ..., In, and such that the submatrices A, |,
have rank n — 4.

@ Letn > 5 be odd. Then there exists a submanifold M, C C,
of codimension n, consisting of exceptional extreme
matrices A each of which has zeros u?, ..., u" with
supports Iy, ..., I, and such that the submatrices A,
have rank n — 3.
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Thank you!
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