Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

Illustration: splitting and others method

A semi-algebraic look at first-order methods

JÉRÔME BOLTE

Université de Toulouse / TSE

Nesterov's 60th birthday, Les Houches, 2016

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Beyond convexity in large-scale first-order optimization

Jérôme Bolte

Beyond convexity

- Semialgebraicity and o-minimality
- Sharp functions
- How this impacts optimization
- Abstract descent methods
- Convergence results
- Illustration: splitting and others method

Start with a reasonable FOM (some splitting method, gradient projection method, alternating projection method, Lagrangian method...):

 Criticality / necessary optimality conditions (discrete Lasalle's invariance principle called "Zangwill's theorem")

) But what about convergence guarantees for the iterates?

?) Decrease rates for the iterates/value?

Answer: well-designed notions of piecewise smoothness? Does not work !

Smooth counter-examples: Palis-De Melo, an extension Absil et al.

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

Illustration: splitting and others method

There exist

- f: ℝ² → ℝ C[∞] coercive nonnegative with ∇f⁻¹({0}) = argmin f =unit disk
- a bounded gradient sequence with constant step s > 0 (as small as we want):

$$x^{k+1} = x^k - s\nabla f(x_k)$$

such that

$$f(x_k)\downarrow\min f=0,\ \nabla f(x_k)\to 0$$

but with this awful property

The set of limit-points of x_k is the unit circle

Smooth counter-examples: Palis-De Melo, an extension Absil et al.

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization?

Abstract descent methods

Convergence results

splitting and others method Easier to understand with $\dot{x}(t) = -\nabla f(x(t))$

A function that yields similar results:

$$f(r,\theta) = \exp(1-r^2)\left(1-\frac{r^4}{r^4+(1-r^2)^4}\right)\sin\left(\theta-\frac{1}{1-r^2}\right)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Source of counter-examples: oscillations

Jérôme Bolte

Beyond convexity

- Semialgebraicity and o-minimality
- Sharp functions
- How this impacts optimization?
- Abstract descent methods
- Convergence results
- Illustration: splitting and others method

Oscillations in Optimization:

- \blacksquare Oscillations \Longrightarrow gradient direction=very bad predictors
- arbitrarily bad rates/complexity for any fixed dimension...

- Even worst behaviors for nonsmooth functions
- Same awful behaviors for more complex methods: e.g. Forward-Backward

Solutions to the **oscillation issue**? Alternative framework?

Semi-algebraic objects

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization?

Abstract descent methods

Convergence results

Illustration: splitting and others method

- Defined by finitely many polynomials
- Easy to recognize (Tarski-Seidenberg, quantifier elimination)
- Very stable (image/pre-image, derivation, composition, subdifferentiation...)
- Oscillations are controlled: monotonicity lemma/"finiteness of the number of connected components.

Take $A \subset \mathbb{R}^p \times \mathbb{R}^n$ and $A_x = \{y \in \mathbb{R}^p : (x, y) \in A\}$. There exists $N \in \mathbb{N}$ such that $cc(A_x) \leq N, \forall x \in \mathbb{R}^p$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Concrete examples

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

results

splitting and others method Polynomials ¹/₂ ||Ax - b||², (A, B) → ¹/₂ ||AB - M||²
max or min of polynomials

■ rank, ℓ^p norms (p rational or $p = \infty$ /infinity norm, p = 0/zero norm)

• standard cones: \mathbb{R}^{n}_{+} , Lorenz cone, SDP...

What about non semi-algebraic problems?

- analytic functions, e.g., log det
- ℓ^p norm with p arbitrary

...

a similar theory holds:

o-minimality van den Dries / Shiota: global subanalyticity, Dirichlet series, log-exp structure...

Fréchet subdifferential

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization? Abstract descer

Convergence results

Illustration: splitting and others method $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ lsc proper. **First-order formulation:** Let *x* in dom *f* (Fréchet) subdifferential : $p \in \hat{\partial}f(x)$ iff

 $f(\mathbf{u}) \geq f(x) + \langle p | \mathbf{u} - x \rangle + o(||\mathbf{u} - x||), \ \forall \mathbf{u} \in \mathbb{R}^n.$

Subdifferential

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization? Abstract descent methods Convergence results Illustration: splitting and others method

It is denoted by ∂f and defined through: $x^* \in \partial f(x)$ iff $(x_k, x_k^*) \to (x, x^*)$ such that $f(x_k) \to f(x)$ and $f(u) \ge f(x_k) + \langle x_k^* | u - x_k \rangle + o(||u - x_k||).$

Example:
$$f(x) = ||x||_1$$
, $\partial f(0) = B_{\infty} = [-1, 1]^n$
Set
 $||\partial f(x)||_- = \min\{||x^*|| : x^* \in \partial f(x)\}$

Properties (Critical point)

Definition (Mordhukovich 76)

Fermat's rule if f has a minimizer at x then $\partial f(x) \ni 0$. Conversely when $0 \in \partial f(x)$, the point x is called critical.

・ロット (雪) (日) (日) (日)

An elementary remedy to "gradient oscillation": Sharpness

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization? Abstract descen methods Convergence results Illustration: colition; and

splitting and others method A function $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is called *sharp on the slice* $[r_0 < f < r_1] := \{x \in \mathbb{R}^n : r_0 < f(x) < r_1\}$, if there exists c > 0

$$\|\partial f(x)\|_{-} \ge c > 0, \quad \forall x \in [r_0 < f < r_1]$$

Basic example f(x) = ||x||

Many works since 78, Rockafellar, Polyak, Ferris, Burke and many many others...

Sharpness: example

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization?

Abstract descent methods

Convergence results

Illustration: splitting and others method

Nonconvex illustration with a continuum of minimizers

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Finite convergence

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization?

Abstract descent methods

Convergence results

Illustration: splitting and others method Why is sharpness a remedy? Slopes towards the "minimizers" overcome frankly other "parasite slopes"

- Gradient curves reach "the valley" within a finite time.
- Easy to see the phenomenon on proximal descent Prox descent = formal setting for implicit gradient

$$x^+ = x - \operatorname{step.} \partial f(x^+)$$

Prox operator:

 $\operatorname{prox}_{f}^{s} x = \operatorname{argmin} \{ f(u) + \frac{1}{2s} ||u - x||^{2} : u \in \mathbb{R}^{n} \}$ (Moreau)

$$x^+ = \operatorname{prox}_f^{\operatorname{step}}(x)$$

When f is sharp, convergence occurs in finite time !!

Proof

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization?

methods

results

illustration: splitting and others method Assume f is sharp, then if x^{k+1} is non critical $f(x^{k+1}) \leq f(x^k) - \delta$.

Write (assume "step" is constant) **a** $f(x^{k+1}) \le f(x^k) - ||x^{k+1} - x^k||^2$ **b** $x^{k+1} - x^k \in step. \partial f(x^{k+1})$ thus $||x^{k+1} - x^k|| \ge c.step$ **b** $f(x^{k+1}) \le f(x^k) - (c.step)^2$ Set $\delta = (c.step)^2$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Measuring the default of sharpness

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization? Abstract descer methods

results

splitting and others method 0 is a critical value of f (true up to a translation). Set $[0 < f < r_0] := \{x \in \mathbb{R}^n : 0 < f(x) < r_0\}$ and assume that there are no critical points in $[0 < f < r_0]$.

f has the KL property on $[0 < f < r_0]$ if there exists a function $g : [0 < f < r_0] \rightarrow \mathbb{R} \cup \{+\infty\}$ whose sublevel sets are those of f, *ie* $[f \le r]_{r \in (0,r_0)}$, and such that

 $||\partial g(x)||_{-} \ge 1$ for all x in $[0 < f < r_0]$.

EX (Concentric "ellipsoids") $f(x) = \frac{1}{2} \langle Ax, x \rangle$ and $g(x) = \sqrt{f}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Formal KL property

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization? Abstract descent methods Convergence results Illustration: solittine and

splitting and others method

Formally :

Desingularizing functions on $(0, r_0)$:

 $arphi\in C([0,r_0),\mathbb{R}_+)$, concave, $arphi\in C^1(0,r_0)$, arphi'>0 and arphi(0)=0.

Definition

f has the KL property on $[0 < f < r_0]$ if there exists a desingularizing function φ such that

$$||\partial(\varphi \circ f)(x)||_{-} \geq 1, \forall x \in [0 < f < r_0].$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Local version : replace $[0 < f < r_0]$ by the intersection of $[0 < f < r_0]$ with a closed ball.

Some results in the "smooth world"

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization? Abstract descer methods Convergence results Illustration:

splitting and others method

- **Theorem [Lojasiewicz 1963/Kurdyka 98]** If f is analytic/"o-minimal", it is KL with $\varphi(s) = Ks^{1-\theta}$.
- Gradient dominated functions of **Polyak 63**, for *f* convex

$$\|\nabla f(x)\|^2 \ge K(f(x) - \min f)$$

KL with $\frac{1}{\sqrt{K}}\sqrt{s}$. Many ideas were present...

- Y. Ol'Khoovsky (1972) analyzed the gradient method (Absil, Mahony, Andrews 05 similar results independently)
- In 2006 Polyak & Nesterov 06, introduced

 $\|\nabla f(x)\|^p \ge K(f(x) - \min f)$

for complexity purposes of second/third order methods. This is exactly Łojasiewicz inequality when p > 1.

Going beyond smoothness/analyticity?

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization? Abstract descen methods

Convergence results

Illustration: splitting and others method

Theorem (B-Daniilidis-Lewis 2006)

Nonsmooth semialgebraic/subanalytic case 2006: Take $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ lower semicontinuous and semialgebraic then f has KL property around each point.

Many many functions satisfy KL inequality see:

- B-Daniilidis-Lewis-Shiota 2007
- B-Daniilidis-Ley-Mazet 2010

In Optimization see also but also Attouch, B., Redont 2010, B-Sabach-Teboulle 2014...

Brief "technical" comments on KL

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization? Abstract descer methods Convergence results Illustration: splitting and others method

The ingredients

- A nonsmooth Sard's theorem: finiteness of critical values
- "Amenability to sharpness" is equivalent to the fact that there exists a talweg ("path in the valley") of finite length a result from B., Daniilidis, Ley, Mazet.
- In the semi-algebraic world, desingularization functions are of the form $\varphi(s) = cs^{1-\theta}$ this is Puiseux Lemma.

How all this impacts optimization?

Descent methods at large (?P. Tseng?)

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

Illustration: splitting and others method Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semicontinuous function; a, b > 0. Let x^k be a sequence in dom f such that

Sufficient decrease condition

$$f(x^{k+1}) + a \|x^{k+1} - x^k\|^2 \le f(x^k); \quad \forall k \ge 0$$

Relative error condition For each $k \in \mathbb{N}$, there exists $w^{k+1} \in \partial f(x^{k+1})$ such that

$$||w^{k+1}|| \le b||x^{k+1} - x^k||;$$

Convergence theorem

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization?

Abstract descent methods

Convergence results

splitting and others method

Theorem (Attouch-B-Svaiter 2012 / B. Sabach-Teboulle 13)

Let f be a KL function and x^k a descent subgradient sequence for f.

If x^k is bounded then it converges to a critical point of f.

Corollary

Let f be a coercive semi-algebraic function and x^k a descent sequence for f.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Then x^k converges to a critical point of f.

Rate of convergence

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

splitting and others method

Assume that
$$arphi(s)=cs^{1- heta}$$
 with $c>$ 0, $heta\in[0,1).$

Theorem

(i) If $\theta \in (0, \frac{1}{2}]$ then there exist d > 0 and $Q \in [0, 1)$ such that $||x^k - x^{\infty}|| \le d Q^k$, (ii) If $\theta \in (\frac{1}{2}, 1)$ then there exists $c_1, c_2 > 0$ such that

$$\|x^k - x^\infty\| \leq c_1 \; k^{-rac{1- heta}{2 heta-1}}, \;\; f(x_k) - f(x_\infty) \leq c_2 \; k^{-rac{1}{2 heta-1}} = o\left(rac{1}{k}
ight)$$

P

Forward-backward splitting algorithm

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization?

Abstract descent methods

Convergence results

Illustration: splitting and others method From now on all objects are assumed to be SA

Minimizing nonsmooth+smooth structure: f = g + h

with $\begin{cases} h \in C^1 \text{ and } \nabla h \quad L-\text{Lipschitz continuous} \\ \text{g lsc bounded from below } + \text{ prox is easily computable} \end{cases}$

Forward-backward splitting (Lions-Mercier 79): Let γ_k be such that $0 < \underline{\gamma} < \gamma_k < \overline{\gamma} < \frac{1}{L}$

$$x^{k+1} \in \operatorname{prox}_{\gamma_k g} (x^k - \gamma_k \nabla h(x^k)).$$

ロンスロンスモンスモン

-

Theorem

If the problem is coercive x^k is a converging sequence

Gradient projection

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization?

Abstract descent methods

Convergence results

Illustration: splitting and others method C a semi-algebraic set, f a semi-algebraic function.

$$x^{k+1} \in P_C\left(x^k - \gamma_k \nabla f(x^k)\right)$$

Theorem

If the sequence x^k is bounded it converges to a critical point of the problem $\min_C f$

Example: Inverse problems with sparsity constraints:

$$\min\left\{\frac{1}{2}\|Ax-b\|^2: x\in C\right\}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

C=sparsity constraint/rank constraint/simple constraints

von Neumann alternating projections?

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

Illustration: splitting and others method **Assumptions:** *C* semi-algebraic closed and *D* semi-algebraic and convex.

Example: D=Hankel matrices and C=matrices of rank lower than r.

$$x^{k+1} \in P_C(y_k), \quad y_{k+1} = P_D(x_k).$$

Careful oscillations are possible... A circle for C and its center $D = \{\text{center}\}\$

A solution under-relax:

Theorem

Bounded sequences of the form $x^{k+1} \in P_C(\epsilon x_k + (1 - \epsilon)P_D(x_k))$ are converging.

More subtle results by Noll-Rondepierre in the same category based on nonsmooth KL $(a,b) \in A$

Averaged projections with underrelaxation

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization?

Abstract descent methods

Convergence results

Illustration: splitting and others method

$$x^{k+1} \in (1- heta) x^k + heta \left(rac{1}{p} \sum_{i=1}^p P_{F_i}(x^k)
ight), heta \in]0,1[$$

Theorem (Averaged projection method)

 F_1, \ldots, F_p be closed semi-algebraic which satisfy $\bigcap_{i=1}^p F_i \neq \emptyset$. If x^0 is sufficiently close to $\bigcap_{i=1}^p F_i$, then x^k converges to a feasible point \bar{x} , i.e. such that

$$\bar{\mathbf{x}} \in \bigcap_{i=1}^{p} F_i.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Alternating versions of prox algorithm

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

Illustration: splitting and others method $F : \mathbb{R}^{m_1} \times \ldots \times \mathbb{R}^{m_p} \to \mathbb{R} \cup \{+\infty\}$ lsc semi-algebraic Structure of F:

$$F(x_1,\ldots,x_p)=\sum_{i=1}^p f_i(x_i)+Q(x_1,\ldots,x_p)$$

 f_i are proper lsc and Q is C^1 .

Gauss-Seidel method/ Prox (Auslender 1993)

$$\begin{aligned} x_1^{k+1} &\in \underset{\mathbf{u} \in \mathbb{R}^{m_1}}{\operatorname{argmin}} \quad F(\mathbf{u}, x_2^k, \dots, x_p^k) \\ & \cdots \\ x_p^{k+1} &\in \underset{\mathbf{u} \in \mathbb{R}^{m_p}}{\operatorname{argmin}} \quad F(x_1^{k+1}, \dots, x_{p-1}^{k+1}, \mathbf{u}) \end{aligned}$$

Alternating versions of prox algorithm

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

Illustration: splitting and others method

.

 $F : \mathbb{R}^{m_1} \times \ldots \times \mathbb{R}^{m_p} \to \mathbb{R} \cup \{+\infty\}$ lsc semi-algebraic Structure of F:

$$F(x_1,\ldots,x_p)=\sum_{i=1}^p f_i(x_i)+Q(x_1,\ldots,x_p)$$

 f_i are proper lsc and Q is C^1 .

Gauss-Seidel method/ Prox (Auslender 1993)

$$x_{1}^{k+1} \in \underset{\mathbf{u} \in \mathbb{R}^{m_{1}}}{\operatorname{argmin}} \qquad F(\mathbf{u}, x_{2}^{k}, \dots, x_{p}^{k}) + \frac{1}{2\mu^{1}} \|\mathbf{u} - x_{k}^{1}\|^{2}$$

...
$$x_{p}^{k+1} \in \underset{\mathbf{u} \in \mathbb{R}^{m_{p}}}{\operatorname{argmin}} \qquad F(x_{1}^{k+1}, \dots, x_{p-1}^{k+1}, \mathbf{u}) + \frac{1}{2\mu^{p}} \|\mathbf{u} - x_{k}^{p}\|^{2}$$

Proximal Gauss-Seidel

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

Illustration: splitting and others method

$$F(x_1,\ldots,x_p)=\sum_{i=1}^p f_i(x_i)+Q(x_1,\ldots,x_p)$$

 f_i are proper lsc and Q is C^1 .

$$\begin{aligned} x_1^{k+1} &\in \underset{\mathbf{u} \in \mathbb{R}^{m_1}}{\operatorname{argmin}} \qquad f_1(\mathbf{u}) + Q(\mathbf{u}, \dots, x_p) + \frac{1}{2\mu^1} \|\mathbf{u} - x_k^1\|^2 \\ x_p^{k+1} &\in \underset{\mathbf{u} \in \mathbb{R}^{m_p}}{\operatorname{argmin}} \qquad f_p(\mathbf{u}) + Q(x_1, \dots, \mathbf{u}) + \frac{1}{2\mu^p} \|\mathbf{u} - x_k^p\|^2 \end{aligned}$$

Theorem

Bounded sequences of the prox Gauss-Seidel method converge

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proximal alternating linearized method: PALM (B. Sabach, Teboulle)

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

Illustration: splitting and others method $F(x) = Q(x_1, x_2) + f_1(x_1) + f_2(x_2)$ (B., Sabach, Teboulle, 14) linearization idea:

$$\begin{aligned} x_1^{k+1} &\in \operatorname*{argmin}_{\mathbf{u} \in \mathbb{R}^{m_1}} \quad f_1(\mathbf{u}) + \langle \nabla Q(\mathbf{u}, x_2) | u - x_1 \rangle + \frac{1}{2\mu^1} \| \mathbf{u} - x_k^1 \|^2 \\ x_2^{k+1} &\in \operatorname*{argmin}_{\mathbf{u} \in \mathbb{R}^{m_2}} \quad f_2(\mathbf{u}) + \langle \nabla Q(x_1, \mathbf{u}) | u - x_1 \rangle + \frac{1}{2\mu^2} \| \mathbf{u} - x_k^2 \|^2 \end{aligned}$$

$$\begin{split} x_1^{k+1} &\in \operatorname{prox} \frac{1}{\mu_1^k} f_1\left(x_1^k - \frac{1}{\mu_1^k} \nabla_{x_1} Q(x_1^k, x_2^k)\right), \\ x_2^{k+1} &\in \operatorname{prox} \frac{1}{\mu_2^k} f_1\left(x_1^k - \frac{1}{\mu_2^k} \nabla_{x_2} Q(x_1^{k+1}, x_2^k)\right). \end{split}$$

Good choice of steps?

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Proximal alternating linearized method

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization?

Abstract descent methods

Convergence results

Illustration: splitting and others method $\forall x_1, Q(x_1, \cdot) \text{ is } C^1 \text{ with } L_2(x_1) > 0 \text{ Lipschitz continuous gradient (same for } x_2 \text{ with } L_1(x_2))$

$$\begin{split} & x_1^{k+1} \in \operatorname{prox} \tfrac{1}{L_1(x_2^k)} f_1\left(x_1^k - \frac{1}{L_1(x_2^k)} \nabla_{x_1} \mathcal{Q}(x_1^k, x_2^k)\right). \\ & x_2^{k+1} \in \operatorname{prox} \tfrac{1}{L_2(x_1^k)} f_1\left(x_1^k - \frac{1}{L_2(x_1^k)} \nabla_{x_2} \mathcal{Q}(x_1^{k+1}, x_2^k)\right). \end{split}$$

Example: Several applications in sparse NMF, blind deconvolution (Pesquet, Repetti...), dictionary learning (Gribonval, Malgouyres..). General structure: M a fixed matrix, r, s integers,

$$\min\left\{\frac{1}{2}\|AB - M\|^2 : \|A\|_0 \le r, \|B\|_0 \le s\right\}$$

Theorem

Bounded sequences of PALM converge

Going further in this line?

Jérôme Bolte

- Beyond convexity
- Semialgebraicity and o-minimality
- Sharp functions
- How this impacts optimization
- Abstract descent methods
- Convergence results
- Illustration: splitting and others method

- Complex problems à la SQP (with Pauwels)
- Lagrangian methods (with Sabach-Teboulle)
- Alternating methods have a different nature (with Pauwels-Ngambou) but there are works by Li, Noll-Rondepierre, Druviatskii-loffe-Lewis....

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Fast methods???

A flavour of this complications: A simple SQP/SCQP method

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

Illustration: splitting and others method We wish to solve

$$\min\{f(x): x \in \mathbb{R}^n, f_i(x) \le 0\}$$

which can be written min $f + i_C$ with $C = [f_i \le 0, \forall i]$.

We assume:

 ∇f is L_f Lipschitz $\forall i, \nabla f_i$ is L_{f_i} Lipschitz continuous.

Prox operator here are out of reach: too complex !!

Moving balls methods

. . .

Jérôme Bolte

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

Illustration: splitting and others method Classical Sequential Quadratic Programming (SQP) idea, replace functions by some simple approximations.

Moving balls method (Auslender-Shefi-Teboulle, Math. Prog., 2010)

$$\min_{x \in \mathbb{R}^n} f(x_k) + f'(x_k)(x - x_k) + \frac{L_f}{2} ||x - x_k||^2$$

$$f_1(x_k) + f'_1(x_k)(x - x_k) + \frac{L_{f_1}}{2} ||x - x_k||^2 \le 0$$

$$f_m(x_k) + f'_m(x_k)(x - x_k) + \frac{L_{f_m}}{2}||x - x_k||^2 \le 0$$

Bad surprise: x_k is not a descent sequence for $f + i_c$.

Moving balls methods

Introduce

va

Beyond convexity

Semialgebraicity and o-minimality

Sharp functions

How this impacts optimization

Abstract descent methods

Convergence results

Illustration: splitting and others method

$$I(x) = \min_{y \in \mathbb{R}^n} f(x) + f'(x)(y - x) + \frac{L_f}{2} ||y - x||^2$$

$$f_1(x) + f'_1(x)(y - x) + \frac{L_{f_1}}{2} ||y - x||^2 \le 0$$

...

$$f_m(x) + f'_m(x)(y-x) + \frac{L_{f_m}}{2}||y-x||^2 \le 0$$

Good surprise: x_k is a descent sequence for val.

Theorem

Assume Mangasarian-Fromovitz qualification condition. If x_k is bounded it converges to a KKT point of the original problem.